
I N T R O D U C T I O N
In longitudinal trials, efficacy is often assessed

in terms of treatment differences at a specific

time point, usually the last time at which obser-

vations are planned while patients are under

treatment. A major difficulty in analyses of such

trials is missing data at the chosen time point,

often due to patients withdrawing (or dropping

out) from treatment. Inference from the results

of a trial can be complicated by the method

used to handle the missing data because the in-

ference may depend on the method and its as-

sumptions.

Historically, the simple imputation method,

called last observation carried forward (LOCF),

has been used for the primary efficacy analysis

of clinical trials supporting registration of new

medicines (1). This approach is simple to carry

out and is generally regarded as conservative in

that it tends to under- rather than overestimate

treatment effects. Although the appropriateness

of LOCF hinges on strong assumptions, it is also

generally regarded as less biased than an analy-

sis of completing subjects only, potentially

counteracting bias caused by differential tim-

ing, rates, and reasons for dropout in the various

treatment arms.

Over the past 20 years, statistical methodolo-

gy and software have been developed that allow

for the routine use of alternative approaches

with less restrictive assumptions than LOCF.

These methods are based on analyzing the ob-

servations made at all time points. One such

longitudinal approach, which has been exten-

sively studied in regulatory settings, uses a mod-

el referred to as multivariate, or mixed, and is in-

creasingly denoted in the literature by the

abbreviation MMRM (mixed model for repeated

measures) (2–14).
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This position paper summarizes relevant theo-
ry and current practice regarding the analysis
of longitudinal clinical trials intended to sup-
port regulatory approval of medicinal prod-
ucts, and it reviews published research regard-
ing methods for handling missing data. It is
one strand of the PhRMA initiative to improve
efficiency of late-stage clinical research and
gives recommendations from a cross-industry
team. We concentrate specifically on continu-
ous response measures analyzed using a linear
model, when the goal is to estimate and test
treatment differences at a given time point.
Traditionally, the primary analysis of such tri-
als handled missing data by simple imputation
using the last, or baseline, observation carried
forward method (LOCF, BOCF) followed by
analysis of (co)variance at the chosen time
point. However, the general statistical and sci-
entific community has moved away from these

simple methods in favor of joint analysis of
data from all time points based on a multivari-
ate model (eg, of a mixed-effects type). One
such newer method, a likelihood-based mixed-
effects model repeated measures (MMRM) ap-
proach, has received considerable attention in
the clinical trials literature. We discuss specif-
ic concerns raised by regulatory agencies with
regard to MMRM and review published evi-
dence comparing LOCF and MMRM in terms
of validity, bias, power, and type I error. Our
main conclusion is that the mixed model ap-
proach is more efficient and reliable as a
method of primary analysis, and should be
preferred to the inherently biased and statisti-
cally invalid simple imputation approaches.
We also summarize other methods of handling
missing data that are useful as sensitivity
analyses for assessing the potential effect of
data missing not at random.
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The MMRM method is from the broader class

of direct-likelihood analyses and makes use of

fully and partially observed data sequences from

individual patients by estimating the covariance

between data from different time points (1). As

is described in an upcoming section, it is often

useful to implement MMRM using an unstruc-

tured approach to modeling both the treat-

ment-by-time means and the (co)variances, lead-

ing to what is essentially a multivariate normal

model wherein treatment group means at the

primary time point are adjusted to reflect both

the actually observed data and the projected

outcomes from the patients with missing data

(see, eg, articles by Cnaan et al. [15], Molen-

berghs and colleagues [5], and Molenberghs

and Kenward [1]). Other methods, such as mul-

tiple imputation, are also the result of advances

in methodology and software but have not been

studied as extensively as MMRM in regulatory

settings.

Given the strong theoretical and empirical ev-

idence favoring MMRM over LOCF, it is not sur-

prising that use of LOCF as the primary analysis

has been questioned by statisticians and clini-

cians in academic, industry, and regulatory set-

tings. However, regulatory agencies frequently

require that primary analyses of efficacy use

LOCF. For example, Dr. Linda Yau surveyed stat-

isticians working in phases 2 and 3 from a wide

range of therapeutic areas, including neuro-

science, antivirals, respiratory, gastrointestinal,

urology, and cardiovascular. In her presentation

at the DIA Conference in Philadelphia, June

2006, Dr. Yau noted that LOCF was almost uni-

versally preferred by regulatory agencies as the

primary analysis. However, there was generally

no objection to using more recent methods

such as MMRM for primary analyses in phase 1,

nor for trials on medical devices or diagnostic

tests. In addition, plans for some vaccine trials

in phase 2 have included MMRM or multiple

imputation as the primary analysis.

In our experience, decisions regarding choice

of the primary analysis have been hampered by

misunderstandings of concepts, some of which

stem from inconsistency in terminology. This, in

turn, has led to misunderstandings regarding

the implications of the research comparing

LOCF and MMRM. Additional difficulties may

have arisen from differences in the perspectives

of pharmaceutical companies and regulators, ei-

ther real or perceived.

The purpose of this article is to capitalize on

the diverse experience of researchers at a num-

ber of pharmaceutical companies in order to (1)

clarify terminology and concepts regarding use

of MMRM and LOCF in regulatory settings, (2)

address specific concerns raised by regulatory

agencies regarding use of MMRM as the primary

analysis, and (3) make specific recommenda-

tions for analysis of data from confirmatory lon-

gitudinal clinical trials with continuous end-

points.

Regarding our perspective on the choice of

primary analysis, this article is the consensus of

an expert working team from the Efficiency 

in Clinical Trials Initiative of the Pharmaceuti-

cal Research and Manufacturers of America

(PhRMA). We believe there is a compelling pub-

lic health need to develop drugs using the best

possible scientific methods in all disciplines in

order to meet patient needs with better and

more affordable medicines. We believe regula-

tors share this perspective, as evidenced by the

various Critical Path initiatives. Hopefully, this

article will help drug developers and regulators

achieve their common goal.

T E R M I N O L O G Y  A N D  C O N C E P T S
R E G A R D I N G  U S E  O F  M M R M  A N D
L O C F  I N  R E G U L A T O R Y  S E T T I N G S
MISSING DATA TERMINOLOGY 

AND CONCEPTS

In order to understand the potential impact of

missing data, the process (ie, mechanisms) lead-

ing to the missingness must be considered. The

following taxonomy of missing-data mecha-

nisms is now common in the statistical literature

(16).

Data are considered missing completely at ran-
dom (MCAR) if, conditional upon the indepen-

dent variables in the analytic model, the miss-

ingness does not depend on either the observed

or unobserved outcomes of the variable being

analyzed (Y). Data are missing at random (MAR) if,
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conditional upon the independent variables in

the analytic model, the missingness depends on

the observed outcomes of the variable being an-

alyzed (Yobs) but does not depend on the unob-

served outcomes of the variable being analyzed

(Ymiss). Data are missing not at random (MNAR)

if, conditional upon the independent variables

in the analytic model, the missingness depends

on the unobserved outcomes of the variable be-

ing analyzed.

Several key points arise from these definitions.

First, the characterization of the missingness

mechanism does not rest on the data alone; it

involves both the data and the model used to an-

alyze the data. Consequently, missingness that

might be MNAR given one model could be MAR

or MCAR given another. In addition, since the

relationship between the dependent variable

and missingness is a key factor in the missing-

ness mechanism, the mechanism may vary from

one outcome to the next within the same data

set. Together, these consequences imply that

statements about the missingness mechanism

without reference to the analytic model and the

specific variable being analyzed are problematic

to interpret. It also implies that broad state-

ments regarding missingness and validity of par-

ticular analytic methods across specific disease

states are unwarranted.

Moreover, terms such as ignorable missingness
or informative censoring can be even more prob-

lematic to interpret. For example, in the case of

likelihood-based estimation, if the parameters

defining the measurement process are indepen-

dent of the parameters defining the missingness

process (sometimes referred to as the separabili-
ty or distinctness condition), the missingness is

ignorable if it arises from an MCAR or MAR

process but is nonignorable if it arises from an

MNAR process (17). In this context, ignorable
means the missing-data mechanism can be ig-

nored because unbiased parameter estimates

can be obtained from the observed data. Hence,

if missing data are described as ignorable or

nonignorable, this must be done with reference

to both the estimation method and the analytic

model. For example, given a certain model, miss-

ing data arising from an MAR mechanism might

be ignorable if parameters were estimated via

maximum likelihood but would not be ignorable

if parameters were estimated via a frequentist

method that assumes MCAR (18).

These subtleties can be easy to overlook in

practice, leading to misunderstandings about

missing data and its consequence. For example,

when dropout rates differ by treatment group,

then it can be said that dropout is not random.

But it would be incorrect to conclude that the

missingness mechanism giving rise to the

dropout is MNAR and that analyses assuming

MCAR or MAR would be invalid. Although

dropout is not completely random in the sim-

plest sense, if dropout depends only on treat-

ment, and treatment is included in the analytic

model, the mechanism giving rise to the

dropout would be MCAR. Some authors, such as

Little (19), distinguish between pure MCAR

(missingness depends on nothing at all) and co-
variate-dependent MCAR. The previous example

could therefore also be described as being co-

variate-dependent MCAR.

CONCEPTS AND CHARACTERIZATIONS OF

LAST OBSERVATION CARRIED FORWARD

Although this section focuses on LOCF, many of

the points also apply to baseline observation

carried forward (BOCF). LOCF is not itself an

analytic approach, but rather a method for im-

puting missing values. Therefore, the appropri-

ateness of an analysis using LOCF depends on

both the assumptions of LOCF and the assump-

tions of the method used to analyze the data.

When assessing LOCF mean change via analysis

of variance (ANOVA), the key assumptions are

that missing data arise from an MCAR mecha-

nism and that for subjects with missing end-

point observations, their responses at the end-

point would have been the same as their last

observed values.

The following example, using the hypothetical

data in Table 1, illustrates the handling of miss-

ing data via LOCF: For patient 3, the last ob-

served value, 19, is used in the computation of

the mean change to endpoint for treatment

group 1; and for patient 6, the last observed val-

ue, 20, is used in the computation of the mean
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change to endpoint for treatment group 2. The

analysis does not distinguish between the actu-

ally observed data and the imputed data.

Even when the assumptions for LOCF hold, it

must also be recognized that because LOCF is a

single-imputation method, the uncertainty of

imputation is not taken into account. Therefore,

the analysis will, in essence, think more data ex-

ist than is actually the case (17). This well-

known limitation of LOCF results in systematic

underestimation of the standard errors (7,8,20).

CONCEPTS AND CHARACTERIZATIONS 

OF MMRM

Likelihood-based mixed-effects models offer a

general framework from which to develop longi-

tudinal analyses under the MAR assumption

(15,17). Laird and Ware (21) introduced the

general linear mixed-effects model to be any

model that satisfies

Yi = Xiβ + Zibi + εi

bi ∼ N(0, D)

εi ∼ N(0, ∑i)

b1 . . . bn, ε1 . . . εn independent (1)

where Yi is the ni-dimensional response vector

for subject i; β is the p-dimensional vector of

fixed effects; bi is the q-dimensional vector of

random (subject-specific) effects; Xi and Zi are

(ni × p)- and (ni × q)-dimensional matrices relat-

ing the observations to the fixed and random ef-

fects, respectively; εi is the ni-dimensional vector

of residuals; D is a general (q × q)-dimensional

covariance matrix with (i,j) element dij = dji; and

∑i is a general (ni × ni)-dimensional covariance

matrix (usually the same for all i). It follows from

this model that, marginally,

Yi ∼ N(Xiβ, V) and V = ZiDZi� + ∑i

A key general feature of mixed-effects models is

that they include fixed and random effects,

whereas ANOVA models include only fixed ef-

fects (apart from the residuals). In clinical trials,

the subject-specific (random) effects are seldom

the focus. Rather, the trials are typically de-

signed to assess differences in fixed effects, most

notably treatment effects. However, accounting

for the random effects is important in order to

make the most appropriate inferences regarding

the fixed effects. Indeed, not doing so would typ-

ically affect the precision of estimates and result

in incorrect inferences.

A simple formulation of the general linear

mixed model (Eq. 1) can be implemented in

which the random effects are not explicitly mod-

eled, but rather are included as part of the mar-

ginal covariance matrix V, just defined, leading

then to what could alternatively be described as

a multivariate normal model. Modeling the ran-

dom effects as part of the within-patient error

correlation structure is the feature that distin-

guishes MMRM from other implementations of

mixed-effects models.

The following example, using the hypothetical

data in Table 1, illustrates the handling of miss-

ing data via an MMRM analysis: Information

T A B L E  1
Week

Patient Treatment Baseline 1 2 3 4 5 6

1 1 22 20 18 19 14 12 10

2 1 22 21 18 11 12 11 6

3 1 22 22 21 20 19 * *

4 2 20 20 20 20 19 21 22

5 2 21 22 22 23 23 25 26

6 2 18 19 20 * * * *

*Missing values due to patient dropout.

Hypothetical Data Used to Illustrate How Various Methods Handle Missing Data
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from the observed outcomes is used via the

within-patient correlation structure to provide

information about the unobserved outcomes,

but missing data are not explicitly imputed.

Specifically, patient 3 had been doing worse

than the average of patients in treatment group

1. Means for treatment group 1 at visits 5 and 6

are adjusted to reflect that had patient 3 stayed

in the trial, her observations at visits 5 and 6

would likely have been worse than the treatment

group average. But the analysis predicts that pa-

tient 3 would have had some additional im-

provement because the other patients in group

1 all improved. Patient 6 had also been doing

marginally worse than the average of patients in

his group (treatment group 2). Means for treat-

ment group 2 at visits 3–6 are adjusted to re-

flect that had patient 6 remained in the trial, his

observations would likely have continued to

worsen at a rate slightly greater than the treat-

ment group average.

The magnitudes of these adjustments are de-

termined mathematically from the data. Addi-

tional details can be found elsewhere (15,17,21).

Although these details go beyond the scope of

this article, the basic principle is easily appreci-

ated. A mixed-effects analysis uses all the avail-

able data (Yobs) to compensate for the data

missing on a particular patient, whereas LOCF

uses only one data point. Again, using the hypo-

thetical data in Table 1, in dealing with the miss-

ing data for patient 3, a mixed-effects analysis

considers data from visits 1–4 on patient 3 as

well as all the data from patients 1 and 2. In con-

trast, LOCF uses only the visit 4 value from pa-

tient 3, assuming that visit 6 will be the same as

visit 4, even though that was not the case for any

patient whose data were observed.

S P E C I F I C  C O N C E R N S  R A I S E D  
B Y  R E G U L A T O R Y  A G E N C I E S
R E G A R D I N G  U S E  O F  M M R M  
A S  T H E  P R I M A R Y  A N A LY S I S
It is widely recognized that the restrictive as-

sumptions for ANOVA with LOCF seldom hold

(1,17). It has also been clearly established that

when data fail to conform to these assumptions,

use of LOCF can lead to biased estimates of

treatment effects, biased tests of the null hy-

pothesis of no treatment effect, underestimates

of standard errors, inflated type I error, and cov-

erage probabilities that may be far from the

nominal level (1,2,4–8,11,12,17,23–31).

The assumption of MAR is often reasonable

because, particularly in longitudinal studies

wherein the evolution of treatment effects is 

assessed by design over time, the observed data

and the models used to analyze them can ex-

plain much of the missingness (16,17). This

point may be especially relevant in well-con-

trolled studies such as clinical trials, in which

extensive efforts are made to observe all the out-

comes and the factors that influence them while

patients are following protocol-defined proce-

dures (32). Hence, longitudinal clinical trials by

their very design aim to reduce the amount of

MNAR data (missingness explained by unob-

served responses), thereby increasing the plau-

sibility of MAR. Further, it is evident that MAR is

always more plausible than MCAR because MAR

is always valid if MCAR is valid, and MAR can be

valid in cases when MCAR is not.

Despite the advantages of MAR methods,

LOCF is still favored for use as the primary

analysis in many therapeutic areas. The follow-

ing sections address the concerns cited by regu-

latory agencies when considering MMRM for

the primary analysis, along with responses to

those concerns.

LOCF IS CONSERVATIVE

One of the reasons often cited for the continued

widespread use of LOCF is that the potential bi-

ases in LOCF lead to a conservative analysis. In

this context, conservative is typically thought of

as underestimating the magnitude of the treat-

ment effect.

It is intuitively obvious that LOCF yields con-

servative estimates of within-group changes 

in many scenarios. However, interpretations of

treatment effects are based on between-group

comparisons. Results from empirical studies

(3,7,8,11,12,17,22,23) have clearly shown that

conservative behavior of LOCF in regard to be-

tween-group comparisons is far from guaran-

teed and, in fact, is in some scenarios unlikely.
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The potential for anticonservative behavior of

LOCF has also been confirmed via analytic proof

(5,27).

These are not just theoretical concerns. In a

summary of all the outcomes from all the place-

bo-controlled clinical trials included in a new

drug application, LOCF yielded a smaller P value

than MMRM in 34% of the 202 comparisons

(13).

When LOCF underestimates the superiority of

the superior treatment, it necessarily underesti-

mates the inferiority of the inferior treatment.

Thus, such a bias would be anticonservative in

noninferiority testing and in a superiority test

wherein the test agent is inferior to the control.

For safety outcomes, underestimating the mag-

nitude of a treatment effect is certainly not con-

servative.

The magnitude and direction of the bias from

LOCF depends on the average attenuation from

flattening out the mean profile in the treatment

group compared with the control group. This in

turn depends on the rate and timing of the miss-

ing data and the rate of change in the trajectory

that is being attenuated. It has been shown that

the bias from LOCF may involve many factors

and can be complex (5). Whether or not the bias

from LOCF leads to conservative estimates of

treatment benefits is yet another question that

further depends on the disease state and sce-

nario. For example, the same direction of bias

might be conservative if, on average, patients

improve, but would be anticonservative if the

treatment goal were the delay of worsening or

maintenance of effect (9,12). Hence, it is diffi-

cult to anticipate the effects of bias from LOCF

in practical situations. However, the general

tendencies of LOCF for scenarios in which the

overall tendency is for improvement (progres-

sive improvement) include the following:

1. Overestimation of a drug’s advantage when

dropout is higher or earlier in the comparator, and

underestimation of its advantage when dropout is

lower or later in the comparator

2. Overestimation of a drug’s advantage when the ad-

vantage is maximum at intermediate time points,

and underestimation of its advantage when the

advantage increases over time

3. A greater effect of bias on inferences regarding ex-

istence of a treatment effect when a drug’s advan-

tage is small and when sample sizes are large

For scenarios in which the overall tendency is

for worsening (progressive impairment), the bi-

ases in (1) and (2) are reversed.

Additionally, if a method yielded biased esti-

mates of treatment effects when treatment dif-

ferences truly existed, then when the true treat-

ment difference was zero, bias would necessarily

lead to nonzero estimates of treatment differ-

ences and inflation of type I error. Moreover,

consider Alzheimer disease, wherein the thera-

peutic aim is to delay or slow deterioration of

mental status (as compared to situations such as

depression in which the goal is to improve the

condition). If a treatment is in truth no more ef-

fective than placebo, but a patient drops out

early in the treatment arm, carrying the last ob-

servation forward assumes that the patient had

no further deterioration in condition.

A similar bias can occur in so-called mainte-

nance studies. For example, in a weight mainte-

nance study, patients who lose a substantial

amount of body weight through nonpharmaco-

logical means begin drug therapy with the goal

of maintaining the initial weight loss (33). Any

patient who drops out early is likely to have re-

gained little weight. Therefore, applying LOCF

in this scenario assumes the patient maintained

the weight loss despite having only observed

that patient for a short time.

It is reasonable also to question whether con-

servative analytic approaches are in the best in-

terest of patients. Of course inflation of type I

error is never good, but is it necessary to have

“extra protection” against type I error when it

comes at the expense of losing power, that is, in-

flated type II error? Moreover, independent of

missing-data concerns, using a method that in-

cludes only the first and last observation is in-

herently inefficient. Given the unmet medical

needs and the rising costs of health care, the

need for new medicines, better medicines, and

more affordable medicines is clear. Many factors

may influence the success of drug development;

however, the reliance on a method such as LOCF
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(or BOCF) with known inflation of type I and

type II error is an obvious suspect. Therefore,

trading reduced power for more than the need-

ed protection against type I error is not in the

public interest.

Rather than defining conservatism as under-

estimating the magnitude of the treatment ef-

fect, what if conservatism were defined as being

dependable? In the context of a statistical

analysis, this might be defined as yielding the

type I and type II error rates that were expected.

With this dependability, clinical development of

individual drugs could be more predictable,

while preserving public safety against ineffec-

tive drugs. So, by this definition, MMRM is

clearly more conservative than LOCF.

EFFECT OF MNAR DATA

As we have previously noted, MMRM assumes

data are MAR, which is often a reasonable as-

sumption in longitudinal clinical trials and al-

ways at least as plausible as MCAR. However, the

possibility of MNAR data can never be ruled out.

Therefore, it is not surprising that when MMRM

has been proposed as the primary analysis, reg-

ulators have asked about the impact of MNAR

data on the MMRM results. The more relevant

question is, what is the impact of MNAR data on

MMRM compared with their impact on LOCF?

Research on the comparative impact of MNAR

data on MMRM and LOCF is summarized in this

section.

Mallinckrodt and colleagues (7,8,11) com-

pared MMRM with LOCF ANOVA in a series of

simulation studies with MNAR missingness. The

first study included scenarios in which there

was a true difference between treatments in

mean change from baseline to endpoint. The

second study focused on type I error rates by

simulating scenarios in which the difference be-

tween treatments in mean change from baseline

to endpoint was zero. In both studies, compar-

isons were made in data before introducing

missingness (complete data) and in the same

data sets after eliminating data via an MNAR

mechanism. In analyses of complete data,

MMRM and LOCF yielded identical results. Esti-

mates of treatment effects were not biased, and

standard errors accurately reflected the uncer-

tainty in the data; however, there were impor-

tant differences in results between the methods

in analyses of incomplete data.

In the study in which there were treatment

differences at endpoint, the MMRM estimates

were closer to the true value than estimates from

LOCF in every scenario simulated. Standard er-

rors from MMRM accurately reflected the un-

certainty of the estimates, whereas standard er-

rors from LOCF underestimated uncertainty.

Pooled across all scenarios, confidence interval

coverage (percentage of confidence intervals

containing the true value) was 94% and 87% for

MMRM and LOCF, respectively, compared with

the expected coverage rate of 95%. Notably,

LOCF overestimated the treatment effect in

some scenarios, typically when there was higher

dropout in the inferior (eg, placebo) group.

In the type I error rate study, pooled across all

scenarios with missing data, the type I error

rates for MMRM and LOCF were 5.9% and

10.4%, respectively, compared with the expect-

ed rate of 5%. Type I error rates in the 32 sce-

narios ranged from 5.0% to 7.2% for MMRM and

from 4.4% to 36% for LOCF.

The third study (11) included a factorial

arrangement of scenarios, with four patterns of

mean change over time and three true correla-

tion structures (autoregressive, compound sym-

metry, and unstructured). The mean change

patterns included two scenarios in which the

null hypothesis of no difference between treat-

ments in mean change from baseline to end-

point was true and another two scenarios in

which it was false. Data from each scenario were

analyzed using MMRM with each correlation

structure and with LOCF. The intent in using

these correlation structures was not to advocate

their use, but to use very different structures to

assess how MMRM would compare with LOCF

under extreme conditions of misfitting the cor-

relation structure.

In most cases, the type I error rates from LOCF

were greater than or equal to those from any of

the corresponding MMRM analyses, indicating

that even egregious misfitting of the correlation

structure with MMRM was typically less delete-
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rious than using LOCF. Importantly, the use of

an unstructured covariance matrix in MMRM,

regardless of the form of the true covariance

matrix, yielded superior control of type I error

compared with LOCF in every scenario investi-

gated. In pooled results from scenarios under

the true null hypothesis, the type I error rate

from MMRM using an unstructured correlation

matrix was 6.2% compared with 9.8% for LOCF.

When the true treatment difference was large

and dropout rate was higher in the superior

arm, MMRM with an unstructured covariance

matrix produced an average estimated treat-

ment difference of 12.6 compared with 9.1 from

LOCF and the true value of 12. The average pow-

er from MMRM was 75% compared to 59% for

LOCF and 81% for both methods in the com-

plete data.

In contrast, when the true treatment differ-

ence was small and dropout rate was greater in

the inferior arm, MMRM with an unstructured

covariance matrix produced an average estimat-

ed treatment difference of 2.9 compared to 5.2

for LOCF and a true value of 4. The average pow-

er from MMRM was 10% compared with 22%

from LOCF and 17% with both methods in com-

plete data. This apparent increase in power with

LOCF, despite an overall 35% dropout rate, was

driven by the bias in its estimates of treatment

effect.

Lane (3) conducted simulation studies based

on six actual clinical trial data sets. For each tri-

al, multiple sets of data were generated from

multivariate normal distributions, with means

and covariances set to the estimates obtained

from the actual data. Observations were re-

moved from the simulated data to give missing

values in accordance with an MNAR mechanism

using three different models for probability of

dropout depending on the next observation

(treated as unobserved). Both equal and differ-

ential dropout rates between treatments were

investigated.

LOCF led to misinterpretation of results when

dropout mechanism was not MCAR (MAR or

MNAR), particularly in cases with differential

dropout rates. In contrast, MMRM led to misin-

terpretation only in cases in which data were

MNAR with substantial differential dropout. In

the majority of comparisons under MNAR data,

MMRM resulted in bias that was less than or

equal to that obtained with LOCF. Of 63 com-

parisons, 42 resulted in at least 10% less bias

with MMRM, 10 were about the same, and 11

showed more than LOCF. In 6 of the 11 cases in

which LOCF was less biased, the treatment dif-

ference (on which percentage bias was based)

was very small.

Additionally, the perturbations in power

caused by MMRM tended to be less than those

for LOCF and less subject to extreme differences

from the nominal values. Use of MMRM rarely

caused a difference in power greater than 20%,

whereas use of LOCF caused such a difference in

nearly half of the simulations conducted.

Across these studies, the magnitude of bias

produced by MNAR data was smaller with

MMRM than with LOCF, and MMRM provided

more robust control of type I and II error rates

than LOCF. Furthermore, in actual clinical trial

data, MMRM yielded results similar to those of a

selection model (MNAR) approach, and it was

determined that MMRM was an appropriate pri-

mary analysis for these data (5,14).

DETERMINING AND DEFINING

APPROPRIATE MODELING CHOICES 

FOR MMRM

Regulators have noted that using MMRM entails

more explicit modeling choices than using

LOCF. While true, the rather modest increase in

complexity of MMRM has not been a hindrance

in implementation.

When determining a suitable model for a

study collecting longitudinal data, it is impor-

tant to realize that no universally accepted

“best” model can be prespecified for the data

eventually obtained. However, the main charac-

teristics of the data will be driven by the design

of the study. And, to a large degree, an appropri-

ate MMRM model follows logically from the de-

sign of the study and thus can be adequately

prespecified.

Three important characteristics to consider

when specifying a model for data from longitu-

dinal clinical trials are the random effects, the
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correlations between the repeated measure-

ments (within-patient errors), and the time

trends.

As noted in the earlier section “Terminology

and Concepts Regarding Use of MMRM and

LOCF in Regulatory Settings,” the feature dis-

tinguishing MMRM from other mixed-effects

analyses is the modeling of the random effects

as part of the within-patient error correlation

structure. Handling the random effects in this

manner simplifies the analysis while having no

(or very little) impact on inferences of treatment

effects.

Clinical trials often have a common schedule

of measurements for all patients, with a large

number of patients and a relatively small num-

ber of measurement occasions. With such a data

structure, MMRM can be implemented using a

full multivariate model, featuring an unstruc-

tured modeling of time and correlation (10). If

the number of patients relative to the number of

measurement occasions is not large, more parsi-

monious approaches are easily implemented.

For example, time trends could be modeled us-

ing linear and quadratic effects, and some struc-

tured form of the V matrix could be fit to the

within-patient correlations.

However, the functional form of the longitudi-

nal trends can be difficult to anticipate, and in

particular, linear time trends may not adequate-

ly describe the response profiles. A parsimonious

model using a structured form of the time trends

could be more powerful than an unstructured

model, but it could also be a poor fit. Therefore

in many scenarios, an unstructured modeling of

time and the treatment-by-time interaction pro-

vides an assumption-free approach, does not re-

quire estimation of an inordinate number of pa-

rameters, and can be depended upon to yield a

useful result—attributes well suited to the pri-

mary analysis.

It also is worth noting that an MMRM analysis

using the full multivariate approach (unstruc-

tured modeling of time, treatment-by-time, and

within-patient errors) for analyses of complete

data (no missing observations) yields the same

inference about the endpoint as an analysis of

that endpoint by itself. That is, with fully un-

structured treatment-by-time effects (and with-

in-patient errors), MMRM and LOCF yield iden-

tical treatment contrasts if no data are missing.

An unstructured modeling of within-patient

correlations also removes one layer of assump-

tions and often provides the best fit to the data.

However, overly general correlation structures

can lead to an analysis that fails to converge. Al-

though failure to converge often results from

improperly preparing the data (eg, two observa-

tions on the same patient at the same time

point, or poor choice of options in software), a

priori specification of the primary analysis

must have flexibility to allow alternative models

to be fit if an analysis fails to converge because

the prespecified correlation structure is too

general.

Several approaches can be taken to ensure

convergence. First, every attempt should be

made to ensure convergence is obtained from a

given correlation structure. For example, con-

vergence can be enhanced by using software

features such as the inputting of starting values

for parameter estimates, or the use in the initial

rounds (but not final rounds) of iteration algo-

rithms such as Fisher’s scoring rather than the

Newton-Raphson algorithm, which is the de-

fault algorithm in many software packages.

Rescaling the data is also an option. If out-

comes and covariates are made to fall in ranges

in the order of magnitude of unity, interpreta-

tions and conclusions will not be changed; but

avoiding manipulation of large or small num-

bers from a numerical analysis perspective re-

duces the risk of ill-conditioned matrices, and

ultimately, overflow or underflow. In addition,

the protocol can envision one of several model-

fitting approaches. One could simply specify a

set of structures to be fit, and use as the primary

analysis the one yielding the best fit as assessed

by standard model-fitting criteria. However, if

one does not want to build models from the

same data from which hypotheses are to be test-

ed, a series of structures could be specified in a

fixed sequence, and the first correlation struc-

ture to yield convergence would be considered

the primary analysis. For example, unstructured
could be specified as the structure for the pri-
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mary analysis; but if it failed to converge, a series

of ever-more parsimonious structures appropri-

ate to the situation at hand could be fit until

one converges, which would then be considered

the primary analysis.

Although these approaches have always yield-

ed a converged analysis in our experience, it is

reasonable to wonder what effect the true corre-

lation structure in the data, and the method of

modeling the correlation structure, have on re-

sults. One study (11) assessed the effect of cor-

relation structure and how it is modeled on type

I error rates and power, and compared results

from MMRM with LOCF. Results of this study are

detailed in the earlier section, “Effect of MNAR

Data.” When the correct correlation structure

was fit, MMRM provided better control of type I

error and power than LOCF. Although misfitting

the correlation structure in MMRM inflated

type I error and altered power, even egregious

misfitting of the structure was typically less

deleterious than using LOCF. In fact, simply us-

ing an unstructured model in MMRM yielded

superior control of type I error than LOCF in

every scenario tested.

Therefore, MMRM provides flexibility for

modeling the within-patient correlation struc-

ture, does so in a manner that can be specified a

priori, ensures that analysts following those

specifications will independently arrive at ex-

actly the same result, and even in worst-case sce-

narios provides estimates of treatment effects

with less bias than LOCF—all attributes that are

well suited to the primary analysis.

Another aspect of time trends that must be

considered is in relation to the covariates repre-

sented by β in the model (Eq. 1). The treatment

effect is clearly the most crucial in pharmaceuti-

cal clinical trials, and the interaction of this ef-

fect with time has been discussed previously.

Other covariates are often also included in the

model, and these must also be considered. For

example, the effect of a baseline observation

may be included, as subjects’ responses may be

considered dependent on their condition at the

start of the trial. In this case, too, it is usually

preferable to allow a full interaction of the co-

variate with time, for if not, a restriction is being

imposed that the dependence of response on

the baseline measure is the same at all time

points. Alternatively, both the baseline and

postbaseline measures can be treated as re-

sponse variables under the assumption that the

baseline means are the same across treatment

groups to reflect randomization (34). For other

covariates, such as age and gender, it may be

considered appropriate to include no interac-

tion with time because the effects can be taken

to be constant; but such decisions need to be

taken and explained at the stage of planning the

analysis.

The following example illustrates one way to

specify a priori all the details of an MMRM

analysis such that independent analysts will ar-

rive at exactly the same results. This particular

wording specifies the full multivariate approach,

with an unstructured modeling of treatment ef-

fects over time and within-patient error correla-

tions. 

Mean changes from baseline will be analyzed us-

ing a restricted maximum likelihood (REML)-

based repeated measures approach. Analyses will

include the fixed, categorical effects of treatment,

investigative site, visit, and treatment-by-visit in-

teraction, as well as the continuous, fixed covari-

ates of baseline score and baseline score-by-visit

interaction. An unstructured (co)variance struc-

ture will be used to model the within-patient er-

rors. If this analysis fails to converge, the following

structures will be tested: (insert a list of structures

appropriate for the specific application). The

(co)variance structure converging to the best fit,

as determined by Akaike’s information criterion,

will be used as the primary analysis. The Kenward-

Roger approximation will be used to estimate de-

nominator degrees of freedom. Significance tests

will be based on least-squares means using a two-

sided α = .05 (two-sided 95% confidence inter-

vals). Analyses will be implemented using (insert

software package). The primary treatment com-

parisons will be the contrast between treatments

at the endpoint visit.

Note that the primary analysis could be based

on contrasts at time points other than end-

point, or could be based on the treatment main

effects. 

02-DIJ42(4) 2348.qxd  6/9/08  1:46 PM  Page 312



Recommendations for Primary Analysis S T A T I S T I C S 313

Drug Information Journal

LOCF JUSTIFIED AS A FACTUAL,

COMPOSITE, OR EFFECTIVENESS

ENDPOINT

Literally taken, the acronym LOCF implies impu-

tation of missing values in a longitudinal con-

text. An alternative interpretation of LOCF is

commonly used that might be better termed LO

(last observation) or LAV (last available value). In

this approach, results are not interpreted as im-

putations of missing data with changes assessed

at a specific time point, but rather as the change

that was actually seen at last observation re-

gardless of when it was observed (9). When

LOCF is used in this manner, it is said to esti-

mate a factual outcome in that it estimates what

was actually (factually) observed at the last as-

sessment, regardless of when that observation

was made. In this same context, MMRM is said to

be estimating a counterfactual outcome in that

it estimates the effect that would have been ob-

served had patients stayed in the trial, contrary

to the fact that some patients dropped out (27). 

The use of LOCF in the factual context stems

from its intuitive appeal as a pragmatic measure

of effectiveness, a composite of efficacy, safety,

and tolerability (9,12,27). However, the fact that

it is easy to understand and calculate an LOCF

value should not be confused with its yielding a

meaningful measure. If one were to objectively

seek a factual or all-encompassing assessment,

it seems unlikely that one would arrive at LOCF. 

First, the primary purpose of confirmatory

clinical trials is typically to delineate causal dif-

ferences between drug and placebo (or between

drugs), not to mimic actual clinical practice. It is

unreasonable to assume that doctors and pa-

tients make the same decisions regarding con-

tinuation of therapy in a double-blind trial—in

which they are unsure about whether the pa-

tient is taking drug or placebo—as they would

make in actual practice, when the drug and its

properties are well known. Therefore, the rates

and reasons for dropout within the strictly con-

trolled conditions of a confirmatory clinical tri-

al are unlikely to mimic what would happen in

general use. If effectiveness were the primary

objective, the best place to assess it would be 

in a general medical (ie, naturalistic) setting.

When causal effects are the primary objective,

the gold standard design is a double-blind, ran-

domized clinical trial. Hence, using LOCF in a

factual context is inconsistent with the design

and primary objective of confirmatory clinical

trials.

Furthermore, the rate and timing of dropout

does not necessarily reflect the true benefit and

risk of the drug. While LOCF can in some situa-

tions yield smaller estimates of treatment differ-

ences when patients drop out due to adverse

events, the reduction is not necessarily propor-

tional to the safety risk (9). For example, consid-

er the following two patients in an 8-week trial:

patient A dropped out after week 7 because of a

dramatically prolonged QT interval; patient B

dropped out during week 1 with nausea. The

impact on estimates of mean change resulting

from patient A’s dropout was small because the

last observation was close to the trial’s endpoint,

whereas the impact from patient B’s dropout

was severe because (in many disease states) little

improvement results from one week of treat-

ment. However, patient A developed a potential-

ly life-threatening condition, whereas the nau-

sea experienced by patient B early in the trial is

typically transitory and often resolves with con-

tinued therapy and no long-term consequences.

This nonproportional penalty to individual pa-

tients from LOCF may cause misleading infer-

ences regarding the merits of a treatment. 

As an even more extreme, but common, exam-

ple, consider the Alzheimer disease scenario

noted in the earlier section, “LOCF Is Conserva-

tive,” in which the therapeutic aim is to delay or

slow deterioration of mental status. Using the

last observation from a patient who dropped out

early from the treatment arm due to an adverse

event (AE) would actually reward the drug for

the AE, as the patient would appear to have had

no further deterioration in condition.

A related point is that an LOCF result used in

this manner does not correspond to a popula-

tion parameter that can be prespecified. It is es-

sentially a composite whose components (effi-

cacy, safety, tolerability) have unknown, or at

least random, weights. Hence, using LOCF in a

hypothesis-testing setting violates the funda-
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mental approach of statistics wherein we at-

tempt to make inference about population pa-

rameters. If a composite measure of efficacy,

safety, and tolerability is of primary interest,

then it would be better to have a prespecified

measure that can capture these facets uniformly

for each patient, such as an a priori–defined

clinical utility index.

It is sobering to recognize that an LOCF result

may be manipulated by design factors and the be-

havior of investigative site staff who encourage

prolonged participation, possibly making the

drug look better, but of course not altering the in-

herent risk-benefit of the drug. This may take

place, for example, when an extension period is

added to the randomized part of a clinical trial.

Minimizing dropout is widely accepted as good

scientific practice. However, the concern here is

that the amount of dropout should not directly

change the measure of interest, parameter being

estimated, or the hypothesis that is being tested.

Therefore, while it is true that MMRM esti-

mates a hypothetical parameter in that not all

patients stay on medication to the specific time

points at which mean changes are estimated,

the use of LOCF in the composite or factual con-

text is also fraught with many problems. Impor-

tantly, the hypothetical nature of the adjusted

means from MMRM is not in practice a hin-

drance to interpretation. One can take the effi-

cacy results from MMRM and combine them

with the various safety and tolerability results in

an ad hoc manner, as has traditionally been

done, or in a formal clinical utility index to as-

sess the overall benefit-risk of the drug.

In fact, rather than viewing the hypotheses

tested by LOCF and MMRM as factual and coun-

terfactual, one might view the hypothesis tested

by MMRM as what is expected when patients

take the drug as directed, whereas LOCF tests

what is expected when the drug is taken as ob-

served. Both are useful; the key is to match the

hypothesis with the stage of development and

design of clinical trial. The hypothesis tested by

MMRM is aligned with confirmatory clinical tri-

als utilizing double-blind, randomized designs,

whereas the hypothesis tested by LOCF is best

evaluated in naturalistic settings.

It is also important to recognize that an end-

point analysis of any type is able to provide only

a small part of the overall picture, and that the

entire longitudinal treatment profile should be

considered in order to address such questions

as “How soon until I feel better?” or “How soon

until I feel well?” Longitudinal methods such as

MMRM are ideally suited to provide such infor-

mation from the same analysis as that which

produces the endpoint contrast.

H A N D L I N G  N O N I G N O R A B L E
M I S S I N G N E S S  ( M N A R )
Although the assumption of MAR is often rea-

sonable in clinical trials, the possibility of data

missing not at random (MNAR) is difficult to

rule out. Therefore, analyses valid under MNAR

are needed. Analyses in the MNAR framework

try in some manner to model or otherwise take

into account the missingness. Although reasons

for (early) discontinuation are routinely collect-

ed in clinical trials, they may not reveal much

about the missing-data mechanism, and model-

ing or incorporating information about the

missingness into the data analysis may not be

straightforward.

The obvious but fundamental problem is that

we do not have the missing data, so we cannot

definitively know its characteristics; we can only

make assumptions. Conclusions from MNAR

analyses are therefore conditional on the appro-

priateness of the assumed model. While de-

pendence on assumptions is not unique to

MNAR analyses, a unique feature with MNAR

analyses is that (some of) the assumptions are

not testable (35) because we do not have the

missing data about which the assumptions are

made (36).

Importantly, the consequences of model mis-

specification are more severe with MNAR meth-

ods than with other (eg, MAR) methods (19,36–

49). Hence, no individual MNAR analysis can be

considered definitive. Not surprisingly then,

many statistical methodologies have been pro-

posed to analyze data in the MNAR setting.

General classes of MNAR methods have arisen

from different factorizations of the likelihood

functions for the joint distribution of the out-
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come variable and the indicator variable for

whether or not a data point is observed. Factor-

ization in this context means that the hypothet-

ical “full” data are split into two parts: the actu-

ally observed part and the missing part, which

are often described as the measurement process

and the missingness process, respectively.

The selection model framework (16,18,41) de-

scribes the full data likelihood as the product of

the marginal density of the measurement process

and the density of the missingness process condi-

tional on the outcomes. Conceptually, a selection

model as typically implemented can be thought

of as a multivariate analysis. The first outcome

variable is the same outcome being analyzed as in

an MAR analysis, typically a mean change analy-

sis. The second variable is the indicator variable

for dropout, often analyzed via logistic regres-

sion. Selection models have been formulated in

parametric (41) and semiparametric (42) frame-

works.

Pattern-mixture models (43,44) are based on

factorization of the full data likelihood as the

product of the measurement process condition-

al on the dropout pattern and the marginal den-

sity of the missingness process. Conceptually,

pattern mixture models as typically implement-

ed assess the outcome variable separately for

different groups (patterns), often defined by

time of dropout, and then combine results

across groups for final inference.

A third approach, the shared-parameter mod-

el (19,45–49), is similar to selection models in

that it jointly models the measurement and

dropout processes. Shared-parameter models

assume that a certain parameter, typically a ran-

dom effect, influences both the outcome vari-

able and dropout, such that conditional upon

this parameter, the measurement and dropout

processes are independent.

The conceptual similarity between these dif-

ferent approaches is that they go beyond ignor-

ability by adding something to the analysis to

account for the dropout. Another strategy is to

add ancillary variables to the analysis of the out-

come variable of interest in order to explain the

dropout. The basic idea is that data are MAR if,

conditional upon the variables in the model,

missingness does not depend on the unob-

served outcomes of the variable being analyzed.

Therefore, if additional (ancillary) variables are

added to the model that helps explain missing-

ness, MAR can be valid; whereas if the addition-

al variables were not included, the data would

be MNAR.

Collins and colleagues (50) state that multiple

imputation (MI), originally proposed by Little

and Rubin (16) as an MAR method, is well suited

to improving the performance of the missing-

data procedure through the use of ancillary vari-

ables. They also note that ancillary variables can

be included in likelihood-based analyses (such

as MMRM). This could be done by adding the

ancillary variable either as a covariate or as an

additional response to create a multivariate

analysis. However, the complexity of multivariate

analyses and the features of most of the commer-

cially available software make it easier to use an-

cillary variables via multiple imputation. Liu and

Gould (6) and Lipkovich et al. (51) provided im-

plementations of MI with ancillary variables (in-

cluding AE information) in clinical trial contexts.

In addition, MI has the added advantage that

with separate steps for imputation and analysis,

ancillary variables that are postbaseline, time-

varying covariates—possibly influenced by treat-

ment—can be included in the imputation step

to account for missingness but then not includ-

ed in the analysis step to avoid confounding

with the treatment effects, as might be the case

in a likelihood-based analysis.

Although methods to test for the existence

and impact of outlier (influential) observations

have been around for decades, new methods

have been developed for use in MNAR analyses.

To this end, interest has grown in local influence

approaches (14,52–57), which are often associ-

ated with selection models. Local influence pro-

vides an objective approach to identifying and

examining the impact of influential data points

and patients on various aspects of the analysis,

including the missing-data mechanisms and

treatment effects. Shen and colleagues (14) pro-

vide a case study of a longitudinal depression

trial showing how local influence can be helpful

in conducting sensitivity analysis.
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This is by no means an exhaustive list of all the

available methods for analyses under MNAR,

but rather a brief overview of the fundamental

underpinnings that fostered development of

many of the methods. See, for example, the

study by Ibrahim and colleagues (58) for com-

parisons of common approaches for ignorable

and nonignorable missing-data mechanisms, in-

cluding maximum likelihood, multiple imputa-

tion, fully Bayesian, and semiparametric weight-

ed estimation equations. 

Developing an appropriate strategy for analy-

sis under MNAR begins with recognizing that

these methods are heavily assumption driven

and that the assumptions are not testable.

Therefore, no single MNAR approach can be

considered definitive. Consequently, a useful

and common approach is to fit several MNAR

models or methods utilizing different assump-

tions regarding the data distribution and miss-

ingness within a sensitivity analysis framework,

thereby allowing assessment of robustness of re-

sults to the various assumptions.

R E C O M M E N D A T I O N S
Having discussed theoretical and practical con-

siderations, we now turn to specific recommen-

dations.

Our first recommendation is a natural conse-

quence of the inability of any statistical analysis

to recoup the loss of information due to missing

data. Therefore, whatever methods are to be em-

ployed in analysis, they should not detract from

efforts to plan a trial that minimizes dropout. In

addition, detailed records of the reasons for

missing data and data on potential covariates

that might help further characterize the proba-

bility of dropout should be obtained.

Regarding the primary analysis for confirma-

tory longitudinal clinical trials, conclusive evi-

dence has demonstrated the need to abandon

the simple, ad hoc methods such as LOCF and

BOCF. Given that the possibility of MNAR data

can never be ruled out, one might be tempted to

shift the primary analytic approach to that of an

MNAR method. However, MNAR methods are

sensitive to untestable assumptions. Also, from a

practical standpoint, many MNAR methods re-

quire customized programs, may suffer numeri-

cal convergence problems, or may be complicat-

ed by weakly identified or underidentified mod-

els. Therefore, MNAR methods are not well

suited for the primary analyses in confirmatory

clinical trials wherein a dependable, prespeci-

fied method is needed. We conclude, as have

others (5,14), that the proper framework for use

of MNAR approaches for confirmatory clinical

trials is that of sensitivity analyses.

MAR is the most appropriate framework for

the primary analysis in confirmatory trials be-

cause this assumption is often reasonable and

certainly more plausible than MCAR. Use of

MAR is further supported in that the conse-

quences of departures from MAR can be evalu-

ated via sensitivity analyses, and MAR methods

are often robust to departures from MAR.

Likelihood-based repeated measures ap-

proaches, such as MMRM, provide a flexible

framework under the MAR assumption from

which analyses can be tailored to the specific

situation at hand. Flexibility in modeling treat-

ment effects over time and the within-patient

error correlation structure are particularly use-

ful in this regard, making MMRM a widely useful

analysis in drug development. Specifically,

MMRM is an appropriate choice for the primary

analysis in many longitudinal confirmatory clin-

ical trials, especially those scenarios in which

LOCF has been an acceptable primary analysis

in the past. The historical precedent for LOCF

makes it a likely choice to include as a sensitivi-

ty analysis. However, MNAR-based analyses

should be the primary basis upon which sensi-

tivity is assessed because MNAR analyses focus

on the assumption key to validity of MMRM,

whereas discrepancies between an LOCF and

MMRM result could arise for many reasons un-

related to the validity of MMRM.

Our specific recommendation of MMRM for

an MAR-based primary analysis needs to be con-

sidered in light of the mission of our working

group. Our aim was to (a) clarify terminology

and concepts regarding use of MMRM and

LOCF in regulatory settings, (b) address specific

concerns raised by regulatory agencies regard-

ing use of MMRM as the primary analysis, and
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(c) make specific recommendations for analysis

of data from longitudinal clinical trials.

This degree of focus has the advantage of fa-

cilitating a detailed and thorough discussion.

However, it has the limitation of not fully con-

sidering other analyses. Some readers will won-

der why we did not include in our comparisons

with LOCF Bayesian analyses, multiple imputa-

tion, or weighted generalized estimating equa-

tions. All of these methods are intrinsically simi-

lar in their underlying assumptions (MAR) and

have extensive literature supporting their appli-

cation. As such, these methods ought to borrow

strength from each other, rather than engage in

mutual competition.

Our focus on MMRM was driven by extensive

experience with this method in the specific situ-

ation of relevance—confirmatory clinical trials.

The other MAR approaches have not been stud-

ied and used as extensively as MMRM in this re-

gard. Therefore, we focused on the area wherein

practical experience was greatest so that our

recommendations could be implemented imme-

diately and with minimal ambiguity.
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