
Citation: Wing, D.; Godino, J.G.;

Baker, F.C.; Yang, R.; Chevance, G.;

Thompson, W.K.; Reuter, C.; Bartsch,

H.; Wilbur, A.; Straub, L.K.; et al.

Recommendations for Identifying

Valid Wear for Consumer-Level

Wrist-Worn Activity Trackers and

Acceptability of Extended Device

Deployment in Children. Sensors

2022, 22, 9189. https://doi.org/

10.3390/s22239189

Academic Editor: Juan-Manuel

Belda-Lois

Received: 26 October 2022

Accepted: 23 November 2022

Published: 26 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Recommendations for Identifying Valid Wear for
Consumer-Level Wrist-Worn Activity Trackers and
Acceptability of Extended Device Deployment in Children
David Wing 1,*, Job G. Godino 1, Fiona C. Baker 2, Rongguang Yang 3, Guillaume Chevance 4,
Wesley K. Thompson 5, Chase Reuter 3, Hauke Bartsch 6, Aimee Wilbur 2, Lisa K. Straub 7, Norma Castro 8,
Michael Higgins 1 , Ian M. Colrain 2, Massimiliano de Zambotti 2 , Natasha E. Wade 8 , Krista M. Lisdahl 9,
Lindsay M. Squeglia 10, Joseph Ortigara 1, Bernard Fuemmeler 7, Kevin Patrick 1, Michael J. Mason 11,
Susan F. Tapert 8 and Kara S. Bagot 12

1 Herbert Wertheim School of Public Health and Human Longevity Science, University of California,
San Diego, CA 92093, USA

2 Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
3 Department of Radiology, University of California, San Diego, CA 92093, USA
4 Instituto de Salud Global de Barcelona, 08036 Barcelona, Spain
5 Laureate Institute for Brain Research, Tulsa, OK 74136, USA
6 Department of Computer Science, University of Bergen, 5007 Bergen, Norway
7 Department of Family Medicine and Population Health, Virginia Commonwealth University,

Richmond, VA 23284, USA
8 Department of Psychiatry, University of California, San Diego, CA 92093, USA
9 Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
10 Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina,

Charleston, SC 29208, USA
11 Center for Behavioral Health Research, University of Tennessee, Knoxville, TN 37996, USA
12 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
* Correspondence: dwing@eng.ucsd.edu; Tel.: +1-858-534-9315

Abstract: Background: Self-reported physical activity is often inaccurate. Wearable devices utilizing
multiple sensors are now widespread. The aim of this study was to determine acceptability of
Fitbit Charge HR for children and their families, and to determine best practices for processing its
objective data. Methods: Data were collected via Fitbit Charge HR continuously over the course
of 3 weeks. Questionnaires were given to each child and their parent/guardian to determine the
perceived usability of the device. Patterns of data were evaluated and best practice inclusion criteria
recommended. Results: Best practices were established to extract, filter, and process data to evaluate
device wear, r and establish minimum wear time to evaluate behavioral patterns. This resulted
in usable data available from 137 (89%) of the sample. Conclusions: Activity trackers are highly
acceptable in the target population and can provide objective data over longer periods of wear. Best
practice inclusion protocols that reflect physical activity in youth are provided.

Keywords: consumer wearables; physical activity; children; Fitbit

1. Introduction

Physical activity is an important determinant of health in children and adolescents.
Insufficient physical activity, particularly limited moderate to vigorous intensity activity
(MVPA), is associated with obesity development of cardiovascular risks such as high levels
of low-density lipoprotein cholesterol, elevated blood pressure [1], and progression of
chronic diseases such as type 2 diabetes mellitus [2]. These conditions put children and
adolescents at additional risk for long-term morbidity and mortality [3,4]. Physical activity
and mental health are related, as children with low levels of physical activity exhibit
greater social dysfunction [5,6], anxiety [7], depression [7,8] negative affect [9], stress
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response [10], poorer self-image and self-esteem [11], and overall diminished psychological
wellbeing [12,13]. Conversely, the literature suggests that adolescents who engage in high
levels of physical activity have better family and peer relationships [6], engage in more pro-
social activities, exhibit less substance use, and demonstrate better academic performance
than less active youth [14].

Much of the available data on relationships between physical activity, health, and
development in child and adolescent populations have been cross-sectional and based on
self-report or are drawn from laboratory-based results of physical capacity (vs. volume
of physical activity). Other data are drawn from relatively short term (generally <8 days)
remote monitoring using accelerometers which may miscategorize some common activities
(i.e., cycling, weight lifting, swimming) and fail to recognize physical activity of very
short duration (<1 min) [15]. Further, accelerometry based tools for longer-term remote
monitoring have limited acceptability [16] for use by the general public, have data that are
challenging to integrate across device manufacturers, and do not integrate multiple sensors
for their determination of physical activity [17].

In the past decade, advances in consumer-level activity trackers allow for multisensory
data collection typically using wrist-worn devices. These devices integrate, at minimum,
accelerometers and photoplethysmography sensors (from which heart rate can be derived),
provide continuous measurement at >1 Hz for extended periods of time. Additionally, these
devices are widespread throughout the United States, with an estimated yearly market
value of $75 billion by 2025 [18]. Such devices have recently been tested in children within
our target age group providing relatively accurate performance for objective measures
of physical activity intensity and volume across different activities [19]. Additionally, at
least some commercially available wearable devices (most notably, Fitbit brand devices)
have reasonably good agreement to previously utilized activity monitoring devices like
the Actigraph GT3X+ in both adult and child populations. As such, they may generate
data useful for comparison to previous studies and/or longitudinal studies that have
previously deployed traditional accelerometers. However, unlike traditional actigraphy, to
our knowledge there is not yet a best practice method to determine if the device is actually
being worn, and criteria for inclusion/exclusion at the minute, daily, and weekly level
have not been established. The primary aim of this project was to establish a best practice
protocol to identify valid device wear and determine rules to ensure that included data
represent typical patterns of activity and behavior.

While accuracy and precision are important to successful remote evaluation, par-
ticipant perception of the device’s usability will likely determine long term adherence.
Perceived usability of Fitbit devices in particular have been established in several adult
groups including men with prostate cancer [20], endometrial cancer survivors [21], and
individual’s with Type II Diabetes [22]. Additionally, Australian adolescents reported high
levels of usability with the Fitbit flex [23], and parents of children ages 9–12 reported high
acceptability of a similar wrist worn device (KidFit) [24]. We sought to expand on our
understanding of the usability and acceptability of these devices in a younger (9–10 years
old) population of children and their parents.

2. Materials and Methods

Participants: Data collection occurred at three of The Adolescent Brain and Cognitive
Development (ABCD) 21 study sites with approximately 50 ABCD participants recruited
per site. In addition to exclusionary criteria for ABCD described elsewhere [25] children
were excluded from this substudy if: (1) if the primary parent/guardian did not own
a Fitbit-compatible smartphone with which to sync the Fitbit device, (2) the parent was
not fluent in English, or (3) the youth was not interested in wearing the Fitbit device
continuously for 3 weeks. All children were asked to provide informed assent, and at
least one of the parents provided informed consent. Both children and parents who
assented/consented were given a description of the protocol in accordance with UCSD
Human Research Protections Program.
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Procedures: Fitbit devices were deployed for a period of 22 days (day of deployment + 3 weeks).
For interested families, informed consent was completed with the parent and informed
assent with the child, a Fitbit HR Charge (Fitbit Inc., San Francisco, CA, USA) was provided,
and a study specific de-identified Fitbit account was established (using a participant ID
number instead of name). Height, weight, sex, and handedness were recorded accurately,
but age for all participants was entered as 13 years, as the Fitbit platform was unable to
accept the study’s actual age range at the time (9–10 years). Research staff assisted parents
in downloading the Fitbit app to their smartphones (the child’s phone was used in the
rare instances that they had their own) and in pairing and syncing the Fitbit device to
the phone. There were no GPS or notification functionality in the Fitbit device itself, but
research assistants confirmed that notification, geolocation, and sharing capabilities were
turned off to the associated smartphone.

The Fitbit accounts were linked to Fitabase (Small Steps Labs LLC, San Diego, CA,
USA), a third-party research platform that aggregates Fitbit data with fine temporal resolu-
tion useful for research (e.g., 5–15 s epochs for heart rate, 30 s epochs for sleep, 1 min epochs
for other variables). Both child and parent were provided with instructions for charging
and syncing the device over the 3-week period. Data were securely synced on an ongoing
basis to Fitabase, then securely imported to ABCD servers. Research staff manually entered
wear dates into Fitabase and REDCap databases to ensure data integrity, as each Fitbit
device was re-used.

Throughout the wear period, research staff logged onto a Fitabase dashboard daily to
ensure ongoing wear and successful syncing of each active device. When new data were
not displayed for three consecutive days, the family was called and sent text messages
asking them to manually sync the device, reminding the participant to wear the device as
much as possible, and to troubleshoot questions or concerns with the family.

Demographics. Key demographic variables [26] were obtained from the assess-
ments collected during the standard ABCD baseline assessment from both the youth
and participating parent. Height and weight were measured in person at the time of
device deployment from which body mass index was calculated and reported as sex and
age-specific percentiles [27].

Acceptability and Usability Scales: Questionnaires examining the usability and ac-
ceptability of the device and associated application were administered to the participating
children both pre and post deployment to assess differences between expectations and ex-
perience associated with device usage and the feasibility of long-term deployment. Parents
were also queried regarding their experience during the deployment to better understand
the feasibility of using this device for long term assessment in pre-adolescent populations.

Physical Activity Variables: The following variables were extracted from Fitabase at the
minute level and used for analysis: number of steps, heart rate (HR), and activity intensity
classification (i.e., sedentary, light activity, fairly active/moderate, and active/vigorous
using CDC based MET classifications) [28]. Time spent in moderate-vigorous activity was
combined to create a variable defined as ‘moderate to vigorous physical activity’ (MVPA).
These data are available in minimally processed form at https://nda.nih.gov/abcd/query/
abcd-curated-annual-release-3.0.html.

Data Processing: Data were processed using Python software. We established a
protocol to assess valid wear data that carefully evaluated for patterns of missingness and
aphysiologic values. First, data were assessed for missing HR values, as “baseline” values of
0 (steps),1.0 (METs), and 1 (sedentary in activity classification) are automatically generated
for any minute when HR is not observed. When HR was missing, steps, METS, and
intensity level variables were further analyzed for any non-baseline values. Minutes with
missing HR and baseline values for other variables were classified as non-wear. Minutes
with missing HR, but with higher than baseline values for non-HR based variables were
assigned a HR value based on the average of the surrounding minutes (i.e one minute
before, and one after the missing value(s)).

https://nda.nih.gov/abcd/query/abcd-curated-annual-release-3.0.html
https://nda.nih.gov/abcd/query/abcd-curated-annual-release-3.0.html
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Although the Fitbit device does some amount of “prescreening” to provide heart rate
data believed to be accurate, according to the device manufacturer, the accuracy of HR
measurement can be affected by the specific location of the device placement on one’s wrist
as well as the level of contact with skin (i.e., being too loose or too tight). With this in mind,
time series data were further screened to determine the prevalence of unlikely/aphysiologic
values at HR values below 40, 50, and 60 and above 200 to determine both the number of
occurrences and total number of minutes implicated.

The HR monitors associated with Fitbit devices can be “turned on” by being placed
too closely to a reflective or vibrating surface. In most cases this results in repeated HR
values, potentially separated by periods of missing HR data. Because of this fact, along
with the physiological the understanding that heart rate is dynamic with small fluctuations
in value even at rest and during steady state activity, the data were further explored to
identify strings of repeated values. This is in line with NIH recommendations regarding
handling accelerometer-based data by identifying and excluding long runs of repeated
values [29]. In this case, a repeat was defined as either an identical HR across sequential
minutes, or a HR value repeated at either end of a string of missing HR values. For missing
values to contribute to a repeat string, an identical HR value had to both precede and
immediately follow the string of missing values. The number of instances and number of
minutes affected were generated for repeated strings of 6+, 11+, 16+, 31+, and 61+ min.

After excluding minutes without HR, minutes with HR < 50 or >200 bpm, and minutes
that were part of repeated strings of 11+ minutes, daytime and nighttime wear were
decoupled. For the current analysis, time identified by the device’s internal algorithms
as sleep was removed from consideration and the number of days with ≥600, ≥750 and
≥900 min of valid non-sleep wear were calculated to establish the minimum threshold of
daily wear time to be considered representative of typical activity.

Based upon a threshold of ≥600 or more minutes of valid wear, valid days were further
aggregated to the week level for: (1) all valid days, (2) weekdays only, and (3) weekends
only, with Day 2 (the first full day following deployment) through Day 8 constituting
Week 1, and Days 9–15 and 16–22 constituting Weeks 2 and 3, respectively. Cut-offs
commonly deployed for accelerometer-based classification of activity were applied to
determine levels of inclusion for any particular week [30–32]. Specifically, requirements
for ≥3 valid days, ≥4 valid days, and ≥5 valid days per week with and without the
requirement of a weekend day were evaluated.

Statistical Comparisons: Data were managed, analyzed and visualized using Microsoft
Excel and STATA. Between subject comparisons utilizing unpaired t-tests were calculated
to compare activity levels of boys vs. girls and paired t-tests were used to compare activity
on weekdays vs. weekend days. Given the pilot nature of this study, and the primary goal
of establishing a procedure for determining inclusion rules for Fitbit gathered data findings
with p < 0.05 were interpreted as statistically significant.

3. Results

Over 7 months in 2017, 154 participants completed the protocol. Data from seven
participants was lost due to insufficient device syncing or corrupted data transfer. Data
from an additional eight participants had no valid heart rate values across the entire
data collection period. We will explore our inclusion rationale in more detail below, but
data from an additional two participants was excluded because there was not at least
600 min/day of daytime wear across at least 4 days (including a weekend day) for at
least one of the three weeks of wear Table 1 provides key physical and socioeconomic
demographics for the final sample of 137 participants.
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Table 1. ABCD Fitbit substudy participant characteristics (N = 137).

% or Mean (SD, Range)

% Female 53%

Age (years) 9.97 (0.60, 9–10.99)

Race/ethnicity:

Asian 10%

Black 5%

Hispanic 22%

Multiracial 12%

Pacific Islander 1%

White 50%

Body Mass Index percentile by age 58.28 (32.86, 1st–99th)

Parent education:

<High school Diploma 4%

HS Diploma/GED 4%

Some College 30%

Bachelor 33%

Post Graduate Degree 29%

Annual household income in USD:

<$50 K/year 18%

$50–100 K/year 20%

>$100 K/year 51%

Don’t know/decline 11%

The sample of nine and ten year old’s was 53% female and from a diverse sociode-
mographic and racial/ethnic background. No sex differences were seen for age, BMI,
household income, or parent education (all p > 0.05).

3.1. Acceptability, Behavioral Reactivity, and Compliance

As shown in Table 2, most all of children were comfortable with (98%) and enjoyed
wearing (87%) the Fitbit device over the deployment period. Further, the vast majority of
youth (98%) and parents (92%) would be interested in/allow wear for a longer period of
time. Real time and historical data from the device appear to have been regularly viewed
with 74% of children reporting checking the device several times per day for updates on
their activity, and 80% of children and 86% of parents reporting using the app or website to
see activity information during the protocol period. Additionally, 42% of parents reported
encouraging their child to change their activity based on the observed data, and 59% of
parents and 48% of children believed that activity patterns were changed in response to the
information received from the device and/or app. When considering compliance with 24 h
wear protocols, 62% of youth reported removing the Fitbit daily (slightly less than the 67%
who predicted they would remove the device at baseline), and 29% reported sometimes
forgetting to put it back on after taking it off.
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Table 2. Subjective experience: acceptability, behavioral reactivity, and compliance reports by Youth
and Parent before and after the 3-week Fitbit wear period.

Youth Survey Pre-Wear Post-Wear

Thought wearing the Fitbit would be not at all or a little annoying 80% -

Comfortable or very comfortable wearing a Fitbit in front of friends - 98%

Thought it would take/it took a few hours or less to learn to use Fitbit 60% 65%

Thought would/did enjoy using the Fitbit a lot 86% 87%

Did not find the Fitbit to be too complicated - 87%

If asked to wear the Fitbit for longer, would do so 98%

Thought would/did change activity a little or a lot while wearing Fitbit 50% 71%

Checked Fitbit several times per day or more for activity information - 74%

Checked the Fitbit app or website for activity information - 80%

Changed activity based on Fitbit app or website information - 48%

Thought would have to/had to remove the Fitbit once per day 67% 62%

Took off Fitbit for:

Bathing 92%

Sports 17%

Swimming 46%

Sleep 7%

Other (e.g., school) 20%

Sometimes forgot to put Fitbit back on after taking it off - 29%

I found the Fitbit too complicated (%DISAGREE) - 87%

I felt confident using the Fitbit (%AGREE) - 92%

Parent survey: Pre-wear Post-wear

Would allow their child to wear the Fitbit for a longer period of time in the
study - 92%

Used the Fitbit app and/or website to see their child’s activity - 86%

Encouraged their child to change their activity based on the Fitbit app and/or
website information (of parents who used app/website) - 42%

Their child used the app and/or website to see his/her Fitbit activity - 68%

Reported child changed their activity based on the Fitbit app and/or website
information (of youth who used app/website) - 59%

3.2. Determining Wear Time

The number of minutes excluded, and number of participants affected, at each of the
heart rate levels explored as being outside of normal ranges for children [33] are shown
in Table 3.

Table 3. Data exclusion based on aphysiologic signal—unlikely heart rate values.

Number of Minutes Affected Number of Participants Affected Range per Person

n (%) n (%) Low High

Minutes with HR <40 64 (<0.01%) 2 (1%) 0 45

Minutes with HR <50 10,676 (0.3%) 23 (17%) 0 3430

Minutes with HR <60 124955 (4%) 124 (89%) 0 11469

Minutes with HR >200 2 (<0.01%) 2 (1%) 0 1

Note: bold rows indicate the choices made for data processing at daily level.

Only two children showed heart rates above 200 bpm, and each of those children only
had one minute with this value. Given that, in both cases, this value was not surrounded
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by similarly high heart rate values (i.e., in the 190’s) these were thought to be likely aphys-
iological noise, and the group proceeded recommending that heart rate values >200 be
considered non-wear minutes in future analysis by ABCD investigators. When exploring
the lower bounds of physiological likelihood, 2 children (1%) had HR values lower than
40 bpm and 23 (17%) had HR values lower than 50 bpm. The total number of minutes that
fell below these values were 65 and 10,676, respectively (<0.01% and 0.3%, respectively of
total minutes with heart rate). In contrast, 124 (89%) children had at least one minute with
a heart rate below 60 bpm with a total of 124,955 (4.1%) of minutes with HR falling below
this level. Although bradycardia below 50 bpm is not impossible, it was determined by the
study team that given the relatively low volume of these events, and the high likelihood
that they were artifact caused by incorrect wear, values below 50 bpm should be considered
non-wear minutes.

The number of minutes included in a repeat string based upon different length criteria
is shown in Table 4.

Table 4. Data exclusion based on aphysiologic signal—repeated heart rate values.

Total Sample Per Participant

Repeat Length
(min) Instances Minutes Excluded (%) Instances

Mean (±SD)
Minutes Excluded
Mean (±SD)

6+ 8549 595,219 (19.3%) 61.5 (31.7) 4282 (5791)

11+ 2942 555,847 (18.0%) 21.2 (14.0) 3999 (5842)

16+ 2148 545,841 (17.7%) 15.5 (11.0) 3926 (5850)

31+ 1397 529,652 (17.2%) 10.1 (7.7) 3810 (5857)

61+ 895 508,083 (16.5%) 6.4 (5.4) 3655 (5863)

Note: bold row indicates the choice made for data processing at daily level.

As expected, reducing the number of minutes required to indicate a repeated string
increased the total number of excluded minutes, and the number of instances that re-
peated strings were observed per participant. With 6+ minutes, there was an average of
61.5 instances accounting for 4282 min per child across the three-week wear period. The
number of instances dropped dramatically to 21.2 per child when the criteria to initiate
a “repeat” string was increased to 11+, although the affected number of minutes only
decreased slightly more than 5% to 3999. Similar trends of relatively large decreases in
incidence, but modest changes in the number of minutes implicated are observed when
the criteria to initiate is increased to 16+, 31+ or 61+ minutes. This indicates that the vast
majority of the affected minutes are part of very long strings (i.e., >60) of unvaried repeated
values. In an effort to balance physiological likelihood with preserving the largest volume
of data possible, the investigative team determined that strings greater than 10 min should
be considered non-wear and excluded from analysis.

3.3. Wear Time Thresholds for Day Level Inclusion

The number of days included per participant using different thresholds of valid
(daytime) wear minutes are shown in Table 5.

Table 5. Data inclusion based on daily wear time, per participant.

Inclusion Criteria Valid Days across Protocol Period Mean (SD) % of Total Possible Days

≥600 min/day 15.2 (5.0) 73%

≥750 min/day 12.2 (4.9) 58%

≥900 min/day 4.4 (3.3) 21%

Note: bold row indicates the choice made for data processing to daily level.
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When using a threshold of ≥600 min/day for inclusion participants achieved an
average of 15.2 valid days (73% of total possible days). When thresholds were increased to
≥750 and ≥900 min/day number of valid days per participant declined to 12.2 (58%) and
4.4 (21%), respectively. To preserve a relatively large volume of data, and to match data
inclusion rules utilized by other/historical methods of remote monitoring like accelerome-
try [34] the investigative team agreed that ≥600 min/day would be used to define a valid
day that is indicative of whole day activity.

3.4. Wear Time Thresholds for Weekly Level Inclusion

The protocol deployment period in the current study was substantially longer than
the standard seven to ten days utilized for other methods of remote monitoring [35,36].
With this in mind, the team explored the number of weeks each participant had that were
indicative of regular activity (i.e., valid) using different numbers of valid days as total days,
and also separated by weekday and weekend day. These data are shown in Table 6.

Table 6. Data inclusion based on weekly wear for the entire sample.

Assuming ≥600 Valid min for Each Day Number of Participant Weeks (Total Possible = 417) % of Total Possible Weeks

≥3 days/week 363 87%

≥3 days/week with ≥1 weekend day 356 85%

≥4 days/week 340 82%

≥4 days/week with ≥1 weekend day 335 80%

≥5 days/week 299 72%

≥5 days/week with ≥1 weekend day 295 71%

Note: bold row indicates the choice made for data processing to weekly level.

As expected, fewer weeks are included with increasing requirements, particularly
when at least one weekend day must be included. However, the changes in number of
included weeks in not linear, with a larger drop in the percentage of weeks included when
inclusion rules move from 5 to 4 days (72% vs. 82%) then when inclusion rules move
from 4 to 3 days (82% vs. 87%). Data regarding daily number of steps and minutes in
moderate-to-vigorous activity provided in Supplementary Materials indicate a difference in
activity on weekday vs. weekend days (p < 0.0001 for both). Based on these data, combined
with earlier accelerometry based recommendations suggesting that four days with at least
one being a weekend is sufficient to exemplify “typical” activity [32], the investigative team
adopted guidelines of 4+ days with at least one being a weekend day to be included as a
valid week. A summary of all best practice recommendation steps with rationale are listed
below in Table 7.

Table 7. Recommended best practice for evaluating Fitbit data to assess daily and weekly physical
activity in youth.

Standard Rationale

Exclude min with no heart rate value Indicates non-wear (see Table 3)

Exclude min with heart rate values <50 or >200 bpm Aphysiological and likely due to artifact (see Table 3)

Exclude min in which heart rate is repeated for 11+ minutes Aphysiological and likely due to artifact (see Table 4)

Exclude days with <600 min of daytime wear Unlikely to represent normal daily activity (see Table 5)

Exclude weeks with <4 days (1 of which must be a weekend) Unlikely to represent normal weekly activity (see Table 6)

3.5. Steps, Resting Heart Rate, and Minutes of Activity across Intensity Levels

Using the data inclusion steps outlined above, data were evaluated to determine
activity levels in this population, as well as to examine differences by sex and between
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weekday and weekend day activity. These data are presented in more detail in tabular form
in our Supplementary Materials. In short, girls wore the device less than boys (p = 0.027),
had higher resting heart rates (p < 0.003) and appear to have engaged in less activity
collecting both less steps (p < 0.001) and minutes of MVPA per day (p <0.001). Across
the entire sample, wear time was slightly higher on weekdays compared to weekends
(p = 0.012). Further, as previously noted, all participants achieved a higher volume of
physical activity on weekdays vs. weekend days when measured by either steps or minutes
of MVPA (p = < 0.0001 in both cases). In our Supplementary figures we also include some
data regarding mostly non-significant changes in wear time and physical activity behaviors
compared across the three weeks of wear.

4. Discussion

Recent studies have demonstrated the validity of wearable activity trackers, in par-
ticular Fitbit, relative to gold standard laboratory measures, in children [19,37,38]. Our
findings help to establish the feasibility of deploying these trackers in large populations
over extended periods of time. Specifically, we observed that Fitbit Charge HR devices are
well accepted by both young children (9–10 years old) and their parents, and that these
devices are worn sufficiently often/long to capture substantial amounts of typical physical
activity behavior in the majority of children across an extended wear period. These findings
are consistent with previous research demonstrating relatively high levels of acceptability
of wearable trackers in older children and adolescents [23,24].

Further, using these data, we developed processes for examining data from Fitbit to
determine valid wear. We believe that these protocols are in line with previous methods
of determining valid wear with accelerometers [29], and should yield the best blend of
physiological likelihood, identifying actual human wear, and data inclusion. These methods
will be utilized by ABCD investigators in the future, and we believe that these, or similar
methods should be adopted as best practice for working with data from wearable devices
that integrate accelerometer and polyplesmography signals.

These data highlight the enormous potential for using commercially available wearable
monitors for continuous objective measurement of physical activity, sedentary behaviors,
and sleep among youth using ubiquitous technologies that are designed for extended wear.
While there was some loss of data in this study due to factors such as insufficient wear,
or lack of data syncing from the device, usable physical activity data were collected from
the majority of the sample (≥4 days/week and ≥1 weekend day for 89% of the sample),
levels similar to those shown by NHANES and other large-scale studies using objective
measures [29]. Further, while we recommend validating data at the weekly level to ensure
that captured data represents typical behavior and is comparable to earlier device-based
observations, we also recognize that there may be value in including the larger number
of valid days made possible through acceptable extended wear (>15/participant average),
regardless of the week of capture across the extended wear period.

Finally, analysis of the dataset generated following these procedures indicated dif-
ferences in activity between boys and girls at this age group, and differences in activity
measured via steps and minutes of MVPA between weekdays and weekends. This adds to
evidence that suggests that interventions designed to increase activity on the weekend in
children, and girl children in particular, may offer meaningful public health opportunities.

Due to differences in movement patterns, and the possibility of large amounts of move-
ment in the limbs unassociated with substantial energy expenditure (as might occur during
a particularly engaging bout of video game playing) there is difficulty in determining
energy expenditure and physical activity categories from wrist-based devices. Multiple sen-
sors promise to address this difficulty by including heart rate, but photoplethysmography
based assessment of heart rate has been reported to have poor accuracy in individuals with
darker skins and appears to have reduced accuracy at higher heart ratees. As such, these
devices may be limited in their ability to provide highly accurate assessment of energy
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expenditure in particular, and other heart rate associated data like sleep stage and heart
rate variability across long periods of time, particularly in non-white individuals.

Additionally, the mobile technology field changes rapidly, which can be challenging
within a longitudinal research environment. Indeed, by the time of completion of our
laboratory-based validation study [29], and wide-spread implementation of device deploy-
ment in the larger ABCD study, an updated version of the validated device (Fitbit Charge
HR) was released (the Fitbit Charge HR 2), and several iterations have been released since
(as of the writing of this paper we are on the Fitbit Charge HR 5). Based upon reports from
the manufacturer, the updated models do not differ in the manner in which the metrics
reported here are generated, although improvement in sensors may result in improved
accuracy from model to model, and new measurement features like VO2max, tracking of
menstrual cycles, and detection of sleep apnea are now available. We have anticipated that
updated versions of all technologies used in ABCD will be released during the lifespan of
this longitudinal study but believe that the wear time rules established here are sufficiently
robust to allow for cross-device comparisons. We do, however, recognize that this may be
an ongoing limitation to the research, and a challenge across the research community. An
additional limitation to these data is that we did not record environmental context during
wear, so we are unable to draw conclusions about the reasons for (non) wear or the context
of the observed activity.

Despite these limitations, these data indicate that we can gather extended data regard-
ing physical activity, sleep, and sedentary behaviors reliably from participants using Fitbit
based wearable technology in the ABCD study. Gathered data can then be coupled with
biological, neurocognitive, psychosocial, and neuroimaging data, to link recent physical
activity to psychological health and well-being. The opportunity for prospective and lon-
gitudinal study of these reciprocal relationships highlights the potential contribution of
ABCD to our understanding of the bidirectional relationships between physical activity,
health, and childhood development. Future studies in this area should examine youth
acceptability of, and adherence to using, wearable activity trackers and the trajectory of
physical activity over longer periods of time (months or years), including the impact of
certain characteristics (e.g., baseline physical activity, engagement in sports, parent involve-
ment/monitoring, socioeconomic status, sex and age) on device acceptability and wear
time. Additional validation of newer models vs. older models within the same device
maker, or the precision across different manufacturer’s devices would also be valuable to
the field to establish the comparability of data collected longitudinally and across different
studies. Finally, as additional sensors are integrated into commercially available devices
research to establish best practice for including these data will be necessary.

5. Conclusions

Commercially available wearable devices that integrate multiple sensors can be ef-
fectively used in research among children. These data show that the Fitbit Charge HR is
acceptable in youth populations, who would be willing to wear it for extended periods of
time (>3 weeks at minimum.). Further, by providing processing rules that utilize granular
data that can be preserved over time, we have helped to bridge the gaps in practice between
traditional “research-grade” accelerometers and devices that are commercially produced.
Future research using high resolution data from Fitbit devices can capitalize on these
methods to draw valid inferential conclusions regarding a wide range of health-related
research questions.
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