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ABSTRACT: In genome-wide association studies of binary traits, investigators typically use logistic regression to test common
variants for disease association within studies, and combine association results across studies using meta-analysis. For common
variants, logistic regression tests are well calibrated, and meta-analysis of study-specific association results is only slightly
less powerful than joint analysis of the combined individual-level data. In recent sequencing and dense chip based association
studies, investigators increasingly test low-frequency variants for disease association. In this paper, we seek to (1) identify the
association test with maximal power among tests with well controlled type I error rate and (2) compare the relative power of
joint and meta-analysis tests. We use analytic calculation and simulation to compare the empirical type I error rate and power
of four logistic regression based tests: Wald, score, likelihood ratio, and Firth bias-corrected. We demonstrate for low-count
variants (roughly minor allele count [MAC] < 400) that: (1) for joint analysis, the Firth test has the best combination of type
I error and power; (2) for meta-analysis of balanced studies (equal numbers of cases and controls), the score test is best, but
is less powerful than Firth test based joint analysis; and (3) for meta-analysis of sufficiently unbalanced studies, all four tests
can be anti-conservative, particularly the score test. We also establish MAC as the key parameter determining test calibration
for joint and meta-analysis.
Genet Epidemiol 37:539–550, 2013. C© 2013 Wiley Periodicals, Inc.
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Introduction

Genome-wide association studies (GWAS) have identified
thousands of common variants associated with hundreds
of diseases and traits [Hindorff et al., 2012]. The standard
GWAS analysis framework using asymptotic theory tests has
proven to be well calibrated and powerful, given sufficiently
large sample sizes. In this context, for analysis of binary traits
such as disease status, classical logistic regression based Wald,
score, and likelihood ratio tests have well controlled type I
error rates and are asymptotically equivalent [Cox and Hink-
ley, 1974]. Since individual studies often are not large enough
to detect variants with modest genetic effects, information
can be combined across multiple studies using either meta-
analysis of study-level association results or joint analysis of
the combined individual-level data. For common variants,
meta-analysis is widely used since there are fewer logistical
and ethical constraints in sharing association results than
sharing individual-level data, and since meta-analysis has
near-equivalent power to joint analysis [Lin and Zeng, 2010].

Sequencing-based study designs including next-generation
sequencing, imputation using dense reference panels, and
specialized genotyping arrays provide new opportunities to
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test low-frequency or low-count variants for disease associa-
tion. Here we operationally define as low count a variant with
minor allele count (MAC) < 400, equivalent to minor allele
frequency (MAF) < 0.05 for a study with N = 4,000 individ-
uals, or MAF < 0.01 for N = 20,000. For a given study design
with N > 2,000, we demonstrate that MAC provides a more
consistent and sample-size invariant measure of the genetic
variant’s inherent information, compared to MAF. We also
show that a MAC of 400 is a rough threshold separating vari-
ants for which tests have relatively poor calibration (for MAC
< 400) from relatively good calibration (for MAC > 400) for
balanced and not too unbalanced studies.

For analysis of low-count variants, collapsing [Li and Leal,
2008] and burden [Madsen and Browning, 2009; Wu et al.,
2011] tests, in which multiple markers are analyzed together,
are often performed. However, single-marker tests remain
important for variants that have sufficient counts. Analysis
of individual low-count variants poses new challenges and
questions. The asymptotic assumptions for logistic regres-
sion may no longer be valid, resulting in either conservative
or anti-conservative test behavior. For example, the Wald
test is extremely conservative for low-count variants [Hauck
and Donner, 1977; Xing et al., 2012]. Since sequencing-based
studies may discover tens of millions of mostly low-count
variants, we require even more stringent significance thresh-
olds than for analysis of high-count variants in GWAS, further
straining asymptotic assumptions. Little is known about the
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relative efficiency of joint and meta-analysis for low-count
variants.

In this paper, we aim to identify the most powerful test(s)
with well controlled empirical type I error in joint and
meta-analysis of binary traits for low-count variants. In sit-
uations where all evaluated tests are either conservative or
anti-conservative, we aim to identify the “best” test having
type I error rates nearest to but not exceeding the nominal
threshold, and with greatest power. To do so, we compare
analytically calculated and simulation estimated type I error
rates and power for four logistic regression tests in joint and
meta-analysis. We evaluate these tests across a wide range
of MACs at stringent significance thresholds in studies with
varying sample size and case-control imbalance. For low-
count variants, our results show that joint analysis using the
Firth bias-corrected logistic regression test [Firth, 1993] is
consistently best for both balanced and unbalanced studies.
For meta-analysis of balanced studies, the logistic regression
score test is best. Comparing joint and meta-analysis for bal-
anced studies, Firth test based joint analysis is more powerful
than score test based meta-analysis. For meta-analysis of sub-
stantially unbalanced studies, all of the tests evaluated can be
anti-conservative. We establish MAC as the key parameter
determining test calibration.

Materials and Methods

Notation

We consider first a single case-control study with total
sample size N. For individual i, let Yi = 1 or Yi = 0 denote
a case or control, respectively, and Xi = 0, 1, 2 the number of
minor alleles for a specific genetic variant.

Logistic Regression Tests

We consider four asymptotic tests based on the logistic
regression model

logit[ Pr(Yi = 1)] = α + βX i (1)

where α is the study-specific intercept and β is the genotype
log odds ratio (OR). We wish to test the null hypothesis of
no association H0: β = 0. The Wald test statistic is

W = β̂
/

SE (β̂) (2)

where β̂ is the maximum likelihood estimate (MLE) for β

and SE (β̂) is its standard error. Given the log-likelihood l(α,
β), the likelihood ratio test statistic is

LR = –2[l(α̃, 0) – l(α̂, β̂)] (3)

where α̃ is the restricted MLE of α under the null model, and
(α̂, β̂) is the MLE of (α, β) under the full model. The score
test statistic is

S = Uβ

/√
var(Uβ) (4)

where Uβ = ∂l/∂β is the component of the score function
corresponding to parameter β evaluated at (α, β) = (α̃, 0).

The variance of the score statistic [Cox and Hinkley,
1974] is

var(Uβ) = Iββ(α̃, 0) – Iβα(α̃, 0) I –1
αα(α̃, 0) Iαβ(α̃, 0)

where IAB = –∂l2/∂A∂B is the AB component of the observed
Fisher’s information matrix. The Wald and score test statistics
are evaluated relative to a standard normal distribution, the
likelihood ratio test statistic relative to a χ2

1 distribution.
In logistic regression models, “separation” occurs when

cases and controls can be perfectly explained by a nontrivial
linear combination of the covariates [Albert and Anderson,
1984]. Separation occurs most often in small studies. It can
also occur in larger studies with categorical covariates for
which some categories are rare (e.g., low-count variants),
since at least one covariate category may occur only in cases
or only in controls. In separated datasets, logistic regression
produces strongly biased parameter estimates diverging to
±∞. Firth [1993] proposed a penalized likelihood function to
correct the first-order asymptotic bias of parameter estimates
that is especially relevant for separated datasets. The Firth
bias-corrected log-likelihood function is

l∗(α, β) = l(α, β) + 0.5 log |I (α, β)|
where I(α, β) is the information matrix. The bias-corrected
likelihood ratio statistic described by Heinze and Schemper
[2002] is

F = –2[l∗(α̃∗, 0) – l∗(α̂∗, β̂∗)] (5)

where α̃∗ and (α̂∗, β̂∗) are the corresponding bias-corrected
MLEs for the null and full models (using the observed infor-
mation matrix), respectively. The bias-corrected likelihood
ratio statistic is evaluated relative to a χ2

1 distribution. We
modified Ploner’s R implementation of the bias-corrected
logistic regression test [Ploner et al., 2010] to increase compu-
tational efficiency, and include the modified implementation
in the EPACTS software [Kang, 2012].

Combining Data Across Studies: Joint and Meta-Analysis

We next consider K case-control studies in which study k
has sample size Nk. In joint analysis, we perform association
testing on the individual-level genotype and phenotype data
from all N =

∑
k Nk individuals across the K studies. Thus,

for each asymptotic test (equations (2)–(5)), we use the joint
log-likelihood constructed based on all N individuals. To ac-
count for differences between studies in the logistic regression
model (equation (1)), it is possible to include population or
study-specific covariates such as study indicators or prin-
cipal components and modify the asymptotic test statistics
(equations (2)–(5)) accordingly.

In meta-analysis, we perform a separate association test
within each study and combine the study-level association
results (e.g., using P-values and directions of effect, trans-
formed into z-scores). For each asymptotic test (equations
(2)–(5)) for study k, we use the study-specific log-likelihood
constructed based on the relevant Nk individuals. We
use sample-size weighted meta-analysis, since this requires
only study-level P-values and direction of effect and so is
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applicable to all of the statistical tests we evaluated. We as-
sume fixed underlying effects rather than random effects for
each study since we wish to maximize power for hypothesis
testing, rather than focus on effect estimation.

For study k, we determine the corresponding quantile qk

from a χ2
1 distribution with upper tail probability equal to the

association P-value, and calculate the equivalent z-score Z k =

±√
qk, with sign based on direction of effect. The sample-size

weighted meta-analysis z-score is

Z SS =

K∑
k=1

√
NkZ k

/√∑K

k=1
Nk

where Nk = 4N1,kN0,k/(N1,k + N0,k) is the effective sample
size of study k with N1,k cases and N0,k controls [Han and
Eskin, 2011; Mantel and Haenszel, 1959].

Analytical Calculation of Type I Error Rate for Joint
Analysis

For joint analysis, we calculate type I error rates for sig-
nificance levels α = 5 × 10–5 and 5 × 10–8 by enumerating
all possible MAC configurations, and summing the proba-
bilities of configurations that reject H0, similar to a method
described by Upton [1982]. For simplicity, we assume a dom-
inant disease model, which is a good approximation to a
multiplicative model (on the OR scale) for low-count vari-
ants, since individuals homozygous for the minor allele are
rare. For simulation-based estimation of type I error rates
and power in the next section, we assume a multiplicative
disease model (on the OR scale). In a single study with N1

cases and N0 controls, let T1 and T0 denote the number of
cases and controls who carry at least one copy of the minor
allele. Under the null hypothesis, given population MAF p
and assuming Hardy-Weinberg equilibrium, T1 and T0 have
binomial distributions:

T1 ∼ Binomial(N1, 1 – [1 – p ]2)

T0 ∼ Binomial(N0, 1 – [1 – p ]2)

There are (N1 + 1) × (N0 + 1) possible MAC configura-
tions, and the joint probability of each configuration is the
product of the corresponding marginal probabilities.

We calculate the Wald, score, likelihood ratio, and Firth
bias-corrected P-values for every MAC configuration. The
exact type I error rate for a given test is

N1∑
i=0

N0∑
j =0

Pr[T1 = i, T0 = j ] · I [P – valueij ≤ α]

where Pr[T1 = i, T0 = j ] is the probability for the (i,j)th con-
figuration and I [P – valueij ≤ α] is an indicator whether the
configuration yields significant evidence for association at
level α. Analytical calculation allows us to determine type
I error rates efficiently at stringent significance thresholds
(α = 5 × 10–8) for a wide range of sample sizes and degrees of
case-control imbalance.

Simulation-Based Estimation of Type I Error and Power for
Joint and Meta-Analysis

For meta-analysis, analytic calculation of type I error is
computationally infeasible since the number of possible con-
figurations across multiple studies becomes extremely large.
Instead, we simulate datasets using R [R Development Core
Team, 2012] based on the logistic regression model (equation
(1)) assuming disease prevalence 10%. Each dataset is simu-
lated based on a causal variant with specified population-level
MAF (and corresponding expected MAC) and genotype OR.
In contrast to the dominant model assumed in the analytical
calculations, we assume the more commonly used multiplica-
tive genetic model (on the OR scale) in the simulated datasets.
We verify that even for a variant with MAF = 0.05, type I er-
ror and power estimates for dominant (analytical) and multi-
plicative (simulated) models are nearly identical, and result in
the same relative rankings among the tests (data not shown).
For simplicity, we did not include additional covariates.
We simulate full datasets with 10,000/10,000, 8,000/12,000,
5,000/15,000, and 1,000/19,000 cases and controls, respec-
tively. We subdivide each full dataset into K = 10 equal-sized
substudies with identical case-control ratios, analyze each
substudy separately, and meta-analyze the substudy associa-
tion results. We perform up to 10 million simulation repli-
cates under the null model (OR = 1) to estimate type I error
rates at α = 5 × 10–4 or 5 × 10–5, and 10,000 replicates under
alternative models (OR > 1) to estimate power at α = 5 × 10–8.

Genetics of Type 2 Diabetes (GoT2D) Study

To illustrate these methods, we analyze an early data-
freeze subset of the whole-genome sequencing data from
the GoT2D study, which aims to assess the effect of low-
frequency variation on T2D risk in Northern Europeans.
Our dataset contains 908 individuals (499 T2D cases and 409
controls) from three contributing studies: (1) 195 Swedish
and Botnian Finnish individuals (116 cases/79 controls) from
the Diabetes Genetics Initiative, (2) 575 Finnish individuals
(304/271) from the Finland-United States Investigation of
NIDDM Genetics (FUSION) study, and (3) 138 British indi-
viduals (79/59) from the UK T2D Genetics Consortium. We
perform joint analysis on the combined sample and sample-
size weighted meta-analysis on association results from each
of the three contributing studies using EPACTS [Kang, 2012]
for association testing and METAL [Willer et al., 2010] for
meta-analysis. To match simulation settings, we did not ad-
just for additional covariates in these analyses.

Results

Overview

We examine empirical type I error rates and power in joint
and meta-analysis for the four logistic regression tests across
a range of MACs, sample sizes, and degrees of case-control
imbalance. For joint analysis, we analytically calculate empir-
ical type I error rates for a nominal significance threshold of
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α = 5 × 10–8. For sample-size weighted meta-analysis, we
estimate type I error using simulation at a less stringent
threshold (α = 5 × 10–4 [Supplementary Fig. S2] or 5 ×
10–5) due to computational constraints. For both joint and
meta-analysis, we estimate power using simulation at α = 5 ×
10–8 over a range of effect sizes (suited to the variant MAC).
We seek to identify the “best” test with highest power while
maintaining a well controlled type I error rate. We confirm
the consistency of type I error rates for a variant with fixed
MAC.

Type I Error Rates of Joint and Meta-Analysis Tests

We first examine joint analysis type I error rates (α =

5 × 10–8) for a single balanced study with 10,000 cases and
10,000 controls (Fig. 1A). For high-count variants (expected
MAC > 400; MAF > 0.01 for N = 20,000), we focus on type
I error estimates for a variant with expected MAC = 2,000
(MAF = 0.05); we observe that all tests are well calibrated.
For low-count variants (E[MAC] < 400; MAF < 0.01), joint
analysis using the Firth test (red solid line) consistently has
type I error rates nearest to while not exceeding the nominal
threshold. The score and Wald tests are very conservative,
while the likelihood ratio test is slightly anti-conservative for
some MACs.

Next, we consider type I error rates (α = 5 × 10–5) for meta-
analysis of 10 balanced substudies each with 1,000 cases and
1,000 controls (Fig. 1G). For high-count variants, all tests
are again well calibrated. For low-count variants, score test
based meta-analysis (blue dashed line) has type I error rates
nearest to but not exceeding the nominal threshold. Meta-
analysis using Firth and particularly Wald test results are more
conservative, while using likelihood ratio test results is again
anti-conservative for some MACs. Comparing the joint and
meta-analysis tests with type I error rates nearest to but not
exceeding the nominal threshold, the Firth test based joint
analysis (red solid line; Fig. 1D) is less conservative than the
score test based meta-analysis (blue dashed line; Fig. 1G).
For example, at E[MAC] = 40 (MAF = 0.001), the empirical
type I error rate (at α = 5 × 10–5) for Firth test based joint
analysis (4.2 × 10–5) is less conservative than score test based
meta-analysis (2.3 × 10–5).

We extend our investigation of joint analysis of unbalanced
studies with 5,000/15,000 (1:3) and 1,000/19,000 (1:19) cases
and controls, respectively (Fig. 1B and 1C). For high-count
variants, the Firth (red) and likelihood ratio (black) tests are
well calibrated, but the score and Wald tests can be anti-
conservative given substantial case-control imbalance. For
low-count variants, Firth test based joint analysis has type
I error rates consistently nearest to but not exceeding the
nominal threshold. The Wald and particularly the score test
become extremely anti-conservative for increasingly unbal-
anced studies, while the likelihood ratio test can be slightly
anti-conservative for some MACs. We observe these trends
for joint analysis type I error rates at α = 5 × 10–8 across a
wide range of case-control ratios for high count (Fig. 2A) and
low-count (Fig. 2B) variants.

Finally, we examine type I error rates for meta-analysis
of 10 unbalanced substudies each with 500/1,500 (1:3) or
100/1,900 (1:19) cases and controls. For high-count vari-
ants, in a 1:3 study, all meta-analysis tests are well calibrated
(Fig. 1H); in a 1:19 study, meta-analysis of Firth, score, and
likelihood ratio test results can be slightly anti-conservative
(Fig. 1I). For low-count variants, all four tests can be highly
anti-conservative for specific combinations of allele counts
and case-control ratios. For example, at E[MAC] = 40 (MAF =

0.001) in a 1:3 study, meta-analyses of every test except Wald
are anti-conservative; in a 1:19 study, all except the likelihood
ratio test are anti-conservative. For meta-analysis of studies
with case-control ratios more extreme than approximately
2:3 (or 3:2), all tests can be anti-conservative (Fig. 2F).

Power of Joint and Meta-Analysis Tests

We first examine the power (α = 5 × 10–8) for joint and
meta-analysis tests in balanced studies. For high-count vari-
ants (E[MAC] = 2,000; MAF = 0.05), all tests have near iden-
tical power for both joint and meta-analysis, as expected [Lin
and Zeng, 2010] (Fig. 3A). For low-count variants (E[MAC] =

40; MAF = 0.001), we focus on tests with type I error rates not
exceeding the nominal threshold (Fig. 3D). Comparing joint
and meta-analysis, Firth test based joint analysis (red solid
line) is more powerful than score test based meta-analysis
(blue dashed line). Meta-analysis of Wald test results has
lowest power among all the tests. These results are consistent
with the observation that statistical power often corresponds
to relative conservativeness: more conservative tests usually
have lower power.

Next we evaluate power for joint and meta-analysis tests in
unbalanced studies. For high-count variants, again all tests
have near identical (1:3 study; Fig. 3B) or similar (1:19 study;
Fig. 3C) power for both joint and meta-analysis. For low-
count variants, most power comparisons are not meaning-
ful since all joint and meta-analysis tests except Firth test
based joint analysis can be anti-conservative for specific com-
binations of allele counts and case-control ratios (Fig. 3E
and 3F). Nonetheless, we again observe some correspon-
dence between increased test conservativeness and reduced
test power in unbalanced studies.

Consistent Test Calibration With Fixed Total MAC

All of the results shown so far (Figs. 1–3) refer to analyses
with a total sample size of N = 20,000 individuals. Here, we
examine joint analysis (Fig. 4, Supplementary Fig. S1; α = 5 ×
10–8) and meta-analysis (Supplementary Fig. S2; α = 5 × 10–4)
type I error rates while varying N inversely to MAF, so that
the expected MAC remains constant. For each case-control
ratio, we observe a remarkable consistency of type I error
rates across a broad range of sample sizes (N = 2,000–50,000)
and MAF for all four tests in both joint and meta-analysis.
The conservative or anti-conservative behavior of each test
at a particular MAC, case-control ratio, and choice of joint
or meta-analysis is almost invariant to N (given N > 2,000).
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Figure 1. Type I error rates by minor allele count (MAC) for logistic regression tests in joint and meta-analysis. (A–C) Analytically calculated
type I error rates (α = 5 × 10−8) for joint analysis; (D–F) empirical type I error rates (α = 5 × 10−5) for joint analysis; and (G–I) empirical type I
error rates (α = 5 × 10−5) for sample-size weighted meta-analysis. Type I error rates for joint analysis are estimated for studies with 10,000/10,000,
5,000/15,000, and 1,000/19,000 total cases and controls; meta-analysis is based on partitioning the full dataset into 10 equal-sized substudies. The
horizontal dotted line denotes the corresponding nominal significance threshold. Points in panels D–I are based on 107 simulation replicates so
that the nominal significance threshold of 5 × 10−5 corresponds to 500 rejections; empirical type I error rates between 4.6 × 10−5 and 5.4 × 10−5

have 95% confidence intervals which include the nominal value.
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Figure 2. Type I error rates by case-control ratio for logistic regression tests in joint and meta-analysis. (A, B) Analytically calculated type I error
rates (α = 5 ×10−8) for joint analysis; (C, D) empirical type I error rates (α = 5 × 10−5) for joint analysis; and (E, F) empirical type I error rates (α = 5 ×
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corresponding nominal significance threshold.
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Figure 3. Simulation-based power curves for joint and meta-analysis. Simulated power (α = 5 × 10−8) in joint analysis and sample-size weighted
meta-analysis for (A–C) a high-count variant (expected MAC = 2,000; MAF = 0.05); and (D–F) a low-count variant (E[MAC] = 40; MAF = 0.001). Power
for joint analysis is estimated for studies with 10,000/10,000, 5,000/15,000, and 1,000/19,000 total cases and controls; meta-analysis is based on
partitioning the full dataset into 10 equal-sized substudies.

This demonstrates that MAC, rather than MAF, is the better
index to describe the calibration of each test.

For the study designs we have considered, we find that
MAC = 400 is a useful threshold separating high-count and
low-count variants, based on our type I error results in bal-
anced (1:1) and moderately unbalanced (1:3) studies. For
variants with MAC < 400, we observe that all joint and meta-
analysis tests can have different degrees of conservative or
anti-conservative behavior (Fig. 1). In contrast, for variants
with MAC > 400, all tests are generally well calibrated (for
not too imbalanced studies). Hence, our threshold of MAC =

400 provides an approximate, sample-size invariant threshold
distinguishing high- and low-count variants, and a rule-of-
thumb guideline for test selection. However, a higher MAC
threshold may be needed for studies with more extreme case-
control imbalance.

Detailed Comparison of the Four Logistic Regression Tests

Our results show that the logistic regression tests, while
asymptotically equivalent, are not equivalent when testing

low-count variants at stringent significance thresholds, even
with large sample sizes. To understand the observed patterns
of type I error rate and power for a low-count variant (ex-
pected MAC = 40), we compare joint analysis test P-values
for all possible case-control configurations for a variant with
observed MAC = 40 in a study of N = 20,000 individuals
(Fig. 5, upper panels). In Figure 5 (lower panels), horizontal
bars denote the rejection region for each test at a nominal sig-
nificance threshold of 5 × 10–8, and the histogram displays
hypergeometric probabilities for each MAC configuration.
Tests with rejection regions containing configurations with
greater total probability have higher type I error rates and
power (averaged across all sampled MACs).

For a balanced study, at the low and high extremes of case
MAC, the likelihood ratio test has the most significant P-
values at each MAC, followed by the Firth, score, and Wald
test P-values (Fig. 5A, upper panel). The rejection regions
contain the most probability for the likelihood ratio and Firth
tests, less for the score test, and none for the Wald test (Fig. 5A,
lower panel). When other MACs consistent with an expected
MAC of 40 are considered, the likelihood ratio test has the
largest probability in the rejection region (data not shown).
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Figure 4. Joint analysis type I error rates by sample size for fixed expected minor allele count (MAC). Analytically calculated joint analysis type
I error rates for single balanced (case-control ratio 1:1), unbalanced (1:3), and very unbalanced studies (1:19) of various sample sizes. For each
study, variant allele frequencies are selected so that variants have (A–C) expected MAC = 2,000; (D–F) expected MAC = 400; or (G–I) expected MAC
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Tests with the highest to lowest type I error rates (likelihood
ratio, Firth, score, Wald; Fig. 1A) mirror the observed trend
for the rejection regions.

For an unbalanced (1:19) study, in configurations with 10–
25 heterozygotes in cases, we observe the score, Wald, Firth,
and likelihood ratio tests in order of decreasing significance
(Fig. 5C, upper panel). Again, this corresponds to the to-
tal configuration probability encompassed by the rejection
regions (Fig. 5C, lower panel), and the least to most conser-
vative tests (Fig. 1C), averaged across the sampled MACs.

In both balanced and unbalanced studies, the Wald test has
substantially less significant P-values for configurations with
zero or few alleles in either cases or controls (i.e., [nearly]
separated data), and thus has little or no power to detect the
strongest associations. This unfortunate property of the Wald
test is exacerbated in meta-analysis since each contributing
study has a much smaller total MAC. As such, meta-analysis
of Wald test results has extremely low power (green dashed
line; Fig. 3D–F) and should not be used.

Comparison of Tests in Joint and Meta-Analysis of
GoT2D Data

We analyzed preliminary low-pass sequencing data from
an early data freeze of the GoT2D study to examine the dif-

ferences between statistical tests in joint and meta-analysis.
The dataset comprised three Northern European studies and
is nearly balanced (N = 908; 499/409 cases/controls), with
an overall case-control ratio of 1.22. We focus on the tests
with the best combination of type I error and power in bal-
anced studies: Firth test based joint analysis and score test
based meta-analysis. We analyzed 8.58 million variants with
MAC ≥ 3 in the total sample.

For high-count variants (400 < MAC ≤ 908), score test
based meta-analysis and Firth test based joint analysis pro-
duce similar P-values (Fig. 6A). For low-count variants
(MAC < 400), Firth test based joint analysis P-values are
typically more significant than score test based meta-analysis
P-values, especially for the rarest variants (Fig. 6B–D). These
patterns are consistent with our analytic and simulation-
based results. Additional comparisons between joint and
meta-analysis test P-values can be found in Supporting
Information (Supplementary Figs. S3 and S4).

Discussion

Recommendations

For analysis of high-count variants (MAC > 400), in bal-
anced and moderately unbalanced (1:3) studies, joint and
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Figure 6. Comparison of score test based meta-analysis and Firth
test based joint analysis P-values in the GoT2D study. Results for
8.58 million variants are shown, with 2.4, 2.4, 2.6, and 1.2 million variants in
the highest to lowest minor allele count (MAC) categories, respectively.

meta-analysis using any of the asymptotic tests have near-
nominal type I error rates and comparable power, so either
joint or meta-analysis using any of the asymptotic tests can
be recommended. For low-count variants (MAC < 400), type
I error rates and power can vary widely for different tests,
MACs, and case-control ratios.

For low-count variants, in balanced studies, joint analy-
sis using the Firth test is best, and meta-analysis using the
score test results is best, with (Firth test based) joint analysis
being more powerful than (score test based) meta-analysis.
In unbalanced studies, again joint analysis using the Firth
test is best, but for meta-analysis, all tests can be (very) anti-
conservative for many combinations of allele count and case-
control ratio. If individual-level data are available for analy-
sis, we recommend joint analysis using Firth bias-corrected
logistic regression in both balanced and unbalanced stud-
ies. If not, we recommend meta-analysis of score test results
for analysis of balanced and not-too-unbalanced studies. For
meta-analysis of unbalanced studies with case-control ratio
< 2:3 or > 3:2, none of the statistical tests considered can be
recommended due to the inflated type I error rates. In par-
ticular, the score test is not recommended for studies with
case-control ratios < 1:3 or > 3:1.

Use of MAC Rather Than MAF in Describing Test
Calibration

We present our recommendations using a rough MAC
threshold, rather than an MAF threshold, since test cal-
ibration remains consistent as long as MAC is constant

(given N > 2,000, a consistent analytic strategy, and uniform
scaling of N across studies in meta-analysis). We show that
MAC = 400 is a threshold below which tests may begin to
deviate substantially from the nominal significance threshold
in balanced to moderately unbalanced studies. Investigators
studying variants with MAC < 400 should take care in
selecting an association test for analysis.

This MAC threshold is reminiscent of Yates’ classic guide-
line for expected values in 2 × 2 contingency tables, which
states that the χ2 approximation is sufficiently accurate if
each expected cell count ≥5 [Yates, 1934]. In the context
of GWAS, we require a much larger minimum total MAC
threshold since we are testing at considerably more stringent
significance thresholds than envisioned by Yates.

Practical Recommendations for Meta-Analysis

For meta-analysis, we recommend analyzing all variants
with MAC ≥ 1 within each substudy, since even variants with
a single observed minor allele may contribute to the overall
meta-analysis. Imposing a more stringent study-level MAC
filter leads to more conservative and less-powerful meta-
analysis results (Supplementary Fig. S5). When assessing
the performance of a given meta-analysis using Quantile-
Quantile (Q-Q) plots, it may be useful to apply a minimum
total combined MAC threshold (say MAC ≥ 15 or 20), since
the rarest variants are unlikely to attain genome-wide signif-
icance (α < 5 × 10–8). For a given fixed total N, we observe
that meta-analysis of many small substudies is more conser-
vative and less powerful than meta-analysis of a few larger
substudies (Supplementary Fig. S6). Smaller substudies are
more likely to be monomorphic for low-count variants, and
so are effectively removed from the meta-analysis. Practically,
the time and effort needed to analyze and prepare a very small
study for meta-analysis may outweigh the potential contri-
bution of that study.

Study Limitations and Caveats

In this paper, we did not present meta-analysis of sets of
studies with varying sample sizes and case-control ratios,
although limited simulations in such settings suggested con-
clusions consistent with those presented (data not shown).
Nor did we assess the effects of population stratification.
Although joint analysis can be more powerful than meta-
analysis for low-frequency variants, for a dataset comprised
of divergent samples, it may be difficult to control for specific
within-sample confounding using the same covariates across
all studies.

For simplicity, we did not include study covariates in the
simulations described. Limited simulations including covari-
ates independent of disease status or study indicators for joint
analysis gave results consistent with those reported for both
high-count and low-count variants (data not shown). We did
explore the effect of covariate adjustment in the GoT2D data
analysis, including age, sex, and three principal components
for ancestry. The comparison between Firth test based joint
analysis and score test based meta-analysis is similar to those
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shown in Figure 6, but covariate adjustment results in mod-
estly increased differences between the P-values. However,
for a very small number of low-count variants, we observe
large differences in P-values after adjustment for continuous
covariates (i.e., age and principal components), especially for
the score test.

While some simulation parameters may not reflect ob-
served parameters in real datasets, our goal is to explore a
wide range of parameters to illustrate the conclusions. For
example, our very unbalanced (1:19) scenario is more imbal-
anced than expected under random sampling for a disease
with prevalence 10%. However, we wanted to explore the
effect of extreme case-control imbalance, similar to those
observed for population-based case-control studies of type
2 diabetes such as deCODE (1:16) [Steinthorsdottir et al.,
2007]. Additional simulations demonstrate that type I error
rates are consistent across disease prevalence rates of 1%,
10%, and 50% (data not shown).

For low-count variants, we present results based on large
ORs to illustrate the differences in power between the differ-
ent joint and meta-analysis tests, and to emphasize the low
power of Wald test based meta-analysis even for very large
ORs. However, finding variants with such large ORs is un-
likely in complex diseases. Finally, we assess meta-analysis
type I error rates at less-stringent significance thresholds
(α = 5 × 10–4 and 5 × 10–5) owing to computational lim-
itations; we expect results to be similar, though slightly more
variable, at α = 5 × 10–8.

Alternative Analysis Strategies

We explored several alternative analysis strategies for low-
count variants, with a particular focus on meta-analysis of un-
balanced studies since standard methods are generally anti-
conservative. First, we derived bias-corrected versions of the
score and Wald tests; simulations show that these tests are
also anti-conservative in meta-analysis of unbalanced stud-
ies (data not shown). Second, we considered exact logistic
regression [Mehta and Patel, 1995], which evaluates signif-
icance based on the permutation distribution of sufficient
statistics, but it is not useful in our context since it cannot
adjust for continuous covariates and is computationally pro-
hibitive for large sample sizes. Third, we evaluated Fisher’s
exact test (FET), which uses the hypergeometric distribution
to test the significance of contingency tables (Supplementary
Figs. S7–S9), but since FET cannot adjust for covariates, it
is not practical in actual data analysis. Fourth, we investi-
gated using linear regression, treating the binary phenotype
as a continuous outcome; linear regression produces nearly
identical P-values as logistic regression score test, and thus
is equally anti-conservative in unbalanced studies (data not
shown).

Fifth, we examined meta-analysis with inverse-variance
weights (supplemental methods in the Appendix); simula-
tions show that inverse-variance weighted meta-analysis of
Firth or Wald test results in unbalanced studies is also anti-
conservative (Supplementary Figs. S7–S9). Sixth, we explored

fixed effects meta-analysis with sample-size weights account-
ing for allele frequency (

√
N̄kp k(1 – p k)). These weights do

not substantially affect simulated type I error rates or power
since the expected MAF for each substudy is identical in
our simulations. If the underlying MAFs are different be-
tween studies, weights including allele frequency may result
in higher power [Han and Eskin, 2011]. Seventh, we consid-
ered random effects meta-analysis [Dersimonian and Laird,
1986]. As expected, it is more conservative and less powerful
than fixed effects meta-analysis (data not shown).

Eighth, we evaluated the strategy of randomly removing
cases or controls from a highly unbalanced study to reduce
the case-control imbalance. We find that this strategy can
substantially decrease power. For example, in a study with
2,000 cases and 18,000 controls, randomly removing 12,000
controls reduces score test based joint analysis power for a
variant with E[MAC] = 40 and OR = 5 from 49% in the full
samples to 13% in the reduced sample.

Finally, we developed a “screen and permute” strategy in
which we analyze all variants using a liberal test (e.g., the
likelihood ratio test), and perform case-control permuta-
tions of the strongest associated variants to compute empir-
ical P-values. However, sample-size weighted meta-analysis
of permuted P-values in unbalanced studies remains anti-
conservative, even though study-level permuted P-values are
conservative. In theory, permutation testing should always
be well calibrated, but this proposed strategy applies permu-
tation only within individual studies. For each variant, the
ideal permutation-based meta-analysis method is to compute
millions of permutation P-values for each of the K studies,
calculate the null distribution of meta-analysis P-values, and
compare the observed meta-analysis P-value against this null
distribution. While this strategy should work, it is practically
infeasible since we would need to share millions of permuted
P-values for each screened variant in every study.

Summary

In this study, we extend Lin and Zeng’s [2010] evalua-
tion of type I error and power in joint and meta-analysis
for logistic regression tests to low-count variants in balanced
and unbalanced studies. When testing at a combination of
three extremes: low MAC, stringent significance thresholds,
and large case-control imbalance, asymptotic assumptions
for standard tests and aggregation methods are not valid,
leading to differences in type I error rate and power among
the tests even for large sample sizes. For low-count variants,
we identify the Firth test as best for joint analysis in both
balanced and unbalanced studies, and the score test as best
for meta-analysis in balanced studies only. We show that
Firth test based joint analysis is more powerful than score
test based meta-analysis. We establish MAC as a sample-size
invariant and consistent measure of test calibration and vari-
ant information. For balanced and moderately unbalanced
studies, MAC = 400 is a practical threshold below which
test calibration begins to diverge from the nominal signifi-
cance threshold; a higher MAC threshold may be needed for
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very unbalanced studies. Further investigation is needed to
identify a well calibrated and powerful test for meta-analysis
of unbalanced studies, since all tests evaluated can be anti-
conservative.
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APPENDIX

Inverse-Variance Weighted Meta-Analysis

Using study-level estimates of effect size and its variance,
inverse-variance weighted meta-analysis estimates a pooled
effect size, its standard error, and the corresponding z-score:

β̄IV =
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This method is only applicable for statistical tests that esti-
mate the effect size and its standard error, and so cannot be
used for the score test or FET.
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