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Abstract

« Key message Three options are proposed to improve the
accuracy of national forest biomass estimates and decrease
the uncertainty related to tree model selection depending
on available data and national contexts.

« Introduction Different tree volume and biomass equations
result in different estimates. At national scale, differences of
estimates can be important while they constitute the basis to
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guide policies and measures, particularly in the context of
climate change mitigation.

+ Method Few countries have developed national tree volume
and biomass equation databases and have explored its potential
to decrease uncertainty of volume and biomasttags estimates.
With the launch of the GlobAllomeTree webplatform, most
countries in the world could have access to country-specific
databases. The aim of this article is to recommend approaches
for assessing tree and forest volume and biomass at national
level with the lowest uncertainty. The article highlights the
crucial need to link allometric equation development with
national forest inventory planning efforts.

+ Results Models must represent the tree population con-
sidered. Data availability; technical, financial, and human
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capacities; and biophysical context, among other factors,
will influence the calculation process.

+ Conclusion Three options are proposed to improve
accuracy of national forest assessment depending on
identified contexts. Further improvements could be ob-
tained through improved forest stratification and addi-
tional non-destructive field campaigns.

Keywords National Forest Inventory - Forest management -
Forest carbon - Methodology

1 Introduction

Forests produce a number of benefits including the provision of
resources (e.g., timber, fruits, and medicines), the regulation of
ecosystem services (e.g., air and water cycles, climate, pollina-
tion, and nutrient cycling), and a contribution to culture (e.g.,
aesthetics and education) (Millenium Ecosystem Assessment
2005). About 13 million hectares of forest was converted yearly
to other uses during the period 20002010 (FAO 2010).
Creating new incentives for forest management and con-
servation, such as payments for environmental services, could
provide specific conditional compensation for a voluntary
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specific action which preserves or expands forest resources
(Wunder 2007). A demand for environmental services could
be generated through private preferences (e.g., ecotourism),
public preferences (e.g., species protection), or international
policies (e.g., capped carbon emissions).

Under the United Nations Convention Framework on Cli-
mate Change (UNFCCC), the activities related to forest land
in developing countries have become one of the potential key
mechanisms for climate change mitigation (UNFCCC 2011a,
b). This mechanism, named REDD+, aims to mitigate climate
change through reduced greenhouse gas (GHG) emissions
and removing GHG through enhanced forest management in
developing countries. REDD+ will be implemented following
a stepwise approach depending on each country’s circum-
stances (Herold et al. 2012). The ultimate phase involves
moving to a more direct result-based actions, i.e., emissions
and removals that should be fully measured, reported, and
verified. In consequence, REDD+ will require robust and
transparent national forest monitoring systems for producing
estimates that are transparent, consistent, as far as possible
accurate, and that reduce uncertainties, taking into account
national capabilities and capacities (UNFCCC 2009).

There are still large uncertainties in assessing the contribu-
tion of forest activities to the carbon cycle at national (Morton
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et al. 2011; Pelletier et al. 2012) and pantropical levels
(Achard et al. 2014; Mitchard et al. 2014). While significant
efforts focus on mapping forest land area and carbon changes
(Saatchi et al. 2011; Hansen et al. 2013; Achard et al. 2014), it
is crucial and necessary to improve the quality of field plot
biomass estimates (Mitchard et al. 2014).

Uncertainty in local forest biomass and carbon stock esti-
mation can result from different sources of errors—sampling
and model errors (Picard et al. 2014). While the sampling error
can be reduced by optimizing the sampling design, improving
the quality of the equations and the methodology to select and
use them can reduce the model error. Various authors report
significant differences in forest biomass and carbon stock
estimates depending on the used model (Kenzo et al. 2009;
Melson et al. 2011; Alvarez et al. 2012; Kuyah et al. 2012;
Ngomanda et al. 2014). The adequate development and use of
tree models are a key to improve the robustness of forest
carbon and stock change estimates.

Tree models and volume tables are crucial for quantifying
many forest services such as the production of commercial
volume, bioenergy, and biomass. Most countries use volume
models and biomass expansion factors to report national forest
biomass (FAO 2010), although these models were developed
for different purposes and used in different ways to meet
specific objectives at local and national levels. Some coun-
tries, such as Mexico, Indonesia, and Vietnam, are developing
databases and guidelines for the use of tree models (Inoguchi
et al. 2012; Krisnawati et al. 2012; Birigazzi et al. 2013).

The first step is defining the most appropriate approach to
biomass and carbon stock assessments (both at local and nation-
al levels). The fact that few countries possess a national database
for tree models can be explained by various obstacles, access to
information and data sharing being probably the most important
(Henry et al. 2011). Existing models can be quality controlled
and validated. It is generally necessary to test the applicability of
the models (UNFCCC 2011a, b) under a particular situation
(i.e., test whether the described tree allometry changes because
of differences in soils, elevation, or climate relative to the site
where the equation was originally constructed).

The second step is defining the appropriate approach to
analyze the forest inventory data taking into account the models
available. There are a multitude of methods for the use of
volume and biomass equations to ensure the most accurate
results. These may involve the use of specific methods or default
values, depending on the contribution of the inventory catego-
ries to the total assets as well as the available national financial,
technical, and human capacities. It is important to note that the
desired accuracy should be at least enough to detect changes in
biomass and carbon stocks, not just stocks at a given time.

Adequate calculation of forest biomass using existing
models may rely on decision trees. Decision trees to use
volume and biomass equations rely on a set of general and
specific criteria that will guide the selection of models.

General criteria to guide the selection can be: applicability,
robustness, and documentation. Specific criteria can be: vari-
ables of interest, tree components considered, species consid-
ered, temporal representativeness, geographic location of field
measurements, climate zone, statistical parameters, sample
size, range of validity, transformation of the output variable,
statistical method for residual and model weighting, mathe-
matical form, validation of the data, adequate documentation,
materials and method used, and sampling design (Cifuentes
Jara et al. 2014). The construction of a decision tree is based
on a series of scientific hypotheses to be presented together
with the approach, such as: “The models having a sample size
less than 30 individuals are not robust”; “Species specific
models are more robust than models for an ecological zone
or pantropical distributions”; and “Geographical proximity is
a good indicator of representativeness of the study area”.
Identification of the most suitable decision tree requires, in
most cases, access to raw data. If we sum the total number of
individuals for the tree models available at GlobAllomeTree
(Henry et al. 2013), it follows that between 56,937 and 121,
062 individuals were measured across a range of forest eco-
systems (Fig. 1)." This figure is significantly higher than
the sample size currently available for creating pantrop-
ical models (for moist forests, e.g., Brown 1997: n=
170; Chave et al. 2014: n=4004). In addition, while
pantropical models were mainly developed for trees in
closed and mostly unmanaged forest (Chave et al.
2014), the GlobAllomeTree database contains individ-
uals from a wide range of forested landscapes and trees
outside forests.

The aim of this article is to recommend an approach
for assessing biomass and volume at the national level
that ensures the lowest possible uncertainty. We discuss
adequate sampling schemes to develop tree volume and
biomass models and improving those once national for-
est inventories are completed. Consideration of national
circumstances is then given to the selection of volume
and biomass equations and their potential use as part of
national biomass assessment programs. Finally, we dis-
cuss the impact of the introduction of new methods on
emission reduction estimates.

2 What is the adequate sampling scheme to develop tree
volume or biomass equations?

The total error associated to the use of tree models is a
combination of three types of error (Cunia 1987). First, the

! This figure does not consider the documents without indication on the
sample size and assumes that authors use different datasets for each
publication.
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Fig. 1 Distribution of volume and biomass equation’s sample size on
GlobalAllomeTree. Sample size in each location is indicative. In order to
avoid double counting equation’s sample size, the highest sample size for

error associated to the sampling design, dependent on the
number of trees sampled, and the choice of a biomass equation
among several available of those trees relative to the popula-
tion. This error can be calculated and, given enough resources
and time, controlled with relative ease (measuring additional
sampled trees or re-measuring part of the sampled population).
The second error is due to human error while measuring the
forest, entering and checking data (Westfall 2014). This error
cannot be assessed exactly, but procedures exist to minimize it
(Picard et al. 2012a, b). Several forest services have developed
quality assurance plans that include measuring quality, revis-
ing methodology to reduce efforts, improving the effective-
ness of training sessions, and revising re-measurement pro-
gram for quality control for example (USDA 2012). The third
error is associated to the model’s prediction. The first and third
errors are due to the fact that results are based on samples and
not on the entire population and that an important natural
variability exists. These two errors are not avoidable but can
be estimated through statistical indicators and reduced as
much as possible through efficient sampling strategies and
statistical models (Picard et al. 2014).
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each location was selected without summing each equation sample size.
The map is based on the data of April 2014 from www.globallometree.org

Optimizing the sampling strategy will reduce the measure-
ments’ costs and increase the representativeness of the sample
in relation to the population. A good preliminary overview of
the population is therefore needed. Sampling should be trans-
parent, robust, and simple. It will be the result of a compro-
mise between the desired accuracy and the resources available
to perform field measurements. Optimizing the sampling
scheme requires the identification of ecosystem types, species
composition, forest structure, tree size distribution, tree archi-
tecture, and available existing data. As part of a systematic
sample, we thus must be careful to ensure that the sampling
efforts take into account the different ecosystem types. When
possible, different ecosystems could be delimited to apply
stratification. Stratification aims to take account of exogenous
information to establish homogeneous sampling strata and
thus improve the precision of our estimations (Picard et al.
2012a, b). The principle, in the same manner as previously, is
to increase the sampling intensity of the most variable ecosys-
tem or strata. The use of remote sensing can be of particular
help to support the stratification, map structural traits of plant
canopies, and allow inference of traits and, in many cases,
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species ranges (Schimel et al. 2013). Another solution would
be sampling along gradients where allometric variation is
known, e.g., altitudinal gradients having strong influence on
soil types, climate, vegetation forms, and biomass (Girardin
et al. 2010). Soil physical conditions influence the floristic
composition (Infante Mata et al. 2011) and constrain the
amount of biomass stored in tropical forests, highlighting the
need to consider the importance of taking into account soil
characteristics and species wood density when assessing na-
tional forest biomass (Gourlet-Fleury et al. 2011). Unless for
homogenous ecosystems, such as plantations or mangroves, it
is not easy to take into consideration the floristic composition
in the sampling scheme for the tropics because the number of
tree species can be up to 300 per hectare (Gibbs et al. 2007).
The identification of different plant functional types
(Hawthorne 1995) can be an option to group the different tree
species based on different architecture, growth strategy, and
biomass to develop tree models specific for different plant
functional types (Henry et al. 2010). Identification of archi-
tectural models is a convenient starting point for interpreting
plant forms (Valladares and Niinemets 2007), and the consid-
eration of the identification of architectural models for the
sampling strategy can be one option (Goodman et al. 2013).
However, there is a series of variations and exceptions to each
program of plant development that complicates each classifi-
cation, e.g., tree species such as Arbutus sp. exhibits different
architectural patterns depending on the light environment
(Bell 1993). Other constraints such as the identification of tree
species or the availability of a tree species classification sys-
tem by plant traits are not often available in tropical countries.
Another element to be well considered is the forest structure to
capture different elements such as the basal area, the tree
height, and the range and shape of diameter distributions.
Particular attention should be paid to the selection of trees of
different sizes. Large trees, which are more difficult to mea-
sure, are often ignored in sampling campaigns, while they
store large amounts of biomass (Slik et al. 2013). As large
trees drive much of the biomass/volume and their associated
uncertainty, discarding them in models may lead to consider-
able bias in the estimates. Access to the data from the various
destructive and non-destructive forest field inventories are
necessary to well identify the range of tree size, to avoid
duplication of efforts, and ensure that the sampling strategy
is accurate and optimized as far as practicable. Tree model
fitting methods are usually influenced by heteroscedasticity in
the data. Two methods are usually proposed to solve this issue
(Picard et al. 2012b). The first consists in weighted, but here,
everything depends on the weighting function. The second
consists in a log transformation, but in this case, the estimated
values need to be returned to a normal distribution. When data
are already available, additional sampling should focus mainly
on the parts of the trees (roots, branches, leaves, etc.), life
forms (palms, lianas, etc.), and the parts of the population

(forest type, location, tree size, etc.) that have not been cov-
ered in the previous sampling.

3 Taking into account the national contexts, what are
the potential options for using tree volume and biomass
equations as part of a national forest biomass assessment?

The proposed approaches to the use of tree models will have
to take the following into consideration: (1) data availability
(raw data, metadata, models, and forest inventory data), (2) the
biophysical and environmental context, and (3) the human,
financial, and technical capabilities (Herold and Johns 2007),
i.e., some countries do not have university courses in the field
of forestry or do not have funds allocated to ensure data
collection, storage, and management. Raw data are needed
to allow the validation of the estimates and perform accuracy
assessments. Although highly desirable, it is not required to
have locally developed models; available generic models may
be used in early stages of the system. The model selected
should be tested at a local level based on a limited number of
samples from different ecological environments. Finally, the
national forest inventory can provide national-scale coverage
of ecosystems and facilitate the field data required to calculate
volume and biomass. Cost issues are also relevant but were
not addressed during the workshop.

The following three options for using tree models as part of
a national forest biomass assessment are based on the infor-
mation available:

Option 1 Neither models nor raw data are available. In this
case, it is better to use a generic model and validate
it by destructive harvesting.

The raw data are not available, but volume and
biomass equations are available. It is then possible
to use Bayesian approaches to simulate a data set
having the same properties as the original raw data
(Picard et al. 2012a; Zapata-Cuartas et al. 2012)
and results compared against option 1.

Reliable raw data and models are available. In this
case, models taking into account tree species, for-
est types, climate, and interval of validity can be
considered if the data set is large enough and
compared against option 1.

Option 2

Option 3

However, the intention to classify into different options is
purely practical. Practitioners can use the three options sepa-
rately depending on the data availability in different forest
strata or can combine the three options. The use of the Bayes-
ian methods is one option to be used to combine the results
and minimize uncertainty associated to model errors.

The use of Bayesian methods is not new in forestry (Green
etal. 1994), but the use of Bayesian model averaging methods
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in forestry appears to be a new challenge (Picard et al.
2012a, b; Zapata-Cuartas et al. 2012). Bayesian ap-
proaches can solve many problems associated with the
use of tree models (some examples follow).

3.1 Uncertainty reduction

In many forestry applications, model uncertainty is ignored in
the estimation process. Analysts typically select a model from
some class of models and then proceed as if the predicted
values were observed data with no error. This approach ig-
nores the uncertainty in model selection as well as uncertainty
associated with estimated model parameters and residual var-
iance, leading to over-confident inferences and riskier deci-
sions. Bayesian calibration of models iteratively provides a
coherent mechanism for reducing model uncertainty (van
Oijen et al. 2013). Bayesian hierarchical models also reduce
uncertainty by profiting from the information provided by
well-represented species and use it for less represented tree
species models (by nature, carrying typically carrying larger
uncertainties) (Dietze et al. 2008).

3.2 Selection of volume and biomass equations

Rather than choosing a single model out of several ones, with
the risk of not selecting the best available one, Bayesian model
averaging (BMA) offers a way to combine different models
into a single predictive model. Picard et al. (2012a) used the
BMA of deterministic models and combined three existing
multispecies pantropical biomass equations for tropical moist
forests. The resulting model brought a relatively minor, al-
though consistent, improvement of the predictions of the
aboveground dry biomass of trees and captured features in
the biomass response to diameter that no single model was
able to fit. BMA, thus, is an alternative to model selection that
allows integrating the biomass response from different models
(Picard et al. 2012a).

3.3 Reducing sample size

A large number of biomass equations have been developed
over the years, providing an opportunity to synthesize param-
eter values and estimate their probability distributions. These
distributions can be used as a priori probabilities to develop
new equations for other species or sites. For example, Dietze
et al. (2008) and Zapata-Cuartas et al. (2012) use Bayesian
methods which outperform the classical statistical approach of
least-square regression at small sample sizes. With this meth-
od, it is possible to obtain similar significant values in the
estimation of parameters using a sample size of 6 trees rather
than 40-60 trees in the classical approach that does not utilize
any a priori information. Further, the Bayesian approach sug-
gests that allometric scaling coefficients should be studied in
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the framework of probability distributions rather than fixed
parameter values (Zapata-Cuartas et al. 2012).

3.4 Mixed models

Similar to BMA, mixed effects (also called multilevel) model-
ing methods are not new; however, these methods have only
recently become more common in forestry applications. A key
feature of mixed models is the ability to account for the lack of
independence among observations, which is often found in
forestry data, e.g., multiple observations within each tree or
multiple trees on a sample plot. Both of these situations may
be encountered when developing models to predict tree bio-
mass. Failure to account for the inherent interdependence
results in biased estimates of model error invalidating infer-
ence regarding the statistical significance of model parameters
(Valentine and Gregoire 2001). Mixed model techniques are
usually implemented in one of two ways: (1) via the direct
specification of a matrix that mathematically describes the
covariance structure within the data or (2) via the specification
of random parameters in the model that indirectly account for
the correlation among observations. The latter implementation
is often preferred in forestry applications as the random pa-
rameters essentially customize the model fit for each observa-
tion. Further, values of these random parameters can be pre-
dicted for new observations, and thus, the model can be
calibrated to local conditions (Westfall 2010). Thus, the use
of a mixed modeling framework can reduce uncertainty by
providing improved local prediction accuracy.

A proposed method that would allow inclusion of volume
and biomass equations in a national forest biomass assessment
would require adapting decision trees to include adjustment
methods. Any unique regional model is prone to over- or
under-estimate estimates for any given location. However,
Bayesian model averaging (BMA) can group models, e.g.,
by climate zone, biome, forest types, etc., and has the advan-
tage of generating weighted model estimates. The weighting
can follow the stratification used for inventory or some prior
knowledge and improve the estimates to include a greater
range of variation in diameters of samples or species. Also,
the coefficients used are the result of the weighted average of
the information from existing models. This approach is a
novel and justifiable method for option 1 and should be a
robust (adaptable) alternative to consider when there is ade-
quate information (options 2 and 3).

Regarding the calculation of the uncertainty, two options
are proposed. The first method is to validate the results using
data obtained from destructive measurements. This can be
costly and requires additional fieldwork and coordination with
local authorities. The second method uses Monte Carlo
methods or Bootstrapping (Molto et al. 2013). These statistical
methods are not field intensive but require advanced skills not
readily available in all countries. It is clear though that the
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analysis of error propagation can be achieved when the raw
data are available to allow this.

4 Will the establishment of new methodologies have
an impact on the emission reduction estimates?

Emission reduction estimates in the context of REDD+ will be
reported as part of the GHG inventory for the biennial report
and the national communication to the UNFCCC (2010). As
part of the national communication, it is very likely that
developing countries will be requested to provide an improve-
ment plan (Tulyasuwan et al. 2012). An improvement plan is
considered as an essential part of a National GHG Inventory
System. A well-informed list of possible improvements sorted
by priorities (e.g., through a Key Category Analysis) strives
for increasing transparency, consistency, comparability, com-
pleteness, and accuracy of GHG emission and removal esti-
mates. In order to improve national GHG inventories, it may
be necessary to consider more accurate methodologies,
country-specific forest carbon stock and stock change factors,
land area estimates, and other relevant technical elements of
the GHG inventory, depending on available resources. Mak-
ing a quantitative estimate of inventory uncertainty for each
category and for the inventory in total and considering the
influence or the magnitudes of each emission and removal
source category will guide further improvements. Depending
on the category of improvement of estimates, various methods
proposed by the IPCC ensure consistency of trends (e.g.,
extrapolation, interpolation, recalculation, etc.). It is expected
that the improvement of the GHG preparation process will
lead to improved quality and reduced uncertainty and will
improve the robustness of estimates. Thus, improving esti-
mates of forest carbon stocks and stock changes in the context
of REDD+ should enhance the credibility of estimates and
accessibility to benefits.

5 Conclusion

This article provides clear advice on how to improve tree and
forest volume and biomass assessment at local and national
scales. The adequate use and selection of volume and biomass
equations and accuracy of estimates contribute to improving
national forest inventories. Volume and biomass equations are
critical to improve the precision of volume, biomass, and
carbon stock and changes. This can be done in different ways:
(1) Stratification is valuable, although there will always be the
need to sample additional ecosystems or species with partic-
ular growth forms. (2) Non-destructive measurements during
national forest inventory campaigns can enlarge available
datasets, improving models’ precision and coverage. (3)

Adequate measurement of variables such as wood density,
tree diameter, and tree heights. While the recommendations
provided in this article are based on evidence from several
site-specific and national cases, the proposed options should
be tested particularly in tropical countries where forest assess-
ment is more difficult because of the complexities of ecosys-
tems and relationship between anthropogenic and biophysical
elements. In addition, an adequate institutional context should
be set up in order to ensure adequate data accessibility and
validation of the process.
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