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We propose guidelines to evaluate the cumulative evidence of gene–
environment (G�E) interactions in the causation of human cancer.
Our approach has its roots in the HuGENet and IARC Monographs
evaluation processes for genetic and environmental risk factors, re-
spectively, and can be applied to common chronic diseases other
than cancer. We first review issues of definitions of G�E inter-
actions, discovery and modelling methods for G�E interactions,
and issues in systematic reviews of evidence for G�E interactions,
since these form the foundation for appraising the credibility of
evidence in this contentious field. We then propose guidelines
that include four steps: (i) score the strength of the evidence for
main effects of the (a) environmental exposure and (b) genetic
variant; (ii) establish a prior score category and decide on the pat-
tern of interaction to be expected; (iii) score the strength of the
evidence for interaction between the environmental exposure and
the genetic variant; and (iv) examine the overall plausibility of
interaction by combining the prior score and the strength of the
evidence and interpret results. We finally apply the scheme to the
interaction between NAT2 polymorphism and tobacco smoking in
determining bladder cancer risk.
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Introduction
With a few exceptions, cancer is a set of diseases with
multifactorial aetiology. Causative factors operate at
one or more steps of complex pathogenetic networks,
which are only partially understood. Traditionally, the
causes of cancer, which are operationalized as ‘risk
factors’ in epidemiological studies, are distinguished
as ‘environmental’ and ‘genetic’, and the interplay
between these two categories is referred to as ‘gene–
environment (G�E) interaction’. At first sight, ‘en-
vironmental risk factors’ include modifiable agents to
which humans are exposed through a variety of
routes, and ‘genetic risk factors’ include inherited
variants that affect the probability of developing
cancer. A closer look, however, reveals a more com-
plex picture, including other important factors, such
as reactive oxygen species and other endogenously
formed molecules, which act through the same path-
ways as environmental factors and may play an im-
portant role in cancer development without being
‘environmental’ in a strict sense, and inherited epi-
genetic characteristics resulting from the influence
of environmental factors on gene expression through
methylation and other mechanisms.1

Because of the complexity of carcinogenesis, iden-
tifying the causal nature of associations observed be-
tween risk factors and cancer is not a straightforward
process. Guidelines and recommendations have been
developed to aid in the synthesis of our evolving
knowledge on environmental causes of cancer. The
best known are the rigorous IARC Monographs for as-
sessing available evidence on environmental causes of
cancer.2 The Human Genome Epidemiology Network3

has developed interim criteria for assessing the cred-
ibility of cumulative knowledge on gene–disease asso-
ciations.4 Nevertheless, an evaluation framework has
not been available so far to assess accumulating cu-
mulative evidence on joint effects of genes and
environments.

Evidence of a G�E interaction influencing cancer
susceptibility is important because it should provide
insights into cancer aetiology; help to identify human
carcinogens and genetic variants; help explain distri-
butions of disease in populations; clarify dose–
response relationships between genetic or environ-
mental factors and risk of disease; evaluate low
levels of risk; dissect effects of complex mixtures
with components differentially affected by various
genes; identify population subgroups with greatest
cancer susceptibility and potential to benefit from
interventions; and provide clues to potentially effect-
ive cancer prevention, intervention and treatment
strategies.

The purpose of this article is to propose criteria to
evaluate the cumulative evidence of G�E interactions
in the causation of human cancer. Our approach has
its roots in the HuGENet and IARC evaluation pro-
cesses for genetic and environmental risk factors, re-
spectively, and can be applied to common chronic

diseases other than cancer. Before proposing these
criteria, we review issues of definitions of G�E inter-
actions, discovery and modelling methods for G�E
interactions, and issues in systematic reviews of evi-
dence for G�E interactions, since these form the
foundation for appraising the credibility of evidence
in this contentious field.

Definitions
G�E interactions have been defined in many ways.
In the Dictionary of Epidemiology,5 interaction is
defined as: ‘1. The interdependent operation of two
or more causes to produce, prevent or control an
effect. . . 2. Differences in the effect measures for
one factor at different levels of another factor. 3.
The necessity for a product term in a linear model.’
These definitions clearly reflect multiple uses of the
word interaction in epidemiology (see also refs6–8).

Ottman9 and Khoury et al.10 view G�E interactions
as ‘a different effect of an environmental exposure on
disease risk in persons with different genotypes’ or
equivalently ‘a different effect of a genotype on dis-
ease risk in persons with different environmental
exposures’.3

To describe G�E interactions, Haldane11 identified
the three possible combinations of the four relative
risks (RRs) in a 2� 2 table based on a dichotomous
exposure to an environmental factor (E) and a dichot-
omous status with respect to a genotype (G), in which
the group of ‘non-susceptible’ and ‘unexposed’ (G–
E�) is chosen as referent category, and both E and
G either are neutral or increase the risk of disease.
Plus or minus signs after ‘E’ or ‘G’ throughout this
article denote the exposed (þ) or unexposed (�)
group and the group with the ‘risk’ allele(s), ‘þ’, or
those without, ‘�’, respectively. In combination A,
those exposed to both risk factors are at greater risk
than for either factor alone; in combination B, those
exposed to both are at lower risk than for either alone
(but still greater than the reference); and in combin-
ation C, the direction of the effect of one factor de-
pends upon the other. Yang and Khoury12 and
Ottman9 extended these classifications to include
combinations D, in which there is an effect only
when both E and G are present; and E, where there
is no effect of one factor in the absence of the other,
which however has an independent effect. These five
patterns of interactions are illustrated in Figure 1
(RRs are on arbitrary scale). For patterns A, B, C
and E, the data in Figure 1 illustrate examples in
which the effect of E is greater than that of G; the
same pattern of interaction would apply to a situation
in which the RRs for E and G are reversed. A review
of typology of interactions has been recently
published.13

Although some strong G�E interactions have been
reported, it is considered that most cancers and other
common diseases involve multiple genetic and
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environmental factors, each with relatively modest in-
dividual effects. Establishing the existence of and in-
terpreting G�E interactions is difficult for many
reasons, including, but not limited to, the selection
of theoretical and statistical models and the ability
to measure accurately both the G and E components.
In the literature, G�E interactions are described and
measured in highly variable ways.

Discovery and modelling methods
for G�E interactions
Most reports of human G�E interactions in the lit-
erature have tended to be ‘empirical’ in nature, simply
describing patterns of risk in various combinations of
G and E factors and at most testing whether that
pattern could be described in terms of some simple
model involving only the main effects of the interact-
ing factors or would require additional interaction
terms. When main effects are considered, the pres-
ence of interaction is dependent on the scale used,
e.g. additive or multiplicative on a scale of RRs, and
issues regarding scale are complex.13,14 Such descrip-
tive models have seldom gone beyond the consider-
ation of pair-wise interactions between a single gene
and a single environmental factor, although there
have been some exceptions (e.g. a four-way inter-
action of smoking and well-done red meat with
CYP1A2 and NAT2).15 Numerous exploratory data ana-
lysis and machine learning techniques, such as
Classification and Regression Trees or Multivariate
Adaptive Regression Splines,16 Multifactor
Dimension Reduction,17,18 the Focused Interaction
Testing Framework,19 logic regression,20 Neural
Networks,21 Support Vector Machines,22 to name a
few, are available for searching for higher-order inter-
actions with no prior hypotheses.

Given the sample-size requirements for testing even
a single G�E interaction specified a priori and the
exponential growth in the number of possible com-
parisons as multiple factors, it is hardly surprising
there are few, if any, replicated examples of

higher-order interactions. Indeed, even the widely
quoted four-way interaction mentioned above de-
pended on only 12 cases and 2 controls in the highest
risk stratum and did not cross-validate in multifactor
dimension reduction.23 A more promising approach is
to formally incorporate external information into the
modelling process, using some form of Bayesian hier-
archical modelling strategy.24,25 This generally entails
treating coefficients from a conventional logistic re-
gression model for the epidemiological study
data (the logRRs for G and E main effects and their
interactions) as random variables in a second-level
regression model, using external information on char-
acteristics of these variables as predictors. One of the
first applications of such an approach was data on
bladder cancer in relation to genes involved in meta-
bolic activation and detoxification of carcinogens, oxi-
dative stress, and DNA repair and their interactions
with tobacco smoke and other exposures, using
simple pathway indicator variables as the second-
level ‘prior covariates’.26 Other applications to lung
cancer,27 and melanoma,28 have relied on various
other types of bioinformatic or genomic tools, func-
tional assays, pathway ontologies or literature mining
to provide prior covariate information.29,30

Stochastic Search Variable Selection,31 Bayes model
averaging,32 Monte Carlo logic regression33 or
Algorithm for Learning Pathway Structure34 can also
be used to sift through alternative models containing
subsets of the various main effects and interactions.
Such methods can also be applied to genome-wide
association studies (GWASs),35,36 including genome-
wide interaction scans. Key to the future success of
such approaches will be development of better ontol-
ogies to provide comprehensive integration of external
knowledge, not only about genes, but also environ-
mental factors, disease risks and toxicological infor-
mation.37,38 The database being developed in the
HuGE Navigator (http://www.hugenavigator.net) by
the Human Genome Epidemiology Network39 is a
valuable step in this direction.

In some areas, however, it has been possible to build
physiologically based pharmacokinetic (PBPK) models
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Figure 1 Patterns of G�E interaction
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and mechanistic models, notably in relation to the
multistage theory of carcinogenesis. Population
PBPK models40–42 typically involve mathematical
modelling of a metabolic process through a system
of differential equations with rates for each step
that vary across individuals following some distribu-
tion whose parameters are to be estimated, so as to
relate environmental exposures to some health
outcomes. In principle, incorporating measurable de-
terminants of inter-individual variation, such as geno-
types at relevant loci or biomarker measurements of
intermediate metabolite concentrations or enzyme ac-
tivity levels, should be straightforward,43,44 but this
has seldom been done. Among mechanistic models,
the classic Armitage–Doll multistage model45 and
the Moolgavkar–Knudson two-stage clonal-expansion
model46 are best developed, with more recent work
focusing on the role of genomic instability47 and by-
stander effects.48 These have generally been more
focused on describing exposure-time–response rela-
tionships for environmental main effects than on
G�E interactions, although in principle genetic
modifiers could be incorporated into the modelling
of the underlying event rates.

The biological interpretation of measured inter-
actions has been debated.7,14,49 It is not always clear
whether or not sensible biological mechanistic under-
standing can come from a particular statistical for-
mula of interaction.13

Issues in systematic reviews
focusing on G�E interaction
One of the main motivations for meta-analysis of data
on G�E interactions is the realization that very large
sample sizes will be necessary to confirm evidence of
G�E joint effects50 especially in light of exposure
measurement error and genotyping error inherent in
these types of studies.51,52 Mechanisms to combine
studies appropriately will be crucial in meeting these
sample size requirements. Assessing the evidence for
G�E interactions in a systematic review requires con-
sideration and reporting of potential sources of bias,
study design and other issues in the individual studies
and across studies.

Publication bias and selective reporting
Challenges to integrating evidence include publication
bias and selective reporting of studies.53,54 The large
number of potential comparisons implicit in the con-
cept of multiple interacting variables increases the po-
tential for selective reporting. ‘Positive’ results may be
inappropriately favoured for publication.

The proportion of articles on human genome
epidemiology reporting G�E interactions has been
fairly small, �14%.55 So far, most of them exam-
ine pair-wise joint effects between a single candi-
date gene and a single environmental factor.

Some investigators have argued that a pre-specified
hypothesis is more credible, whereas others consider
the prior probability of the hypothesis, irrespective of
when it is specified, as more important, and that rep-
lication will determine its credibility.3,56 In a review of
the reporting of interaction in general medicine, epi-
demiology and clinical specialty journals between
2001 and 2007, 12% of articles that addressed inter-
action explicitly stated that examination of interaction
was an objective of the study or that interaction ana-
lyses were pre-specified.3,56 Investigators are now
integrating analyses of genome-wide variation and
environmental factors, extending the ‘agnostic’ ap-
proach used for genetic associations in GWASs to
gene–environment-wide interaction studies.55

We propose investigators present web supplement
tables of data on G�E joint effects (i.e. primary ana-
lyses if the analysis is based on a priori hypotheses,
‘top’ hits if based on an agnostic approach); this
would not limit the freedom of investigators to pre-
sent findings according to their preference in the
main paper. Furthermore, it would be helpful if ex-
posure categorization could be done in a comparable
way across studies.

Study design
The use of different study designs has implications
for integration of evidence. Most studies of G�E
interaction use the classical case–control design.
Increasingly, nested case–control or case–cohort de-
signs within prospective cohorts are being reported,
which may be less vulnerable to selection and infor-
mation biases.3,57 Case-only designs can also be used
to test for departure from a multiplicative model for
the joint effects of genetic and environmental factors
in disease aetiology, but cannot assess marginal ef-
fects of genotype or exposure.12,58–61 The validity of
such an approach depends on the independence of
genotype and exposure in the population at risk.62,63

Various hybrid case-only and case–control approaches
have been proposed to overcome the need for assum-
ing independence of gene and environment effects in
the population,64,65 as well as an extension to a
two-step approach to genome-wide scans that con-
sidering G�E interactions is more powerful than a
standard single-step approach or pre-filtering on the
basis of main effects.66

The case–parent trio design can also test for depart-
ure from a multiplicative model for joint effects of
genotype and environment67–69 and assess effects of
maternal vs infant genotype and imprinting, but not
the marginal effects of exposure. This approach has
greatest potential for investigations of cancer aeti-
ology in children and young people, but is rarely
used. A similar two-step approach for genome-wide
scans for G�E interactions based on this design
has also been proposed.70
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Selection bias
Morimoto et al.71 have shown that estimates of G�E
interaction, defined as departure from a multiplicative
joint effect, will not be subject to selection bias when
genotype itself does not influence participation in the
study. This applies even when selection is influenced
by exposure and disease status and genotype may be
associated with either or both of these. Similarly, in a
hospital-based case–control study, Wacholder et al.72

noted even if exposure, or genotype, or both are asso-
ciated with the condition leading to hospitalization of
control subjects, a departure from multiplicative ef-
fects can be estimated without bias. Although includ-
ing controls with more than one type of disease might
reduce bias resulting from one disease being asso-
ciated with exposure, genotype or both, pooling con-
trols with different diseases can lead to bias in
assessing departure from multiplicative interaction,
even if there is no such interaction in each individual
disease-specific control set.72

Information bias
An important challenge is that the case–control
design is susceptible to misclassification of expos-
ure,73 and, although differential misclassification
may not bias estimation of departure from multiplica-
tive joint effects, a small level of differential misclassi-
fication can have a marked effect on the estimation of
the marginal effects of exposure.74

Exposure misclassification can bias estimation of
interaction effects, the magnitude of which depends
on the prevalence of the misclassified exposure and
on the interaction model.75,76 If interaction is defined
as lack of fit to a multiplicative model, the test for
interaction will be conservative.14 However, if mis-
classification of exposure does not vary by genotype,
differential misclassification between cases and con-
trols may not be a serious problem.14 Simulation ana-
lyses also suggest that many regular tests for the
hypothesis of no interaction maintain correct type I
error rates in the presence of differential misclassifi-
cation when there is no or a weak marginal effect
of genotype.77 The impact of misclassification on
departures from additive effects is more difficult to
predict.75 In theory, case–control studies are more vul-
nerable to differential misclassification than cohort
studies, thus considerable investments have been,
and continue to be, made in developing prospective
cohort studies and associated biobanks.51,78–81

Confounding
Whereas main genetic effects are not generally con-
founded, except by population stratification,82 this is
not necessarily true of G�E joint effects. Any factor
associated with the environmental component of a
particular G�E interaction will itself demonstrate
some evidence of interaction with the genotype in
question.83 Consider, e.g. the interaction reported be-
tween alcohol intake and alcohol dehydrogenase

(ADH1B) variation in relation to head and neck
cancer (Figure 2).84,85 When stratified by alcohol
status, the variant does not affect cancer risk among
never drinkers, whereas substantial protection of the
rare variant is seen among alcohol drinkers, in a
dose–response fashion with the amount of alcohol
consumed. Smoking is associated with alcohol con-
sumption. Thus, when stratified by smoking status,
there is an apparent interaction between smoking
status and ADH1B variation, which is entirely driven
by the association between smoking and alcohol
consumption.

Large-scale measurement platforms and
large-scale studies
One challenge for new generation biobank studies is
to combine massive measurements of both genetic
and environmental variables across studies.86 Large-
scale GWAS designs typically use a case–control or
nested case–control study design.87 When exposure
information is available, they can also be used to in-
vestigate G�E interactions.55 GWAS studies often in-
volve pooling individual-level data from multiple
studies. Investigators typically need to harmonize
the data and compare exposure variables across stu-
dies in order to ensure variables across studies are
measuring the same thing and can be combined. An
example of a tool to help perform the harmonization
of metadata from large biobanks and other studies is
the Public Population Project in Genomics (P3G:
www.p3g.org), which has established the Data
Schema and Harmonization Platform for
Epidemiological Research (DATAShaper).88 PhenX
(www.phenx.org), Consensus Measures for
Phenotypes and Exposures for use in Genome-wide
Association Studies, is another initiative that provides

Figure 2 Risk of upper aerodigestive cancer by ADH1B
genetic variation, stratified by drinking intensity and
smoking status. OR and 95% CI of upper aerodigestive
cancer by re1229984 variant in ADH1B. Rare allele
(dominant model) carriers vs common allele homozygous
genotype. ORs are derived from fixed effects models and
are standardized by age, sex, centre, cumulative alcohol
consumption and tobacco smoking. Source: ref.84
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a recommended minimal set of high priority measures
for many research domains related to complex dis-
eases and environmental measures.89 Adoption of
these standardized measures in GWAS and other
large-scale genomic research efforts will obviate the
need for harmonizing variables across studies and
reduce any measurement bias derived from harmoniz-
ing data from studies in which exposure variables
were not identical.

Combining studies
Apart from assessing risk for bias of single studies, an
important issue in combining studies is the use of
different methods of exposure assessment and, in
the situation when individual participant data are
not available, its categorization. For both cohort and
case–control studies, assessment of measurement
error and correction for it in analysis enhance the
rigour of combined studies.90

Further issues in combining data are the compar-
ability of definition of phenotype, and for combin-
ation of information at the level of studies, the
nature of the genetic model considered and analytical
strategy. With regard to the type of analysis done, in
assessment of papers addressing interaction of any
type between 2001 and 2007, the most frequent re-
porting approach was the presentation of stratum-
specific effect estimates.56 P values or statements
regarding statistical significance were reported in
over half of the articles, but this statistical test was
often unclear. Only one-tenth of the studies reported
individual effects of both exposures and their joint
effect, and few studies reported product terms or a
synergy index. Therefore, increased transparency of

analysis and reporting is needed, as called for in the
STROBE91 and STREGA92 statements.

Proposed guidelines for assessing
cumulative evidence of G�E
interactions in cancer
A schema for assessing cumulative evidence of G�E
interactions should be based on explicit criteria and
standardized procedures. The process of assessment
should enable the reader to understand steps through
which the final evaluation has been reached. The pro-
cess should include the four steps shown in Figure 3:

(i) Score the strength of the evidence for main ef-
fects of the (a) environmental exposure and (b)
genetic variant;

(ii) Establish a prior score category and decide on
the pattern of interaction to be expected;

(iii) Score the strength of the evidence for inter-
action between the environmental exposure
and the genetic variant; and

(iv) Examine the overall plausibility of interaction
by combining the prior score and the strength
of the evidence and interpret results.

For assessments (i)–(iii), a prerequisite is the sys-
tematic review of the respective evidence with caveats
discussed above. The rationale here is that it is more
likely to observe an interaction when the evidence is
stronger for both the environmental exposure and the
genetic variant, and conversely an interaction between
an agent and a variant with only weak evidence of

Figure 3 Categories for the credibility of cumulative epidemiological evidence for genetic associations
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any effect on cancer risk. The criteria for combining
the two lines of evidence are outlined in Table 1.

The prior score (from Table 1) is defined as the like-
lihood on a scale of 1–3 (with 1 being the most likely)
that a G�E interaction can be expected. When the
evidence is strong for both E and G, and such evi-
dence that both operate through the same causal
pathway, there would be a strong rationale for expect-
ing some interaction (prior score category 1). A mod-
erate probability for an interaction (prior score
category 2) can result from interactions of (i) estab-
lished environmental carcinogens and genotypes with
less than strong evidence, (ii) genotypes with strong
evidence and environmental agents with moderate or
weak evidence and (iii) moderate evidence for the
effect of both environmental agents and genotype.
Other combinations of the evidence for main effects
support only a weak probability for an interaction
(prior score category 3), although one cannot fully
exclude the possibility that interactions may also
exist in the absence of any main effect. Finally, the
default prior scores can be modified based on mech-
anistic or biological information, when such evidence
is available, e.g. for tobacco-related cancer.93

Details on each step are described further.

Step 1. Score the strength of the evidence for main
effect of the environmental exposure
The assessment of evidence of the main effect of the
environmental exposure is based on a systematic
review of human studies and other relevant data
available in the scientific literature.

In the case of carcinogenic effects, comprehensive
systematic reviews and evaluations such as those of
the IARC Monographs2 and those of the World
Cancer Research Fund (WCRF) (specifically for nutri-
tional factors)94 should be used whenever appropriate.
The criteria used in the two systems are described in
Box 1. It is important however to specify whether the
evaluation comes from a systematic programme such
as the IARC Monographs or the WCRF Reports, or
from an ad hoc exercise.

It should be noted that some exposures might be
potentially carcinogenic, whereas others could be

putatively protective and the same exposure, e.g. oes-
trogen plus progestin hormone replacement therapy
may be protective for some health outcomes but a
risk factor for others,95 suggesting the need to con-
sider potential harms as well as benefits for potential
preventive exposures.

In all cases, evidence for main effects of the envir-
onmental factor is classified according to a qualitative
scale comprising five categories, such as those pro-
posed in Table 2.

Score the strength of the evidence for main effect of
the genetic variant
Scoring the main effect of the environmental factor
and the genetic variant can occur in any order. The
evidence of main effects of the genetic variant is
assessed according to the HuGENet criteria for asses-
sing the epidemiological credibility of cumulative
evidence,4 also called the Venice criteria (Figure 4).
On the basis of combination of three criteria
(amount of evidence, degree of replication and protec-
tion from bias) (each of which can be scored A, B and
C), the epidemiological evidence for an effect of the
genotype is classified as strong, moderate or weak.
Tables 3 and 4 show the main considerations for
the three criteria for genetic associations, and address
the special issues regarding protection from bias.
Evidence is considered to be strong if the genetic var-
iant scores A on all three criteria; moderate if any B is
present but no C; and weak, if any C is present for
any of the three criteria.

The majority of nominally significant genetic asso-
ciations that emerged in the candidate gene era have
weak credibility under this scheme. For example, out
of 31 nominally significant associations in associa-
tions between DNA polymorphisms and diverse can-
cers, only 1 has strong credibility based on the Venice
criteria.96 Conversely, there were 92 associations of
genetic variants with diverse cancers from GWASs
with P < 10�7 97 and, with three exceptions, all had
sufficient amount of evidence to be characterized as A
for the first Venice criterion, whereas the attainment
of genome-wide significance is sufficient for getting
an A in replication. Protection from bias in

Table 1 Score categories for an interaction between an environmental agent and a genetic variant based on the strength of
evidence for a main effect of each of them (1¼ strong, 2¼moderate, 3¼weak)

Evidence for genetic main effect

Evidence for environmental main effect

A (strong) B (moderate) C (weak)
D (lack);

E (evidence against)

Strong 1 2 2 3

Moderate 2 2 3 3

Weak 2 3 3 3

Lack; evidence against 3 3 3 3

See criteria for defining strong, moderate and weak for environmental exposures in Table 2 and genetic effects in Table 3.
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prospectively conducted and fully reported GWASs is
also considered sufficient for an A on this criterion.
Thus, the vast majority of these associations seem to
have strong credibility.

Step 2. Establish a prior score category and decide on
the pattern of interaction to be expected
The second step consists of establishing a prior score,
rated as 1 for strong, 2 for moderate and 3 for weak,

and considering different possible patterns of interac-
tion and identifying those more likely to occur.

If there is strong evidence that the genetic variant
and the environmental agent act in ways directly rele-
vant to each other (e.g. the variant affects the meta-
bolism of the agent), the default prior score can be
upgraded (e.g. from score 2 to 1). Due to limitations
in the current understanding of carcinogenesis, lack
of biological or mechanistic evidence should not be
used to downgrade these prior scores.

Table 2 Proposal of a common scheme for the evaluation of main effects of environmental agents

Common scheme IARC Monographsa WCRF Reportb

A (strong evidence) Sufficient; limited with supporting datac Convincing

B (moderate evidence) Limited Probable

C (weak evidence) Inadequate with supporting datac Suggestive; limited

D (lack of evidence) Inadequate No conclusions

E (evidence against an effect) Substantial effect unlikely

aEvaluation of human evidence; see Box 1 for details.
bSee Box 1 for details.
cSufficient evidence of carcinogenicity in experimental studies and strong evidence of a relevant mechanism of carcinogenesis.

Figure 4 Steps in assessing G�E interactions
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Table 3 Considerations for epidemiological credibility in the assessment of cumulative evidence on genetic associations and
G�E interactions (adapted from ref.4)

Criteria

Proposed operationalization

Categories Genetic association G�E interaction

Amount of
evidence

A: large-scale evidence Thresholds may be defined
based on sample size,
power or false-discovery
rate considerations. The
frequency of the genetic
variant of interest should
be accounted for

Same as for genetic associa-
tion plus: The frequency of
the environmental variant
of interest should also be
accounted for

B: moderate amount of evidence

C: little evidence

Replication A: extensive replication
including at least one
well-conducted meta-analysis
with little between-study
inconsistency

Between-study inconsistency
entails statistical considera-
tions and also epidemiolo-
gical considerations for the
similarity/standardization
or at least harmonization of
phenotyping, genotyping
and analytical models
across studies

Between-study consistency in
a variation in risk estimates
by genetic and environ-
mental standards that
entail considerations for
replication of genetic
associations listed at left

B: well-conducted meta-analysis
with some methodological
limitations or moderate
between-study inconsistency

C: no association; no indepen-
dent replication; failed
replication; scattered studies;
flawed meta-analysis or large
inconsistency

Protection
from bias

A: bias, if at all present, could
affect the magnitude but
probably not the presence of
the association

A prerequisite for A is that
the bias due to phenotype
measurement, genotype
measurement, confounding
and selective reporting can
be appraised as not being
high plus there is no other
demonstrable bias in any
other aspect of the design,
analysis or accumulation of
the evidence that could
invalidate the presence of
the proposed association

Same as for genetic associa-
tions except that only cer-
tain biases listed for genetic
associations apply

B: no obvious bias that may
affect the presence of the
association but there is
considerable missing
information on the generation
of evidence

In category B, although no
strong biases are visible,
there is no such assurance
that major sources of bias
have been minimized or
accounted for because
information is missing on
how phenotyping, genotyp-
ing and confounding have
been handled

C: considerable potential for or
demonstrable bias that can
affect even the presence or
absence of the association
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The decision on expected patterns of interaction
should be based on a priori knowledge about the bio-
logical interplay of the environmental factor and the
genotype. When such knowledge cannot predict any
pattern of interaction, the default pattern of interac-
tion should be the one requiring fewer assumptions
(pattern A in Figure 1). Similarly, a priori decisions
should be made on whether the expected scale of
interaction should be additive or multiplicative.
Usually, it is very difficult to make a strong a priori
choice for additive vs multiplicative effects. It should
be stressed that pattern A may be consistent with a
pure main effects model, but depending upon the
choice of scale (additive vs multiplicative), an inter-
action term might be needed.

If more than one model of interaction is plausible,
the subsequent steps of the process can be repeated
under each model.

Step 3. Score the strength of the evidence for the
interaction between the environmental exposure
and the genetic variant
Assessment of the evidence for the presence of an
interaction according to the pre-defined scale and pat-
tern should be done based on an extension of the
HuGENet Venice criteria used for assessing cumula-
tive evidence for genetic associations.4,96 As discussed
above, the amount of evidence, consistency of
replication and protection from bias of proposed
G�E interactions should be critically assessed. With
respect to amount of evidence, one may use either
power considerations, or Bayesian or false-discovery
approaches or the simplified operational approach of
sample size,4,96 focusing on the available sample size
of the smallest compared subgroup: in this case this
group would be the smallest group defined by the
combination of G and E. Usually, G�E interactions
are evaluated in small studies, and thus it is expected
that evidence would get a low grade in most cases.
Alternatively, one could grade using a rough power
estimate based on the smallest cell in the 2� 2� 2
table for the gene by environment by disease interac-
tion. For example, a grade of B could correspond to
80% power to detect an interaction RR of 1.5 (corre-
sponding to a cell size4100) or a C for an interaction
RR42 (and a cell size of 50–99). Consistency of repli-
cation is an even greater challenge for G�E interac-
tions, since results are often generated as secondary
aims in studies focused on main effects, and there is
no tradition of immediately replicating these results
in multiple datasets. Finally, to protect from bias, one
needs to consider three aspects: protection from bias
for the epidemiological exposure, for the genotype
and for the interaction effect.

Even if the evidence in Step 1 for either G or E is
lacking or there is evidence against an effect (i.e.
there is good evidence of an absence of marginal
effects of E or G), Step 3 should be undertaken
because a G�E interaction may exist even in the

absence of main effects. However, this situation
would probably only merit a low prior score (e.g. 3
in the schema of Table 2).

There are situations in which caution in interpreta-
tion is important. For example, case–parent trio stu-
dies cannot discriminate between exposures that are
neutral in the absence of a variant allele and deleter-
ious in its presence, and exposures beneficial in the
absence of a variant allele and neutral in its
presence.98

This difficulty also applies to the case-only design.
Furthermore, in the case-only design, a submultipli-
cative interaction can occur even when there is no
mechanistic interaction between genetic and environ-
mental factors.99

Step 4. Examine the overall plausibility of
interaction by combining a prior score and strength
of the evidence and interpreting results.
In this step all of the information from the previous
steps is put together. There are nine possibilities for
overall plausibility of the proposed interaction from
the combination of Table 1 and Step 3. A proposed
interaction with a high prior score and strong evi-
dence has the best plausibility. A proposed interaction
with a low prior score and weak evidence has the
worst possible plausibility. The other seven combina-
tions are between these extremes. Of note, a different
model for the interaction between the same genetic
and environmental factors may have a high prior
score but moderate or weak evidence for the presence
of the interaction. Moreover, even in case of a low
prior score the presence of interaction should not be
excluded (e.g. in case of a genotype with no overall
effect and opposite effects depending on the presence
of the environmental factor). On the other hand,
some apparent interactions with effects going in
opposite directions, may be simply statistical artefacts
or the complete absence of effect in one stratum of
the exposure or genetic factor. Overall, given such
required stringency, few G�E interactions previously
proposed would be graded as having strong credibil-
ity, if such criteria were used. Finally, additional sup-
port for interaction may come from knowledge about
the gene, the environment and the interaction from
pharmacokinetics, animal models and other sources.

Data should be interpreted by examining the overall
strength of the evidence from the previous steps and
taking into account any additional information to put
the findings into context, in other words, the inter-
pretation of the evidence for a G�E interaction
should take into account the totality of information
available. For example, the extent to which assump-
tions are made in studies and meta-analyses should
be reviewed and the validity of those assumptions
should be assessed in interpreting the overall plausi-
bility of a G�E interaction. For example, if the data
are primarily from case-only studies, has the assump-
tion needed under Mendelian randomization for
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independence of the genotype on the exposure been
adequately addressed?100 A final stage of interpreta-
tion of G�E interactions relates to the evidence
regarding the causal nature of the association of the
environmental factor with disease risk.101,102 When
there is clear evidence that an effect of an environ-
mental risk factor can be modified by genetic varia-
tion, particularly when the genotype has a clear
relation to components of the exposure, then this
increases the strength of evidence regarding the
causal nature of the environmental factor itself, inde-
pendent of genotype.

Examples of evaluation of G�E
interactions
Some examples of G�E interactions for which a rela-
tively extensive database is available are shown in
Table 5: it is noteworthy that these examples concern
either carcinogens characterized by strong associa-
tions, i.e. factors whose exposure results in 53-fold
increase in cancer, or high-penetrance genotypes,
whose carriers have a very high cumulative risk of
one or more cancers. It is plausible that many G�E
interactions act at the interface of environmental car-
cinogens and genotypes entailing small RRs, but such
interactions have not yet been robustly identified and
replicated, despite their potential cumulative role in
determining the burden of cancer in a population.
Khoury et al. have shown that ‘weak’ genetic or envir-
onmental marginal effect size can hide considerable
underlying interactions10 leading to a loss of statisti-
cal power in measuring both genetic and environmen-
tal effects separately. The problem, however, is to
disentangle these true interactions from a sea of
false-positive findings when multiple genetic and
environmental factors are analysed, especially in the
era of GWASs.55

In order to test the performance of these interim
guidelines, we applied them to an example from
Table 5. The other examples are listed as suggestions
for future reviews and evaluations.

NAT2 polymorphism, tobacco smoking and
bladder cancer
The application of the interim guidelines to the exam-
ple of NAT2 polymorphism, tobacco smoking and
bladder cancer risk is summarized in Figure 5.

Step 1. There is abundant and consistent evidence
for carcinogenicity of tobacco smoking on the urinary
bladder. The IARC Monographs evaluated evidence in
1986, 2002 and 2009.102,112,113 In all occasions, the
evaluation has been of sufficient evidence for tobacco
smoking being a cause of human cancer, so the
assessment of the evidence for the main effect of
the exposure, tobacco smoking, on bladder cancer
can be classified as ‘strong’ based on language in
Table 2.

Several meta-analyses of the association between
NAT2 slow acetylator genotype and bladder cancer
have shown a moderate but consistent increase in
risk.103,114 Using the Venice criteria, there is strong
evidence of a genetic association in persons of
European ancestry and moderate credibility when all
ethnic groups are considered. Of note, the region con-
taining NAT2 has not emerged in GWASs of bladder
cancer.115,116 However, this does not rule out a role
for NAT2.

Step 2. Given the evidence for main effects of smok-
ing and NAT2 on bladder cancer, the prior score cate-
gory is 2 when all ethnic groups are considered
(strong E, moderate G), and prior score category is
1 when only European Caucasians are considered
(strong E, strong G). This corresponds to a moderate
or strong, respectively, a priori likelihood of a G�E
interaction. Given the role of NAT2 in metabolizing
aromatic amines, which are among the likely bladder
carcinogens in tobacco smoke, one can expect the
interaction of the two agents to follow model A in
Figure 1 (or model E in case tobacco smoke is the
only source of exposure to aromatic amines).

Step 3. Next we examine the evidence for interac-
tion for pattern A. A case-only meta-analysis was
conducted117 that found an interaction odds ratio
(OR) of 1.21 [95% confidence interval (CI) 1.04–
1.42]. The association was observed especially
among Europeans based on 13 studies (OR 1.38;

Table 5 Examples of suggested G�E interactions

Evidence for main
effect of genetic

factor

Evidence for main
effect of environmental

factor Target cancer Possible mechanism

Evidence for
G�E

interaction

NAT2 slow
polymorphism103

Tobacco smoking102 Bladder cancer Reduced detoxification
of aromatic amines104

Ref.103

ALDH fast
polymorphism105,106

Alcohol drinking101 Head and neck and
oesophageal
cancer

Increased exposure to
acetaldehyde107

Refs84,85

ATM mutation108 Ionizing radiation101 Breast cancer Reduced repair of
radiation-induced
DNA damage110

Ref.111
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95% CI 1.13–1.68) and not among US Caucasians or
Asians. The estimated I2 value was 0% for Europeans
(P for heterogeneity 0.89), suggesting considerable
consistency in this population. The same case-only
meta-analysis117 found a borderline significant inter-
action when all ethnicities were considered (OR 1.21,
95% CI 1.04–1.42) and no significant between-study
heterogeneity (I2

¼ 0%, P¼ 0.54). A prior meta-
analysis103 concluded the OR for the acetylators who
were current or ever cigarette smokers as 2.73 (85%
CI 1.70–4.31).

According to Table 3, the score for replication is ‘A’,
extensive replication. The numbers of cases in the
meta-analysis vary, but some are quite small and
the CIs for the interaction ORs were quite large, sug-
gesting a ‘B’ on the amount of evidence for the inter-
action would be an appropriate score. Examining the
interaction ORs by date of publication suggests most
recent studies tend to have tighter CIs and generally
have ORs above 1. However, these meta-analyses are
retrospective and there are some potential biases that
are not possible to address and exclude. This suggests
a score of B for protection from bias. Applying scores
of A for replication, B for amount, and B for protec-
tion from bias suggests overall moderate strength of
the evidence for the interaction.

Step 4. This proposed interaction has a strong prior
score category (score 1) and moderate evidence

among Europeans and a moderate prior score category
(score 2) and moderate evidence when all ethnicities
are considered. Overall, this is the second best possi-
bility for the plausibility of an interaction among
Europeans and a moderate scenario for the plausibil-
ity of an interaction across all ethnicities. Moreover,
the evidence of a G�E interaction is well supported
by animal and pharmacokinetic studies. Overall, the
conclusion for some G�E interaction seems quite
plausible, although not fully documented yet. This
observed interaction can be taken as providing evi-
dence regarding the causal nature of cigarette smok-
ing on bladder cancer risk given pattern of a strong
genotypic effect amongst cigarette smokers, but little
evidence of any effect amongst non-smokers would be
unlikely to be seen unless tobacco smoke increases
the risk of bladder cancer.

Conclusions
Any formal assessment of evidence of interaction may
fall short of being conclusive. More G�E interactions
have been suggested from cancer genetic association
studies in the past decade. Most of these were not
confirmed in replication studies, when these were
performed; and, in general, the amount of available
evidence is weak. This also applies to G�E

Strong evidence of 

gene–environment 

interaction

Step 1 Step 2 Step 4Step 3

Figure 5 Assessment of NAT2, tobacco smoking and bladder cancer G�E interactions
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interactions for diseases other than cancer: a well-
known example is the interaction between variants
in the serotonin transporter gene and stressful life
events in determining the risk of depression, which
was recently shown not to be robust.118 This stresses
the need for guidelines to assess the strength of evi-
dence for G�E interactions. We have developed an
interim set of recommendations and guidelines;
further research is needed to test their performances
and apply them to diseases other than cancer.
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KEY MESSAGES

� Joint effects of genetic and environmental factors are presumed to be important for determining
cancer risk, but the evaluation of G�E interactions poses several challenges.

� We propose criteria to evaluate the cumulative evidence of G�E interactions in the causation of
human cancer.

� The criteria appraise systematically the strength of the evidence on genetic main effects and on
environmental main effects to generate a prior score and then incorporate the strength of the
evidence of interaction effects for specific patterns of postulated interaction.
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