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Recommendations about structuring proteomic biomarker studies should increase the 

probability that such markers will be clinically useful. 

ABSTRACT 

Clinical proteomics has yielded some early positive results—the identification of potential 

disease biomarkers—indicating the promise for this analytical approach to improve the 

current state of the art in clinical practice. However, the inability to verify some candidate 

molecules in subsequent studies has led to skepticism among many clinicians and 

regulatory bodies, and it has become evident that commonly encountered shortcomings in 

fundamental aspects of experimental design mainly during biomarker discovery must be 

addressed in order to provide robust data. In this Perspective, we assert that successful 

studies generally use suitable statistical approaches for biomarker definition and confirm 

results in independent test sets; in addition, we describe a brief set of practical and feasible 

recommendations that we have developed for investigators to properly identify and qualify 

proteomic biomarkers, which could also be used as reporting requirements. Such 

recommendations should help put proteomic biomarker discovery on the solid ground 

needed for turning the old promise into a new reality. 

INTRODUCTION 

One of the aims of proteomics—the analysis of the complete set of proteins in a 

given specimen (e.g. biological fluid or tissue)—is to identify biomarkers of disease: 

molecules that are consistently modified or present at abnormal concentrations in specific 

illnesses or other health conditions, as graphically depicted in Fig. 1. Markers might be 
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important for determining susceptibility to disease or foretelling disease progression, or 

might predict the effect of a particular treatment on clinical outcomes. Such clinical 

proteomics initially raised high hopes after reports were published of potentially 

informative biomarkers for several diseases. Some of these biomarkers have moved to the 

stage of testing in larger populations (1-3) and in clinical trials (4). However, many early 

claims of candidate molecules were not substantiated in subsequent studies (5-7). This 

situation has created skepticism about the value of clinical proteomics. We argue that the 

failures of these initial studies reflect shortcomings in fundamental aspects of the 

experimental designs (8, 9). Our Perspective seeks to offer guidance to investigators on 

how to structure future studies so as to increase the likelihood that proteomic biomarkers 

will be clinically useful. 

In the last few years, efforts have been made to offer preliminary guidance for 

clinical proteomic studies (10, 11). Some recommendations have already been adopted by 

key journals (12, 13). Unfortunately, even simple, common-sense standards are not widely 

followed, and today’s literature on newly discovered biomarkers still contains a substantial 

number of potentially invalid or even misleading reports. Reasons for spurious findings 

include (i) small sample sizes; (ii) small effects; (iii) lack of standardization in designs, 

definitions, outcomes, and analytical modes; and (iv) fragmentation of efforts through 

multiple teams of investigators (14). Most proteomic biomarker studies in the past have 

succumbed to these flaws, but these can be avoided in future studies. 

The strategies and tools required to identify dozens or even hundreds of biomarkers 

from a pool of thousands of features are not yet common knowledge among biomarker 

investigators. As a consequence, during their second annual meeting (15) members of the 

European Kidney and Urine Proteomics program (EuroKUP) initiated an effort to create 

minimal, generally applicable, concise guidelines for designing and executing discovery 

studies of clinical proteomic biomarkers and reporting their results. Several additional 

scientists active in the field of clinical proteomics and methodologists have joined this 

effort. The target audience for the recommendations in this Perspective includes scientists, 

reviewers, editors, clinicians, and funding bodies. Most previous guidelines on diverse 

research study designs and topics have focused on the proper reporting of research (16, 17), 

but reporting is just a mirror of the design and conduct of a study. It is important to apply 

appropriate methods and to provide sufficient details about these methods so that other 

researchers may evaluate the results and reproduce them; the latter is critically important 

for biomarker qualification and further development. 

DEFINITIONS 

To facilitate implementation of these recommendations, we have defined the major 

terms and kept the recommendations straightforward and broadly applicable, regardless of 

the analytical platform, type of biological samples investigated, or epidemiological design 

(case-control, cohort, cross-sectional, nested study, or other). For reporting on general 

aspects of epidemiological study design and diagnostic performance, researchers can 

consult the STROBE (18) and STARD (19) statements, whenever applicable. We focus 

here in more detail on aspects that are specific or peculiar to clinical proteomic research. 
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We define a “proteomic biomarker” as a specific peptide or protein that is 

associated with a specific condition, such as the onset, manifestation, or progression of a 

disease or a response to treatment. Similarly, a “biomarker profile” is defined as a 

combination of distinct proteomic biomarkers, using a clearly defined algorithm giving a 

readout parameter associated with the specific condition. We denote a biomarker as 

“qualified” on the basis of evidence for the above-mentioned association, generally 

dependent on appropriate statistics (see below). The concept of qualifying biomarkers for 

purposes such as drug development has been discussed (20). In the current Perspective, we 

emphasize developing the appropriate evidence that links the biomarker with biological 

processes and/or clinical endpoints. It is important to match a biomarker’s purpose with the 

evidence required for qualifying the biomarker for that purpose (21). For example, a 

biomarker for the prognosis of diabetic nephropathy must be prospectively examined in a 

population not harboring clinically evident disease at the time of sampling, and its value 

must be assessed according to its ability to predict future clinical outcome. Claiming 

potential prognostic value simply on the basis of examination of the biomarkers in patients 

with disease in comparison with nondiseased individuals is inappropriate (22). 

“Biomarker qualification” is a conclusion that within the stated context of use, the 

results of assessment with a biomarker can be relied on to have a specific interpretation and 

application in drug development and regulatory decision-making. The context of use of a 

biomarker is a comprehensive statement that fully and clearly describes the manner and 

purpose of use for the biomarker. The context-of-use statement describes all important 

criteria regarding the circumstances under which the biomarker is qualified. 

A biomarker is defined by its “associative” aspect. It has no causal or mechanistic 

relevance beyond that, unless additional functional/biological evidence supports these 

claims (23). In diseases with inherently broad clinical spectra (such as cancer), a biomarker 

may be linked to only a particular variant or stage of the disease or to specific 

complications such as metastasis (24). Qualified biomarkers will be valuable tools to 

diagnose patients earlier in the clinical course of disease, to predict outcomes and guide 

interventional approaches, to stratify participants in clinical trials, and to monitor response 

to therapy, and may be used in personalized medicine. Thus, it is imperative to clarify up 

front and report the appropriate clinical setting in which the association applies. 

Here, we focus on the initial identification of a biomarker and the minimal 

requirements for qualification and reporting biomarker discovery findings. Initial promising 

reports do not suffice for turning a biomarker or biomarker profile into a widely used 

clinical test. This process requires validation and proper evaluation of the test performance 

(sensitivity, specificity, and positive and negative predictive values) in specific settings and 

demonstration of clinical utility, applicability, and cost-effectiveness. 

MAJOR ISSUES IN DESIGN AND REPORTING 

The major issues that need to be addressed in the design and reporting of clinical 

biomarker studies include the following: 

Clearly defined clinical question, outcomes, and selection of subjects. The 

precise clinical question, the pertinent outcomes, and the purpose (potential clinical 
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application) of the biomarker must be clearly stated. Appropriate positive and negative 

controls must be defined, as deemed proper for the clinical question. Healthy controls are 

often inappropriate for defining disease-specific biomarkers; controls with related or similar 

diseases must be examined. For instance, for the discovery of biomarkers for diabetic 

kidney disease the appropriate control cohort would be age-matched diabetic patients 

without kidney disease. 

Clinical conditions and outcomes are not always assessed with certainty. 

Standardized, widely acceptable criteria for the documentation of outcomes should be used. 

The intended spectrum of disease and potential of outcome misclassification should be 

reported. Samples from individuals with unclear diagnoses may be omitted in the discovery 

and early qualification stage, at which most studies assume a case-control design (the 

comparison of otherwise similar individuals with and without a given condition). However, 

in real-life clinical practice, some people may unavoidably belong in this gray zone, 

potentially affecting the performance of a qualified biomarker. 

The assessment of patients whose diagnosis is based on surrogate parameters (such 

as isolated microalbuminuria—a small increase in albumin in the urine, which can be an 

early indication of diabetic kidney disease—as surrogate for diabetic renal damage) should 

be avoided; clinically accepted events and hard endpoints should ideally be used. 

Sometimes the presence of a particular disease is not determined by using the same 

criteria in all participants. For example, prostate cancer is documented by examining the 

prostate after its removal, whereas healthy controls cannot have the prostate removed to 

exclude occult cancer-disease that is clinically unsuspected, which is a frequent occurrence 

for this type of cancer. Such verification bias is difficult to correct (25, 26) and should be 

clearly acknowledged. 

Sufficient demographic and/or clinical data. A study attempting to define 

biomarkers must be accompanied by appropriate clinical information (required to properly 

confirm clinical status) and demographic and phenotypic data about the subjects from 

whom the specimens have been collected. These data should at least include age, gender, 

ethnic background, and detailed status of the disease or condition under investigation as 

well as relevant physiological parameters (such as blood pressure or body mass index), 

comorbidities, and current medications or treatment. 

Sufficient information about the sampling methodology. A detailed description 

of specimen collection, including how and when the samples were obtained, handled, and 

stored, with a detailed description of containers and stabilizing solutions (such as 

anticoagulants or protease inhibitors) must be provided. These parameters should be 

appropriate and applied consistently. If not, the quality of samples and consequently the 

resulting data are compromised. When practical considerations do not allow optimal 

sampling methodology, this fact should be clearly documented and the limitations 

acknowledged. 

Sufficient information about the experimental methodology. Mass spectrometry 

(MS)–based techniques for identifying proteins in clinical samples usually encompass a 

separation step, using techniques such as liquid chromatography or electrophoresis to 
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resolve individual proteins, before MS analysis. The resolution of the separation and the 

resolution and mass accuracy of the MS analysis must be proportional to the complexity of 

the investigated sample, which is high for most biomarker-discovery studies. Poor MS 

resolution and accuracy or the absence of feature annotation, which will preclude 

identification of the claimed biomarkers, is not acceptable. 

For some metabolic diseases, a well-described single biomarker is accurate for the 

diagnosis or monitoring the clinical course. However, in situations of complex 

pathophysiology (such as diabetes-associated vascular disease) a single biomarker may not 

provide optimal diagnostic accuracy. In these situations, a panel of biomarkers appears to 

be more appropriate (10, 27). A biomarker profile must consist of clearly defined molecular 

entities. Ideally, the precise chemical composition of the biomarkers should be known. In 

the case of proteins and peptides, this information includes the complete amino acid 

sequence of the potential biomarker (which, because of proteolytic modification, is 

generally not identical to the corresponding entry in databases, such as SwissProt) and all 

posttranslational modifications (PTMs). Presently, this goal cannot always be achieved, 

owing to limitations in technology. Thus, in current practice biomarkers are defined mainly 

by physical parameters, such as molecular mass, migration/retention time in separation, or 

interaction with an antibody. Amino acid sequences are usually derived from database 

entries, which often miss essential information about frequently observed PTMs. The exact 

chemical entity has been unambiguously identified in only a few cases (28). In light of 

these constraints, a sequence from the database in the absence of the exact chemical 

definition or physicochemical properties in the absence of sequence should be considered 

acceptable for now. However, bearing in mind that both definitions are incomplete, the 

analytical platform must permit assessment of the defined chemical entity (and its relative 

amount) with satisfactory confidence. 

The platform characteristics and performance of the entire analytical procedure 

(sample collection, sample preparation, etc.) should be known and adequately described in 

order to assess the quality of any data sets. To determine the analytical variability of the 

analytical platform, a set of experiments should be performed to determine features 

including intra-assay and inter-assay precision, temperature stability of analytes, 

postpreparation stability, and time course of sampling as outlined in detail in guidance 

documents (29). If these experiments have already been done in previous studies, provision 

of appropriate references to them suffices. If these parameters are not properly determined, 

the level of confidence in the analysis and, consequently, the relevance of the biomarker 

cannot be assessed. 

To attribute the same identity to a certain feature in several independent analyses, 

accepted deviations of mass and other parameters (retention time, migration, position on 

gel, etc.) must be reported. When repeatedly analyzing the same sample, the observed 

deviation in identifying parameters and (relative) abundance (the precision) should be 

reported. In addition, steps should be included to ensure that a biomarker measurement is 

not compromised by the occurrence of disease-associated changes in PTMs. If PTMs 

cannot be addressed by the applied analytical technology, additional steps—such as PTM-
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specific blotting or lectin blotting (to detect specific sugar moieties)—should be 

undertaken. 

Appropriate statistical approaches, including adequate sample size, proper 

adjustments, and correction for multiple testing. The statistical analysis should account 

for technical variability, biological variability, confounding factors, and other anticipated 

sources of bias: which aspects of the analyses were predefined, and which arose as post hoc 

exploratory analyses should be clarified. 

The selection of sample size should be justified on the basis of rational calculations 

of statistical power. If sample size is based only on constraints of sample availability, this 

should be acknowledged. As a result of high biological variation, a sufficient number of 

independent samples is essential to estimate the correct distribution of a potential 

biomarker. The investigation of <12 samples does not allow even a reasonable estimation 

of the mean and variance based on the normal distribution (30) and should be avoided. 

Small, underpowered studies are subject to an enhanced risk of both false negatives (not 

finding a true association) and false positives (finding a spurious association). When 

samples are unavoidably limited in single centers (such as in cases of rare and orphan 

diseases), the appropriate approach is to initiate a multi-center collaborative study. Finally, 

pooling of samples compromises statistical assessment and eliminates information on 

outliers and variability. There can be high between-subject variance in proteomics datasets, 

hence pooling should generally be avoided. 

Statistical analyses should evaluate at least model calibration and discrimination 

performance, and they also should evaluate reclassification performance whenever 

pertinent. Calibration refers to the goodness of fit across the range of predicted risks; 

discrimination assesses how well those with an outcome are separated from those without 

the outcome of interest. Reclassification examines whether a new prognostic model places 

participants in more appropriate risk categories as compared with an older model. Details of 

methods should be provided for each of these purposes. 

Adjustments for potential covariates—variables that might be correlated with the 

investigated pathophysiology—should be justified and clarified whether they are 

considered a priori or post hoc, and if so, why. As an example, age influences the risk of 

coronary artery disease. Thus, data sets should either include individuals of similar age in 

cases and controls, or if this is not possible, adjustment for age-related alterations in the 

distribution of potential biomarkers must be made. If patients can be treated for the 

condition under study, this capacity should be taken into account in the design and analysis, 

keeping in mind whether the biomarker is intended for use in treated patients, untreated 

patients, or both. Both biomarkers and outcomes can be influenced by therapeutic measures 

(for example, drugs). Evaluating untreated individuals (for instance, samples from the 

placebo group of a clinical trial) may yield results different from those for treated 

individuals. 

Numerous reports have demonstrated the importance of strict and correct use of 

statistics, especially the need to adjust for multiple testing (31, 32) to reduce false 

associations. For example, the simultaneous testing of 1000 potential biomarkers at a level 
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of P = 0.05 will yield the erroneous identification of approximately 50 spurious biomarkers 

by chance. Adjustments for multiple testing correct for this fact (33). There are many 

approaches that can properly account for multiplicity, including not only frequentist 

methods, but also false-discovery and Bayesian approaches. The selected methods should 

be properly documented and appropriate references provided. If adjustment for multiple 

testing is not made when investigating multidimensional data sets, the findings are probably 

false and generally not relevant. If significant disease-associated changes cannot be found 

when applying appropriate statistics, the solution cannot be avoidance of correction for 

multiple testing (leaving sound scientific ground). Instead, either more samples should be 

analyzed in order to obtain better estimates of the relevance of the investigated biomarkers, 

or it must be accepted that significant biomarkers cannot be identified in the context under 

study. 

Various machine-learning algorithms allow the combination of multidimensional 

data sets and perform similarly (and very well) in establishing multi-marker models (34, 

35). However, these algorithms lead to meaningful results only if the number of data sets is 

sufficient to uncover the latent structure in the data and allow for generalization. The 

parameters used in the machine-learning algorithms should be clearly stated so that 

analyses can be reproduced by other scientists. 

Confirmation in independent test sets. The observation of a significant 

association in a given data set does not ensure that the findings can be generalized in other 

data sets or that the association is highly specific for the investigated condition. Most 

statistical approaches used for biomarker evaluation assume (i) an even distribution of 

features across the data (similar variance in control and disease groups, and the absence of 

covariates), (ii) that the findings can be generalized, and (iii) that an association exists only 

with the investigated condition. These simplifications are generally not correct. As a 

consequence, most biomarkers with promising results in a first data set will turn out to have 

less promising results in independent data sets, as demonstrated recently (3, 36). Validation 

failure indicates that additional unidentified latent variables are, in part, responsible for the 

observed differences between cases and controls and/or that the selected features were false 

positive or nongeneralizable. Generally, the strength of associations is expected to be 

inflated in the original, discovery analysis (37). Consequently, qualification of any 

biomarker or panel in at least one independent test set (samples that were not used for the 

initial identification of the biomarker) is essential to avoid reporting flawed conclusions. 

This concern applies to both single biomarkers and biomarker profiles but is even more 

important for the latter because the algorithms generally over-fit the data, resulting in a 

model that relies on information/potential biomarkers that were coincidentally found to be 

altered in the data set but that may not have any true correlation with disease. Over-fitting 

can result in nearly 100% sensitivity and specificity in a training set (the data set used to 

initially identify biomarkers and establish an apparently disease-associated model), even 

upon cross-validation, but classification accuracy often decreases sharply in an independent 

test set, particularly when the size of the training set has been small (38). 

To maximize generalizability, external validation should be performed, whenever 

feasible, preferably in samples from multiple sites, such as in a multi-center setting. Ideally, 
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evaluation of validation samples should be performed in blinded fashion. The sampling of 

subjects and the characteristics of the validation sample (or samples) need to be described 

in the same detail as for those of the discovery data set. Outcomes, experimental 

methodology, and statistical analysis should be the same in the test and validation samples; 

any unavoidable deviations should be acknowledged and discussed in order to clarify the 

effect on the results. 

RECOMMENDATIONS 

We recommend that the guidelines listed in Table 1 become standard requirements 

for the scientific reporting of proteomic biomarker data. Adherence to these requirements 

does not imply that biomarkers emanating from an analysis can automatically be adopted 

for clinical application or that a valid test has been described. However, if the association of 

a defined biomarker with a specific pathophysiological condition has been properly 

evaluated, even on an analytical platform that is probably not applicable for a clinical 

setting (such as two-dimensional gel electrophoresis followed by MS), then such results are 

worthy of publication, regardless of whether the results are “negative” or “positive.” 

Communication of “positive” results should allow their reproduction and further 

qualification by other teams; eventually, one should hopefully be able to develop assays for 

clinical applications on the basis of well-qualified biomarkers. Brief communication of 

“negative” results is also necessary to avoid loss of resources and time by additional 

scientists who would otherwise follow the same inefficient paths of investigation and to 

avoid the distortion of the literature by publication bias. If no significance of the proposed 

biomarker can be demonstrated, then that should be clearly stated. Terms like “potential 

biomarkers” should be avoided because they do not contain any important information. 

CONCLUSION 

This Perspective offers guidance to investigators on how to structure and report 

future studies to increase the likelihood that proteomic biomarkers will be clinically useful. 

The scientific community should accept findings about such markers only if the 

requirements related to biological specimen collection, data reporting, and identification of 

biomarkers are met. Scientific journals may use these recommendations to assess 

manuscripts submitted for publication. It is particularly important that biomarker 

investigations be performed in compliance with these recommendations for the recent 

Biobanking and Biomolecular Resources Research Infrastructure initiatives (39) that aim to 

secure sustainable access to biological resources required for health-related research and 

development. These samples represent valuable resources that cannot be replenished and 

thus must not be wasted. Although this paper presents the view of more than 50 scientists in 

the field, the recommendations are open for additional discussion. For this reason, we have 

opened a portal (40) in which individuals are encouraged to post their comments and 

present their opinions. 

Clinical proteomics, if properly applied, may enable major progress in clinical 

medicine from which many patients would ultimately benefit. However, to reach this goal 

standards for quality and scientific validity in clinical proteomics studies and their reports 

must be ensured. 
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Fig. 1. Clinical proteomics workflow. Biological specimens, mostly body fluids such as 

urine or blood (but also tissue), are collected, and their proteome is examined in great detail 

in order to identify proteins and peptides that are significantly altered in disease. Upon 

validation of the results in independent cohorts, these can be considered as biomarkers, 

enabling improvement in, for example, diagnosis, prognosis, and management of patients. 

In addition, these biomarkers—via their association with pathophysiology—hold the 

promise to guide development of improved therapeutic drugs. 

CREDIT: C. BICKEL/SCIENCE TRANSLATIONAL MEDICINE 

Table 1. Requirements for scientific reporting of proteomic biomarker data. 

Describe and justify the clinical 

question, outcomes, and selection 

of subjects 

Describe the clinical question and justify why it is 

of interest; describe what outcomes are assessed 

and comment on their clinical validity, potential for 

misclassification and verification bias, if pertinent; 

clarify what are the eligibility criteria for the 

selected study populations and justify specific 

choices. 

Describe the assessed subjects Provide demographic information with gender, age, 

ethnic origin, and concomitant medications at a 

minimum, and all relevant disease-related and 

clinical parameters. 

Describe sampling Provide an accurate description of the sampling 

conditions and procedures (including the collection 

process and any manipulation of the sample before 

storage, the time between sampling and storage, 

storage conditions, and the addition of any protease 

inhibitors and/or preservatives). Justify the 

sampling choices according to the literature or 

supporting experimental data. 

Describe experimental 

methodology 

The procedure, as well as the observed standard 

deviation of technical specifications related to the 

procedure, should be given. To attribute the same 

identity to a certain feature in several independent 

analyses, accepted deviations of mass and other 

parameters (retention time, migration, position on 

gel, etc.) must be reported. Also, the observed 

deviation in identifying parameters and (relative) 

abundance, when the same sample is analyzed 

repeatedly, must be reported. 

Describe the statistical 

evaluation 

Provide details on determination of sample size, 

statistical analysis plan (for appraising calibration, 

discrimination, and/or reclassification), any 

consideration or adjustment for covariates 

(including treatment, whenever pertinent), methods 
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for adjustment for multiplicity, and parameters used 

in complex machine-learning approaches, whenever 

pertinent. Clarify which analyses are predefined and 

which are post hoc. 

Validate results The results must be confirmed in at least one 

independent sample set. The sampling and 

characteristics of the validation population should 

be reported, and the analysis should be symmetrical 

in the test and validation data sets; any deviations 

should be reported. 

Acknowledge limitations No study is perfect; limitations should be clearly 

acknowledged and their potential impact on the 

results discussed. 

Take responsibility The contributions of each author should be clearly 

stated. 
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