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Recommended isolated-line profile for 
representing high-resolution spectroscopic 
transitions (IUPAC Technical Report)

Abstract: The report of an IUPAC Task Group, formed in 2011 on “Intensities and line shapes in high-resolu-
tion spectra of water isotopologues from experiment and theory” (Project No. 2011-022-2-100), on line profiles 
of isolated high-resolution rotational-vibrational transitions perturbed by neutral gas-phase molecules is 
presented. The well-documented inadequacies of the Voigt profile (VP), used almost universally by databases 
and radiative-transfer codes, to represent pressure effects and Doppler broadening in isolated vibrational-
rotational and pure rotational transitions of the water molecule have resulted in the development of a variety 
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of alternative line-profile models. These models capture more of the physics of the influence of pressure on 
line shapes but, in general, at the price of greater complexity. The Task Group recommends that the partially 
Correlated quadratic-Speed-Dependent Hard-Collision profile (pCqSD-HCP) should be adopted as the appro-
priate model for high-resolution spectroscopy. For simplicity this should be called the Hartmann–Tran profile 
(HTP). The HTP is sophisticated enough to capture the various collisional contributions to the isolated line 
shape, can be computed in a straightforward and rapid manner, and reduces to simpler profiles, including 
the Voigt profile, under certain simplifying assumptions.

Keywords: high-resolution spectroscopy; IUPAC Physical and Biophysical Chemistry Division; line profiles; 
line shifts; water vapor.

DOI 10.1515/pac-2014-0208
Received February 10, 2014; accepted September 11, 2014

1  Introduction
Characterization of an isolated spectral line measured under high resolution requires three pieces of infor-
mation: the transition frequency, the transition integrated intensity, and the parameters that describe the 
line profile. A previous IUPAC Task Group (hereafter called TG1), comprising several of the current authors, 
has critically evaluated the line frequency data available for all the major isotopologues of water [1–4]. A 
summary of this work along with recommendations of TG1 were recently presented in this journal [5].

The full characterization of the high-resolution spectrum of water vapor from the microwave to the ultra-
violet is a prerequisite for modeling and understanding of various processes in many fields in chemistry, 
physics, earth sciences and engineering. The diverse areas of interest include:
1.	 Atmospheric modelling, with emphasis on the definitive understanding of global warming as water 

vapor is responsible for about 70 % of the known absorption of sunlight and the majority of the green-
house effect;

2.	 Atmospheric remote sensing and environmental monitoring, since it is generally necessary to remove the 
spectral signature of water in order to interpret correctly the signatures from trace species;

3.	 Satellite communication, as the performance of satellites in the Earth’s atmosphere is sensitive to water 
absorption between about 3 and 400 GHz;

4.	 Active remote sensing such as radar and lidar that is affected by water vapour attenuation;
5.	 Studies of planetary and exoplanetary atmospheres;
6.	 Astronomy, for example, that of cool stars, where hot water is a major constituent; water lasers and masers, 

which are widespread in outer space, and the study of comets based on fluorescence spectroscopy;
7.	 Combustion research, such as rocket exhausts, forest fires, and turbine engines, as hot steam is a major 

product of most combustion processes.

One of the recommendations of TG1 was the urgent need to identify and adopt a reference line profile for 
high-resolution spectroscopic studies which improved upon the current standard, the so-called Voigt profile 
(VP). The present paper reports the related recommendation of another IUPAC Task Group (hereafter called 
TG2) on “Intensities and line shapes in high-resolution spectra of water isotopologues from experiment and 
theory” (Project No. 2011-022-2-100). TG2 limited itself to considering gas-phase transitions which occur in 
neutral environments as the pressure effects in plasmas need a somewhat different treatment.

The line profile of an isolated spectroscopic transition is usually defined as being normalized to unit area 
and can be attributed to the following three physical factors:
1.	 The Heisenberg time-energy uncertainty principle, or, equivalently, the spontaneous emission of radia-

tion, is responsible for the natural lifetime broadening or intrinsic line width. This component of the 
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overall line shape is described by a Lorentzian profile which is, however, sufficiently narrow to be safely 
neglected in favour of the next two contributions in all but the most specialized situations and ultra-low 
temperatures.

2.	 The thermal translational motion of the spectroscopically active molecule at velocity va gives the incident 
radiation, of frequency ν0, a frequency shift of Δν  =   ±  (va/c)ν0 in the molecular frame of reference (where c 
is the speed of light in vacuum): the well-known Doppler effect. The corresponding Doppler profile (DP) 
is expressed in terms of the Doppler half-width, ΓD, by a Gaussian function:
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For temperature T, in K, and molecular mass m, in kg, the Doppler half-width, in Hz, is
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3.	 Individual collisions of molecules lead to energy exchanges between radiators and perturbers. These 
exchanges shorten the lifetime of the initial and final states of the optical transition and yield what is 
called pressure or collisional broadening. These collisions also induce pressure-dependent shifts in the 
central frequency of the transition. Assuming the independence of the pressure-broadened line half-
width at half-maximum, Γ, and of the pressure-induced line shift, Δ, from the molecular speeds (mean 
thermal velocity approximation), one obtains, for the associated profile, a homogeneous Lorentzian 
function:
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At low pressures the Doppler effect dominates, and as the pressure increases the effects of collisions 
become increasingly important. As a first approximation to get the resulting line shape, the convolution of an 
inhomogeneous Doppler profile with a homogeneous Lorentzian profile is commonly used. It defines the so-
called VP, which contains Doppler and Lorentzian shapes as limiting cases. The three parameters, ΓD, Γ and Δ, 
characterizing the Voigt profile are routinely employed in standard spectroscopic information systems [6, 7]. 
ΓD is independent of the gas mixture composition and has a known temperature dependence, see eq. 2. For 
Γ and Δ, their values in a mixture are simply obtained, assuming binary collisions, through model fraction-
weighted average of the individual values for each collision partner. The temperature dependence of Γ and 
Δ is commonly assumed to be a power law for the broadening [6, 7] but remains to be found for the pressure 
shift. Although the Voigt profile involves an integral that cannot be evaluated analytically, there are readily 
available, fast computational procedures for doing this, see, e.g., Refs. [8, 9], which make this function suit-
able for use in complex radiative-transfer codes.

There is now a widespread recognition that the VP does not give a fully accurate representation of the 
spectral line shape [10] and its use can lead, e.g., to a systematic underestimation of experimental line inten-
sities [11–13]. Use of the VP for modelling spectra of water vapour recorded in both the laboratory and the 
atmosphere under high resolution leads to characteristic W-shaped residuals in any high-precision fit to 
the line absorption coefficient. See, e.g., Refs. [14–17] for laboratory work and Refs. [18, 19] for atmospheric 
studies. In particular, large W-shaped residuals were observed in the analysis of H2O lines from the Atmos-
pheric Chemistry Experiment [19], an effect that appears to occur only for H2O and not for other molecules 
in the spectra. Deviations from the Voigt line shape contribute to the large residuals for H2O lines, although 
there are likely other contributions relating to the high variability of the H2O column in the Earth’s atmos-
phere and the rapid change of H2O volume mixing ratio as a function of altitude in the troposphere, particu-
larly in the tropics.
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The W-shaped residuals arise, and their amplitude may reach 10 % of the peak absorption [16, 20], as 
the observed lines are typically higher and narrower than predicted by the VP. Deviations from the VP are 
generally ascribed to the effect of velocity changes (VCs) due to collisions, which reduce ΓD, and/or to the 
speed dependence (SD) of the relaxation rates, which corrects the simple Lorentzian shape for different 
velocity-classes of active molecules. Inclusion of these velocity effects in line-profile models has led to the 
development of a variety of possible line shape functions which can be characterized by their increasingly 
sophisticated representation of the underlying physics and an increasing number of parameters. Several of 
these models are briefly considered in Section 3.

2  Objectives of the task group
There are many suggested models for the line profile which move beyond the VP [21–27]; see chapter III of 
the book by Hartmann et al. [10] for a more general discussion. These profiles are more sophisticated in that 
they include more physical effects than are accounted for by the VP and, as a consequence, require additional 
model parameters. At present, databases and most major radiative-transfer codes use Voigt profiles, despite 
their well-documented deficiencies. The implementation of profiles beyond the Voigt approximation in data-
bases and codes represents a major task and will only be undertaken once there is some reasonable consensus 
as to which line profile to use. This has become particularly timely as increased sensitivity of remote sounding 
instruments and better knowledge of geophysical parameters has increased the relative significance of line-
profile issues for observing systems. The aim of TG2 and of this article is therefore to recommend the use of a 
single functional form suitable for line profiles representing high-resolution spectroscopic transitions.

To achieve this goal the following points need to be considered:
1.	 What single functional form from those available is most appropriate to replace the VP? The chosen func-

tion should have a sound theoretical basis and behave in an appropriate manner as a function of pressure 
and temperature.

2.	 Is the chosen functional form computationally tractable? Radiative-transfer models which perform line-
by-line calculations for large numbers of lines demand a functional form that can be evaluated reliably 
and efficiently.

3.	 What are the consequences of replacing Voigt functions in databases and models? There should be a 
straightforward path from the current situation which relies on Voigt functions to the newly recom-
mended function.

To answer these questions, the water molecule serves as a suitable benchmark. As detailed in the Introduc-
tion, water line profiles are of great importance for a number of applications. Furthermore, water has a large 
permanent dipole moment which leads to strong long-range interactions, making the line shape of its transi-
tions particularly challenging to model from the purely theoretical point of view. TG2 therefore aimed to make 
a recommendation for water which would also be appropriate and adopted for other molecules.

Finally, we note that collision-induced mixing of nearby lines also alters line profiles, see chapter IV of 
Ref. [10] for a general discussion of this process. This effect has been observed in water transitions [28, 29] 
but was not explicitly considered by TG2. Nevertheless, the significance of the TG recommendations for the 
inclusion of line mixing and for the water continuum is discussed below.

3  Line-profile models: a brief review
The theory of molecular line shapes is rather complicated and has been studied over many years [30]. It is 
not possible to review it all here, and instead the reader is pointed to two recent books on the topic [10, 31].

Atoms and molecules obey the laws of quantum mechanics and ab initio quantum mechanical treatments 
of water line broadening are available for low-temperature collisions [32], but more approximate treatments 
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are required at higher temperatures [33]. This is because at atmospheric temperatures a molecule such as 
water has too many relaxation channels for a fully quantal treatment of the problem to be practicable. The 
discussion below will therefore be limited to semi-classical studies.

When considering the various models, it is also important to remember that as the models become more 
sophisticated they have more free parameters which almost automatically results in better fits of measured 
spectra. However, a high-quality fit to a set of spectral lines is not a guarantee of the validity of the line-shape 
model used; in particular, in the binary-collision regime the fitted parameters have to be linear functions 
of the pressure [15, 16, 34–36]. At the same time, multispectral fits [37, 38] of lines recorded at several pres-
sures of the perturbing gas are particularly useful for testing and characterizing complicated line-profile 
functions. Compared to spectrum-by-spectrum adjustments, multispectrum fits have the great advantage 
that they reduce correlations between model parameters, decrease their uncertainties and make convergence 
easier. Table 1 lists some of the key line-profile models developed and orders them in terms of the number of 
parameters required to characterize a single spectral transition at a given temperature for a given absorber 
and a given perturbing gas. The standard three-parameter VP, as already mentioned above, is the simplest 
line shape accounting for the pressure and Doppler effects.

The effect of collision-induced velocity changes on spectral line shape is usually known as Dicke nar-
rowing [39]. In this case the strength of the collisions, i.e., their efficiency at changing the velocity, becomes 
important. Hard-collision models assume that molecular velocities before and after each collision are com-
pletely decorrelated, i.e., each collision is so violent that the molecule loses completely the memory of its 
previous velocity and its new velocity simply follows a Maxwell distribution. The corresponding line profile is 
referred to as a Rautian profile (RP) [23] or equivalently the Nelkin–Ghatak profile (NGP) [22]. The hypothesis 
of soft collisions, in which many collisions are necessary to change the molecular velocity significantly, leads 
to the Galatry profile (GP) [21]. Both hard- and soft-collision models introduce one extra parameter, νVC, to 
quantify the frequency of VC-collisions.

The speed-dependence of the relaxation rates, considered as the single source of line narrowing, leads 
to the speed-dependent Voigt profile (SDVP) [25, 40]. It should be noted that this speed-dependence can be 

Table 1 Summary of line-profile models considered. N is the number of parameters required to characterize the line shape for a 
single isolated transition at a given temperature for a given pair of molecules.

Acronym Profile name Parameters Mechanism

N SDa VCa Correlation

DP Doppler 1 ΓD No No No
LP Lorentz 2 Γ, Δ No No No
VP Voigt 3 ΓD, Γ, Δ No No No
GP Galatry 4 ΓD, Γ, Δ, νVC No Soft No
RP Rautian 4 ΓD, Γ, Δ, νVC No Hard No
NGP Nelkin–Ghatak 4 ΓD, Γ, Δ, νVC No Hard No
SDVPb Speed-dependent Voigt 5 ΓD, Γ0, Δ0, Γ2, Δ2 Yes No No
SDGPb Speed-dependent Galatry 6 ΓD, Γ0, Δ0, Γ2, Δ2, νVC Yes Soft No
SDNGPb Speed-dependent Nelkin–Ghatak 6 ΓD, Γ0, Δ0, Γ2, Δ2, νVC Yes Hard No
SDRPb Speed-dependent Rautian 6 ΓD, Γ0, Δ0, Γ2, Δ2, νVC Yes Hard No
HTP Hartmann–Tran 7 ΓD, Γ0, Δ0, Γ2, Δ2, νVC, η Yes Hard Yes
CSDaRSPb Correlated SD asymmetric Rautian–Sobelman 8 ΓD, Γ0, Δ0, Γ2, Δ2, νVC, χ, η Yes Combination Yes
pCSDKSb Partially correlated SD Keilson-Storer 8 ΓD, Γ0, Δ0, Γ2, Δ2, νVC, γKS, η Yes Combination Yes

See text for further details and citations. All profiles except the simple Lorentz profile include the Doppler broadening effect.
aSD  =  speed-dependent; VC  =  velocity changes due to collisions.
bParameters for these profiles are all given in the quadratic (q) form of the speed dependence; for hypergeometric models the 
expansion parameters Γ0 and Γ2 (or Δ0 and Δ2) are replaced by an amplitude factor and a parameter that is either p, the power-
law exponent giving the dependence of the broadening on the relative speed, or q, which describes the power-law dependence 
of the intermolecular potential on the intermolecular distance.
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introduced in more than one way. The most popular choice considers a simplified r–q long-range interaction 
potential, r being the intermolecular distance and q  =  3, 4, 5, etc., for leading dipole–dipole, dipole–quad-
rupole, quadrupole–quadrupole, etc., interactions, respectively. This approximation results in an absolute 
speed-dependence expressed analytically using a confluent hypergeometric function (often denoted by “h” 
in the model acronym) [41]. However, the cost associated with this model is too high for routine computa-
tions, and thus it is common practice to use a much simpler, quadratic form (given by a “q” in the acronym) 
[41–44]. In this case the pressure-broadening width and shift are given by

	

2
a 0 2 a a0

2
a 0 2 a a0

( ) [ ( / ) 3 / 2 ],
( ) [ ( / ) 3 / 2 ],

Γ Γv v v
∆ ∆

Γ
∆v v v
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= + −

�
(4)

where Γ0 and Δ0 are, respectively, the collisional width and shift averaged over all speeds, and the phenomeno-
logical rate parameters Γ2 and Δ2 characterize the dependence on the active-molecule speed va (va0 is its most 
probable value). The Boone–Walker–Bernath algorithm [19] allows the calculation of a SDVP from two VPs.

Ascribing the line narrowing solely to the VC-collisions frequently leads to aberrant values of the νVC 
parameter which can show unrealistic non-linearities as a function of pressure [15, 16]. For example, when just 
the linear part of this pressure-dependence is used with a GP to deduce the narrowing coefficient (the slope), 
the latter demonstrates higher values than those allowed by the kinetic diffusion [35, 36]; conversely, a similar 
analysis using a RP leads to smaller values of νVC [15]. This behavior means that other treatments of narrowing 
are needed; in particular, SD should be accounted for. To this end, speed-dependence has been introduced in 
the soft-collision model, leading to the SDGP [45]. The SDGP reduces to the GP in the absence of the speed-
dependence (Γ2  =  0 for qSD) and to the SDVP in the absence of velocity-changing collisions (νVC  =  0). Similarly, 
the SD introduced in the RP provides the speed-dependent Rautian profile (SDRP) [46]. For both the SDGP 
and SDRP there are functional advantages if the quadratic SD, see eq. 4, is assumed [47, 48].

Both the SDGP and SDRP models assume that the velocity-changing and the rotational-state-changing 
aspects of a collision are independent. In practice this is not true: a change of the velocities is balanced by a 
change of the internal states of the colliders, according to the energy conservation law. Therefore, VC and SD 
mechanisms can operate simultaneously and their respective model parameters are correlated. The profile 
models accounting for the correlation of these two collisional effects are described by functions involving 
supplementary fitting parameters. To achieve this correlation requires the introduction of further param-
eters. An example is the speed-dependent dispersive Rautian–Galatry profile (SDDRGP) [49], which is used 
to explain the line-shape asymmetries due to correlation, hardness and collision duration. The SDDRGP is a 
non-analytic line-shape model with many parameters, which have to be adjusted simultaneously, and there-
fore this treatment requires multispectrum fits.

An alternative method of introducing correlation is via the partially correlated hard-collision model for 
velocity- and state-changing collisions [42, 50, 51]. Such a model, based on the use of hypergeometric SD, was 
recently employed for a spectroscopic determination of the Boltzmann constant [52]. However, this hypergeo-
metric form is difficult to use. A related, but easier-to-apply model considers the speed-dependence only 
quadratically, yielding the partially Correlated quadratic-Speed-Dependent Hard-Collision Profile (pCqSD-
HCP) [48]. This model is flexible and has the major advantage that it can be represented using a relatively 
simple form, which allows rapid computational evaluation [53], an essential prerequisite for the adoption of 
a model by databases and modellers. This model is discussed in detail in the following section.

There are more sophisticated profiles which allow for intermediate strength collisions, of which the 
Keilson–Storer (KS) [54] and the Rautian–Sobelman (RS) [23] profiles are the most widely used. These more 
sophisticated profiles have an additional parameter η, the correlation parameter. In the KS model there is also 
a memory parameter, γKS, which goes to zero for no memory (a hard collision) and unity for full memory (a 
soft collision) [54, 55]. The RS model instead uses the hardness parameter χ [23].

Of course, the choice of an appropriate line shape function is not a purely theoretical excercise and must 
be guided by fits to high accuracy measurements, which also need to consider the appropriate instrumental 
line shape function.
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4  The HTP model
The line profile recommended by the TG is variously described as the partially Correlated quadratic-Speed-
Dependent Hard-Collision Profile (pCqSDHCP) or the partially Correlated quadratic-Speed-Dependent Nel-
kin–Ghatak Profile (pCqSDNGP). This line-shape model has been considered by a number of authors [42, 
48–51, 53], and has been used successfully for the analysis of ultra-high accuracy experimental water line 
shapes [15, 56, 57], although not all of these studies considered the speed dependence in quadratic form. The 
quoted acronyms represent an attempt to capture the physics behind the profile but they are hard to remem-
ber and convey little meaning to the non-specialist. The TG therefore recommends that this profile, and its 
computational implementation which we describe below, be called the Hartmann–Tran profile (HTP) after 
the authors of Refs. [48, 53].

In terms of the 7 parameters ΓD, Γ0, Δ0, Γ2, Δ2, νVC and η, the HTP functional form can be expressed as [48, 
53, 58, 59]:
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The terms A(ν) and B(ν) can be expressed as combinations of the complex probability function

	 π

−+∞ −

−∞
= = −

−∫
2

2
( ) erfc( ),

t
zi ew z dt e iz

z t �
(6)

where erfc is the Gauss error function, while
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In these expressions
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with Cn  =  Γn + iΔn with n  =  0 and 2 within the quadratic approximation, see eq. 4. Finally, the most probable   
speed can be expressed in terms of the Doppler half-width as a0 D

0

.
ln2

cv Γ
ν

=  Note that the HTP is normalized 

to unit area and is generally asymmetric, even if only slightly, due to the correlation and the speed depend-
ence of the line shift. Furthermore, in the far wing, when |ν – ν0| is much larger than all other terms, the HTP 
reduces to a Lorentzian of half-width Γ0.

The physics underlying the 7-parameter HTP profile is as follows. The speed-dependences of the relaxa-
tion rates are represented by four parameters: two, (Γ0, Γ2), to represent the line broadening and two, (Δ0, Δ2), 
to represent the line shift. Γ0 and Δ0 are the mean relaxation rates, while Γ2 and Δ2 are the quadratic terms 
describing the speed dependence of relaxation [43, 44], see eq. 4. Velocity changes are represented within the 
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Nelkin–Ghatak hard collision model, which requires a single parameter, νVC. Finally, parameter η represents 
the partial correlation between velocity and rotational state changes due to collisions. The assumptions of 
quadratic speed dependences and hard collisions are approximations but, as illustrated below, some of the 
errors introduced by these approximations are actually compensated for by the inherent flexibility of the 
parameter fits. This model has been extensively tested both for water transitions and for those of other mol-
ecules [48] using accurate calculated spectral shapes [20, 60–62].

As discussed in the literature [48], there are a number of advantages the HTP model offers.
The first is that FHTP can be expressed in terms of two (complex) Voigt (or complex probability) functions, 

see w(z) as given in eq. 6. Tran et al. [53] provide a routine for evaluating the HTP built on the Voigt routine of 
Humliček [8]. Numerical tests have shown that the relative accuracy of this routine is always better than 10–4 
and that the computer time requirement is at most only five times that required for the computation of a VP.

Second, in the case where not all the parameters have been or can be determined, HTP reduces in a very 
straightforward fashion to a number of simpler, standard profiles. These limiting cases are listed in Table 2. 
In particular, given that the present databases are largely populated with parameters for the VP, it is advanta-
geous that the HTP reduces to the VP if all the high-order correction terms are set to zero. This is an extremely 
useful property, but one note of caution is in order. The parameters used to determine these profiles are not 
independent; this means that once beyond-Voigt parameters are introduced into the fit it is no longer possible 
to use the parameters to give a correct VP.

Third, we should mention the Van Vleck–Weisskopf (VVW) line shape function [63], see page 184 of 
Bernath [64] for a short discussion. This simple form includes an anti-resonant Lorentzian function. It is used 
for low-frequency microwave work [65–67] and in all models of mm-submm radiation propagation [68]. By 
analogy with the VVW profile, the anti-resonant contribution, which is only significant at very long wave-
lengths, could be taken into account using an HTP after changing the signs of the transition frequency and 
the pressure shift.

Finally, line-mixing can be easily included in the model provided that two approximations are made [48]. 
The first is the use of the so-called (Rosenkranz) first-order approximation [69]. The second is the neglect of 
the speed-dependence of the line-mixing. These approximations are routinely used in practical treatment of 
line-mixing, for example the implementation in the HITRAN database [70].

5  Discussion
The recommendation by the TG of the HTP as the new standard for representing the profile of high-resolution 
spectroscopic transitions raises a number of issues which should be considered.

First, use of this more complex parameterization to characterize the pressure line shape has a conse-
quence not mentioned so far: collisional parameters for gas mixtures are no longer simple linear combina-
tions of the parameters for the various active molecule-perturber pairs [48]. This means that, for example, 
in the terrestrial atmosphere, it will be necessary for databases to separately specify collisional parameters 
for perturbations by N2 and O2 rather than just for “air” so that separate profiles can be computed and then 

Table 2 Correspondence between various lower-order models and the limits of the Hartmann–Tran profile (HTP) [48].

Acronym Profile Parameters Limit of HTP

DP Gaussian ΓD Γ0  =  Γ2  =  Δ0  =  Δ2  =  νVC  =  η  =  0
VP Voigt ΓD, Γ0, Δ0 Γ2  =  Δ2  =  νVC  =  η  =  0
RP Rautian ΓD, Γ0, Δ0, νVC Γ2  =  Δ2  =  η  =  0
qSDVP Speed-dependent Voigta ΓD, Γ0, Δ0, Γ2, Δ2 νVC  =  η  =  0
qSDRP Speed-dependent Rautiana ΓD, Γ0, Δ0, Γ2, Δ2, νVC η  =  0

aUsing the quadratic approximation of eq. 4 for the speed dependence.
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added. As a result of this it will become necessary for all significant perturbers to be added individually to 
the databases.

Second, the discussion above has not addressed the temperature dependence of parameters in the 
line-profile models considered. Even for studies of the Earth’s atmosphere it is necessary to consider 
line profiles in the temperature range of approximately 200–300 K. Much larger temperature ranges are 
required for other modelling studies. For example, water line profiles are required for the atmosphere of 
hot Jupiter exoplanets (T  =  1000 – 1500 K) [71] and probably also for brown dwarfs (T   ≤   3000 K). Available 
experimental studies usually span ranges of about 100 K to about room temperature, see Refs. [72, 73], for 
example. Obviously, it would be desirable to have experimental studies over more extended temperature 
ranges, but these are unlikely to be forthcoming in the immediate future. Conversely, ab initio spectral 
shapes calculated by molecular dynamics simulations [61, 62] should be reliable at temperatures above the 
quantum limit and can easily be repeated for many temperatures. So far such studies on water seem to have 
focused heavily on the room temperature regime [20, 74–76]. Extending molecular dynamics simulations 
to probe the effects of temperature would clearly be very useful. In the absence of experimental determi-
nations, this would allow predictions of the temperature dependence of the narrowing and correlation 
parameters. We expect the latter to be reliable, in view of the quality of calculations at room temperature. 
Furthermore, the temperature dependences of Γ2 and Δ2, like Γ and Δ, can be investigated by using semi-
classical calculations [74, 76].

Third, other tests, both experimental and numerical, would also be useful. Issues that should be probed 
include: (a) signal-to-noise limits that the HTP (and other profiles) are reliable for; (b) tests of extreme heavy 
– light collisions such as water perturbed by He (or H2), such collisions are normally considered to be “soft”; 
(c) tests of extreme light — heavy collisions such as water with Xe or SF6; and (d) tests of whether collisions 
with open-shell systems, such as O2, introduce any new features.

Finally, the HTP is based on an approximate quadratic treatment of the speed dependence and of veloc-
ity changes. The approximate treatment of SD can be tested against the more physically-based and more 
complicated pChSDNGP, which uses the hypergeometric SD, albeit still with an approximate treatment of 
the potential. Such tests have recently been completed by De Vizia et al. [78], see Fig. 1. They found that the 
HTP and pChSDNGP fitted their benchmark, measured, high-precision water line profiles almost equally 
well. Furthermore, they found that the retrieved broadening and shifting parameters were unchanged in 
the two fits, something not completely found, for example, when using the SDGP (speed-dependent Galatry 
profile) to fit the same data [77]. However, values for the parameter νVC, which can be related to the diffu-
sion coefficient of the molecule in the perturbing medium, were found to be physically meaningful for the 
pChSDNGP fits but not the HTP ones [78]. Under these circumstances νVC must just be regarded as a useful fit 
parameter, and nothing more. From Fig. 1, one can see that the residual of the fit with the VP varies between 
about  ± 0.5 % of the peak absorption. These data are for a specific line and pressure, but much larger effects 
are observed [16, 20] for other transitions and gas densities.

6  Final recommendations and conclusions
The IUPAC Task Group formed by the first 12 authors of this paper makes the recommendation that the 
pCqSDHCP [48, 53, 58, 59] should be adopted as the appropriate line-profile model of high-resolution 
spectroscopy moving beyond the VP. For simplicity we propose calling this the Hartmann–Tran profile 
(HTP).

The proposed line shape is based on six temperature-dependent, collisional parameters for each line 
and perturber plus the Doppler width, ΓD, fixed to its theoretical value. These parameters give the model the 
flexibility to include all the major “non-Voigt” effects. HTP involves parameters with known pressure depend-
ences that can be stored in databases. HTP has been demonstrated to lead to an accurate description (0.1 % or 
better) of the line shapes for a number of combinations of absorbers and perturbers [48], with the exception 
of H2, which is a known difficult case. Furthermore, HTP can be computed accurately using only moderate 
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Fig. 1 Comparison of line-shape fits to the H2
18O absorption feature at 7222.298050 cm–1 measured at a pressure of 2.70 Torr 

and a temperature of 273.16 K. Residuals are given in terms of units of the original signal: root mean square (rms) values of 
about 150 μV simply reflect the noise in the original experiment [77]. Note that pCqSDNGP is equivalent to HTP.

computer time requirement [53], it is compatible with current implementations of line mixing, and it can be 
initially parameterized using the Voigt parameters already available in standard data compilations.

Considering the relatively large number of parameters required for the full HTP model and the correla-
tions between them, fitting measured individual spectra is unlikely to yield a well-constrained parameter set. 
This means that a multispectrum procedure [37] must be used. Furthermore, to remove the partial correla-
tions between the various parameters, it is essential to use spectra recorded in a broad pressure range and 
with a high signal-to-noise ratio.

There are some open questions about the use of the HTP. The most pressing of these concerns the tempera-
ture dependence of the model parameters. These have not been the subject of serious testing over extended 
temperature ranges with temperature-dependent data from either laboratory measurements or numerical 
(molecular dynamics and semi-classical) simulations. Furthermore, very high signal-to-noise ratio measure-
ments, combined with multispectrum fits of data recorded at a number of pressures, would help to better define 
the underlying accuracy of the model. Finally, tests need to be performed with a variety of collision partners to 
determine, e.g., the effects of different mass ratios and collisions with open-shell species such as O2.

One issue not discussed so far is that of the so-called water continuum [79]. The water vapor continuum 
is characterized by absorption that varies smoothly with wavelength, from the visible to the microwave. It is 
present within the rotational and vibrational-rotational bands of water vapour, and in the many “windows” 
between these bands. The precise relationship between the water continuum with the far wings of the line 
profile for individual transitions and with dimer contributions remains a matter for discussion. It is clear that 
changing the model for the line profile about the line center has possible consequences on the determination 
of the continuum. However, these should be small as local line contributions are only calculated in a narrow 
interval before subtraction from the measured absorption. Changing the line shape thus has only a local effect 
with minor consequences on the broad and slowly varying continuum. Furthermore, the main uncertainties 
in the continuum determination remain more to do with uncertainties in the line intensity and broadening 
coefficients than the line profile. Nevertheless, for consistency, a continuum should be used in radiative 
transfer calculations which has the same local line shape as the one used in its experimental determination.
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Finally, we note that adoption of the HTP will require significant alteration to the data structures used 
in databases. Work in this direction has already started [80]. Although TG2 was set up explicitly to consider 
water, our recommendations and the modernizations should apply to the line shape used for all molecular 
species.
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