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ABSTRACT As a pivotal tool to alleviate the information overload problem, recommender systems aim
to predict user’s preferred items from millions of candidates by analyzing observed user-item relations.
As for alleviating the sparsity and cold start problems encountered by recommender systems, researchers
generally resort to employing side information or knowledge in recommendation as a strategy for uncovering
hidden (indirect) user-item relations, aiming to enrich observed information (or data) for recommendation.
However, in the face of the high complexity and large scale of side information and knowledge, this strategy
largely relies for efficient implementation on the scalability of recommendation models. Not until after
the prevalence of machine learning did graph embedding techniques be a recent concentration, which can
efficiently utilize complex and large-scale data. In light of that, equipping recommender systems with
graph embedding techniques has been widely studied these years, appearing to outperform conventional
recommendation implemented directly based on graph topological analysis (or resolution). As the focus,
this article systematically retrospects graph embedding-based recommendation from embedding techniques
for bipartite graphs, general graphs and knowledge graphs, and proposes a general design pipeline of that.
In addition, after comparing several representative graph embedding-based recommendation models with
the most common-used conventional recommendation models on simulations, this article manifests that the
conventional models can still overall outperform the graph embedding-based ones in predicting implicit
user-item interactions, revealing the comparative weakness of graph embedding-based recommendation in
these tasks. To foster future research, this article proposes constructive suggestions on making a trade-off
between graph embedding-based recommendation and conventional recommendation in different tasks, and
puts forward some open questions.

INDEX TERMS Information retrieval, recommender systems, graph embedding, machine learning,
knowledge graphs, graph neural networks

I. INTRODUCTION

Does big data [1], [2] benefit people’s lives? On its face,
the question seems absurd. It is true that, for example, the
traffic flow big data helps to quantify the potential infectious
crowds during the pandemic [3], the scientific research big
data could facilitate academic-industry collaboration [4], or
the multimedia social big data usually entertains consumers
[5]. But meanwhile, the high-volume, high-velocity and high-
variety, also called the three “V” features [6], of big data
bring problems. Information overload [7], [8] is a case in
point, referring to the excess of big data available to a person
when making a decision, say, which articles are relevant
to a researcher’s focus, which products meet a consumer’s
demand, or which movies pique an audience’s interest. Con-
sequently, it would discount one’s information retrieval [9]

efficiency. Counterbalancing these pros and cons of big data
to maximize its benefits requires the development of big data
mining techniques [10], among which recommender systems
[11]–[13] have turned out to be a pivotal tool to alleviate
the information overload problem, aiming to predict a user’s
(e.g., researcher, consumer or audience) preferred items (e.g.,
articles, products or movies) from millions of candidates.
Apart from this, recommender systems have seen commercial
practices ranging from startup-investors matching [14] to
energy efficiency in buildings [15].

Developing recommender systems requires surmounting
the sparsity problem [16], [17] and cold start problem [18]–
[21] encountered by recommendation models, the core com-
ponent of recommender systems. The rationale for recom-
mendation models lies in the accurate inference for user’s

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174197, IEEE Access

Yue Deng: Recommender systems based on graph embedding techniques: A review

preferences for items, the prerequisite for well recommenda-
tion performance, by analyzing observed user-item relations,
among which user-item interactions (Sec. II-A1 gives details)
are primary resources. However, user-item interactions are
usually sparse as a result of only a few of the total number
of items that were interacted by a user, called the sparsity
problem. When coming to a new user, that no interaction
between the user and items yet has been observed leads
to the cold start problem, and the same is true of a new
item analogically. Given these problems, inadequate user-
item interactions as input for recommendation models will
lower the accuracy of inference for user’s preferences and
eventually weaken recommendation performance. As for
tackling the sparsity and cold start problems, employing side
information [22], [23] or knowledge [24]–[26] (Sec. II-A1
gives details) as a supplement to user-item interactions has
been proven promising recently, aiming to uncover hidden
(indirect) user-item relations to enrich observed information
for recommendation models.

Concerning the ability to efficiently employ side informa-
tion or knowledge to promote recommendation performance,
the discussion about whether graph embedding-based rec-
ommendation (Sec. II-B1 gives details) usually outperforms
conventional recommendation implemented based on graph
topological analysis (Sec. II-A4 gives details) is an ongo-
ing controversy. With regard to the scalability [16], [27],
graph embedding-based recommendation outperforms con-
ventional recommendation, which can efficiently implement
recommendation per second for millions of users and items
when data is highly complex and large-scale as a result of
the three “V” features of side information and knowledge
inherited from big data. This result is brought from the
two’s distinctive rationales: after organizing data (or infor-
mation) into graph representations (Sec. II-A2 gives details),
conventional recommendation runs by analyzing a graph’s
topological characteristics such as users’ co-interactions with
common items [28] or global topological diffusion [29], [30].
In contrast, graph embedding-based recommendation runs by
using nodal embedding vectors, which preserve graph topo-
logical features once learned from the graph representations
by embedding techniques [31] (Secs. IV-A and V-A give ret-
rospects). In view of that, when employing side information
or knowledge, graph embedding-based recommendation can
directly reuse the learned nodal embedding vectors rather
than repeating the analysis of graph topological character-
istics as conventional recommendation does. Therefore, the
scalability of it can be substantially improved. Besides, the
storability of embedding vectors can support downstream
machine learning tasks [32], which require feature vectors
of data instances as inputs, like classification [33]–[39], link
prediction [40]–[43] or clustering [44]. Such a property of
embedding vectors enables graph embedding-based recom-
mendation to outperform conventional recommendation in
terms of model extensibility.

Nevertheless, as for model explainability (or interpretabil-
ity) [45]: why did models return such recommendations to a

user, graph embedding-based recommendation substantially
underperforms conventional recommendation as a result of
its general adoption of machine learning methodology [46],
almost a black box, whose idea lies on the input-output data
fitting for underlying pattern discovery by numerical or an-
alytic optimization methods [47], whereas conventional rec-
ommendation can directly realize the explainability through
resolving the graph topological characteristics pertaining to
a user-item node pair. Although some recent studies argued
that by employing knowledge in recommendation [45], [48]–
[50] (Sec. V-B gives details) or by causal learning (causal
inference) [51]–[57] to reason and understand user’s prefer-
ences the explainability of recommendation results can also
be indirectly realized, the explainability of recommendation
models still faces fundamental limits. In addition, contro-
versies over graph embedding-based recommendation and
conventional recommendation are also embodied in recom-
mendation accuracy. To be sure, by employing side informa-
tion and knowledge, graph embedding-based recommenda-
tion can achieve distinctive improvement in recommendation
accuracy beyond conventional recommendation [58]–[61].
However, this has been cast into doubt by its compara-
tive weakness in some recommendation tasks for predicting
implicit user-item interactions compared with conventional
recommendation, proved in Sec. VI on simulations. Similar
results were unraveled by Dacrema et al. [62] too.

Faced with these ongoing controversies, the current lack
of unified evaluation criterion on graph embedding-based
recommendation and conventional recommendation will lead
to longstanding discussions in the future, involving ex-
tended perspectives from accuracy, scalability, extensibility
and explainability, and participated by interdisciplinary re-
searchers ranging from mathematicians to data scientists.
In fact, developing both graph embedding-based recommen-
dation and conventional recommendation is not contradic-
tory. The methods of analyzing graph topological charac-
teristics behind conventional recommendation can inspire
graph embedding-based recommendation in the utilization
of such as subgraphs [63], motifs [64]–[66], and neighbor-
hood [67]–[69] to promote its explainability [39]. On the
other hand, graph embedding-based recommendation has pi-
oneered novel recommendation scenarios, like conversational
recommender system (CRS) [70] or news recommendation
[71], providing more promising application prospects for
conventional recommendation. It seems that developing both
of them to complement each other could improve recom-
mender systems larger than only focusing on one side.

Unlike all-around review articles about conventional rec-
ommendation [11]–[13], newly published reviews on graph
embedding-based recommendation [22], [25], [26], [72]–
[77] generally lack a systematic structure and an in-depth
description, which seems to be insufficient for researchers fo-
cused on conventional recommendation before or interdisci-
plinary researchers to apprehend this novel prevalent field. To
bridge this gap, this article builds an all-around perspective
on recommender systems involving both graph embedding-
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based and conventional methods, and proposes a general
design pipeline of graph embedding-based recommendation.
As the focus, this article systematically retrospects graph
embedding-based recommendation from embedding tech-
niques for bipartite graphs, general graphs and knowledge
graphs. In addition, this article further compares the strengths
and weaknesses of representative graph embedding-based
recommendation models with those of the most common-
used conventional recommendation models, on simulations,
in different recommendation tasks, revealing that the con-
ventional recommendation models can outperform the graph
embedding-based recommendation models in predicting im-
plicit user-item interactions. By analyzing these experimen-
tal results, this article provides constructive suggestions on
making a trade-off between graph embedding-based recom-
mendation and conventional recommendation, and proposes
some open questions for future research.

The rest of this article is organized as follows. Sec. II
covers basic definitions of subjects and problems, build-
ing an all-around perspective on recommender systems and
proposing a general design pipeline of graph embedding-
based recommendation. Secs. III, IV, and V retrospect em-
bedding techniques for bipartite graphs, general graphs and
knowledge graphs, respectively, and then retrospect the graph
embedding-based recommendation models based on them,
correspondingly. Tabs. 3 provides an overview of the re-
viewed models. Sec. VI presents the experimental results
on evaluating representative graph embedding-based recom-
mendation models and the most common-used conventional
recommendation models in different recommendation sce-
narios with distinctive data scales. After analyzing these
experimental results, Sec. VI provides several constructive
trade-off suggestions as well as open questions for future
research. Finally, Sec. VII puts forward some prospects on
graph embedding-based recommendation, ranging from cur-
rent challenges to potential solutions.

II. PRELIMINARIES
After introducing several major controversies between graph
embedding-based recommendation and conventional recom-
mendation in Sec. I, in this section Sec. II-A devotes to an all-
around perspective of recommender systems and illuminates
the rationale behind conventional recommendation. Then,
Sec. II-B illustrates what is graph embedding as well as
what is the rationale for it to be applied in recommendation,
preparing for Secs. III, IV and V. Following that, Sec. II-C
proposes a general design pipeline of graph embedding-
based recommendation. Finally, the notations used in this
article are presented in Tab. 4 at the end of this section.

A. RECOMMENDER SYSTEMS
In general, the target of recommendation is to infer user’s
preferences for items by analyzing user-item relations with
observed information (or data) related to users and items,
aiming to predict unobserved (or never happened) user-item
interactions. This section divides the observed information

into three categories: user-item interactions, side information
and knowledge, according to their respective distinguish-
able complexity. Before being employed in recommenda-
tion, the three kinds of information should be represented
by graph representations, including bipartite graphs, general
graphs and knowledge graphs, correspondingly, which are
the bedrock of measuring the k-order proximity between
users and items in order to predict unobserved user-item
interactions. To clarify the above process, Sec. II-A4 takes
two common-used conventional recommendation models as
instances for illustration.

1) Information (or data) for recommendation
In engineering, observed information in recommender sys-
tems can be recorded by tuples. For example, consider an
event that a 24-year-old male student named Tom watched
Iron Man on Netflix on January 28, 2021, and rated this
movie with five points, also called observed information.
In engineering, it can be recorded by a tuple like {Tom,
male, 24, student, watched, Iron Man, 5, 2021-1-28, Netflix},
in which user-item interactions (i.e., {Tom, watched, Iron
Man, 5, 2021-1-28}), side information (i.e., {Tom, male, 24,
student}) and knowledge (i.e., {Iron Man, Netflix}) can be
further split out. Tab. 1 briefly compares the three kinds of
information.

As the primary resources for recommendation, user-item
interactions can be divided into two categories: explicit
ones and implicit ones, according to whether the interac-
tions explicitly carry user’s affection degree on items or not.
Specifically, explicit user-item interactions can be defined
as the ratings of items given by users, used to quantify user’s
affection degree on items based on the assumption that one
tends to rate higher on items those he prefers than those he
may show indifference. Under this definition, user’s rating
biases termed user biases [78]–[80] can be dug out from
explicit user-item interactions. For example, consider two
users: when calculated on a five-point scale, one is used to
rate by at least three points on items which he even showed
indifference while the other is so extremely strict that never
rated by more than three points on items which he even
loved. Consequently, the rating biases between the two users
obviously exist. In the same way, item biases [78], [81] could
be brought from the user biases. For example, when it comes
to one specific item, its average ratings given by tolerant
users or critical users could be different. In this regard, in
order to remove the distorted view of user’s preferences or
item’s popularity, taking both the user biases and item biases
into account can promote a high-quality recommendation
[78], [79]. However, despite their advantages in being able to
directly reflect user’s preferences for items, the limitation of
explicit user-item interactions are clear for the two reasons:
(1) In practice, since when surfing online one would prefer
to browse, click or watch than rate, accessible explicit user-
item interactions are usually sparse, which are insufficient
to be as the input of models, not to mention an accurate
recommendation. (2) As playing an enhanced role for user’s
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TABLE 1. A brief comparison between user-item interactions, side information and knowledge. Taking side information or knowledge as a supplement to
user-item interactions contributes to a higher recommendation accuracy [58]–[61], where richer user-item relations are uncovered as the ground of preference
inference, which helps to alleviate the sparsity and cold start problems.

Information Instances Functions Comparative complexity

user-item interactions e.g., user’s clicks, browses,
or ratings on items

can reflect user’s preferences
for items low

side information e.g., users’ social relationships
and locations or item’s profiles

provides diverse properties
of users and items middle

knowledge e.g. encyclopedias of items provides abundant direct or indirect
relations between items high

privacy protection [82], [83] in data security, explicit user-
item interactions even could be inaccessible in some recom-
mendation scenarios. To tackle these issues, implicit user-
item interactions have become additional resources, which
are defined as a binary state using value 1 to indicate the
existence of a user-item interaction (such as click, browse
or watch) and value 0 otherwise. Compared to the explicit
ones, implicit user-item interactions don’t require user’s extra
operations like ratings or comments on items; so they gener-
ally occur more frequently and can be more easily accessed.
However, a minor criticism of implicit user-item interactions
is that they can’t directly carry user’s preferences for items,
bringing the so-called one-class problem [84], which could
resort to converting implicit user-item interactions to explicit
ones [85], [86] as a strategy.

In general, user-item interactions are occurring constantly,
not merely at a specific time or in a constrained period.
Correspondingly, inferred from newly occurring interactions,
user’s preferences for new items could sprout and those for
old items could fade, which means that user’s preferences for
items could vary over time, usually in long-term and short-
term termed as user’s long-term preferences and short-
term preferences, respectively. Specifically, user’s long-
term preferences could vary over time in ways large and
small, like the changes of user’s personal hobbies (one
may prefer comedy movies in his childhood while finding
science fiction movies more interesting after entering col-
lege), special events like seasonal changes and holidays or
even the changes of one’s family status. At the same time,
user’s short-term preferences could be affected by one’s
latest interacted items. For example, one’s interest in comedy
movies may decline after watching lots of comedy movies
within a short period. In view of that, capturing both user’s
long-term and short-term preferences for items contributes
to a higher recommendation accuracy [87]–[89]. For that
purpose, by utilizing deep learning methods [90] to mine
the underlying patterns involved in user behavior, sequential
recommendation [91] has been the recent focus of research
into employing user’s short-term preferences for items in
recommendation. Others include the methods of matrix fac-
torization and Markov processes (Sec. III-B gives details).
Since not all the reviewed recommendation models in this ar-
ticle take the changes of user’s preferences into account, this
article defines terms temporal user-item interactions and

static user-item interactions to distinguish recommendation
models considering that changes or not, respectively.

To alleviate the cold start and sparsity problems of recom-
mendation, side information [22], [23], which is generally
characterized by the properties of users and items, is utilized
to uncover more hidden (indirect) user-item relations. Back
to the first example of this section, the side information
{Tom, male, 24, student} records Tom’s properties including
his gender, age and occupation. In light of that, it could be
uncovered that some indirect relations between Iron Man and
audiences who are close to Tom in these personal properties
might exist. In practice, side information usually refers to
user’s social information [92] and locations [93] or item’s
profiles [94], labels [95], [96] and textual content [97], to
name a few. Among them, as for user’s social information,
microblogging [98] is a primary resource, which uncovers
user’s interpersonal relationships (like following or friends)
by tweets on social platforms or user’s individual profiles.
Side information of microblogging has two virtues dear to
researchers: abundant and almost real-time [99]. In detail,
the abundant information can carry multitudes of diverse
relationships between users as well as user’s preferences
for things that were directly expressed. Such abundance is
far beyond that of user-item interactions, which definitely
contributes to inferring user’s references for items more
accurately by, for example, taking one’s friends’ preferences
as a reference. Besides, side information of microblogging
is usually considered real-time, benefits from user’s tweet-
ing habits that one is inclined to share his daily events or
feelings in microblogging or other social platforms. In this
way, it provides more opportunities to trace user’s latest
preferences, which user-item interactions couldn’t be that
real-time because user’s latest preferences can be reflected
by these interactions only when new ones occur.

As the most complex one, knowledge [24]–[26] can be
displayed or expressed in a language form logically orga-
nized by subjects, predicates and objects, related to objective
facts of the world. Among the three elements, subjects and
objects are usually termed as entities, abstract or concrete
things of fiction or reality with specific types or attributes.
The connections (i.e., predicates) between entities are usually
termed as relations. With these terms, knowledge can be
defined as a collection of entities with different types or
attributes and the relations between them. Take the first
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example of this section one step further, suppose some
knowledge about the movie Iron Man was excerpted from
Wikipedia, displaying that Iron Man is a 2008 American
superhero film based on the Marvel Comics character of
the same name. Produced by Marvel Studios and distributed
by Paramount Pictures, it is the first film in the Marvel
Cinematic Universe (MCU). Based on that, entities can be
split out, like from the fact that the movie Iron Man belonging
to the class of American superhero film the movie the movie
Iron Man can be split out as an entity with an attribute of
the first film in the MCU. Meanwhile, the relation produced
between the entities Marvel Studios and Iron Man as well
as the relation distributed between the entities Paramount
Pictures and Iron Man also can be split out. By employ-
ing this knowledge represented by entities and relations in
recommendation, hidden (or indirect) relations between Tom
and other movies could be uncovered, like that Tom might
be inclined to the productions by Paramount Pictures, which
reflect Tom’s underlying preferences for other movies. In
practice, the category information on e-commerce platforms,
which is organized in a form by tree logic, is also a common-
used resource of knowledge, providing a better understanding
of user’s preferences for items on multiple levels.

To be sure, when speaking of knowledge, one is tempted
to argue that, throughout much of recent research, common
scientific sense seemed to dictate that knowledge is sup-
posed to be a subcategory of side information, commonly
being as a supplement to user-item interactions. Despite
general acknowledgement of that, the accepted classification
belied the essential distinctions between side information and
knowledge by making specious continuity of them. In the
first place, the resources of side information and knowledge
are different. Side information is usually requested from
one’s personal information forwardly. For example, when
starting to use an APP installed on a cell phone, one might
be requested to share his personal information with the
APP, at best his name or gender, and at worst his address
book or geographical location, which are private. Besides,
as for side information of item’s profiles, user descriptions
of items about such as one’s usage experiences are also
requested from consumers forwardly. In sharp contrast, since
always existed in the real world, knowledge can be naturally
perceived and be displayed or expressed in various forms
like encyclopedias or papers. Second, the complexity of
side information and knowledge is distinctive, for most of
side information is only about the properties of users or
items while knowledge is about things more versatile, almost
everything in the real world like multi-modal information
[100]. In addition, knowledge generally grows constantly and
rapidly, making itself far more complex in semantics and
multiplicity compared to side information. Third, knowledge
is re-usable while side information seldom does the same
because the properties of users and items usually change
over time. All in all, the three distinctions between side
information and knowledge make the techniques employing
knowledge in recommendation more challenging than those

for side information as a result of the large-scale, multiplic-
ity and evolution characteristics of knowledge beyond side
information (Sec. V-A gives details).

2) Graph representations
In the last section, observed information for recommen-
dation is divided into three categories: user-item interac-
tions, side information and knowledge, according to their re-
spective distinguishable complexity. Before being employed
in recommendation, the three kinds of information should
be represented by graph representations including bipartite
graphs, general graphs and knowledge graphs, correspond-
ingly, which are model-readable forms. Tab. 2 briefly com-
pares the three kinds of graph representations. Without loss
of generality, this article uses G = (E,R, E ,R) to denote
a graph representation, where E denotes a node-set and R
denotes an edge-set. E denotes a type-set of different nodes
and R denotes a type-set of different edges.

As the most common-used graph representation for user-
item interactions, a bipartite graph is formally defined as
Gbi = (E,R, E ,R) containing two types of nodes and one
type of edges (i.e., |E| = 2 and |R| = 1), where edges
only exist between nodes with different types. In practice, a
bipartite graph can represent users and items in recommender
systems with the two types of nodes. Based on that, it can
represent implicit user-item interactions by adding edges
between the corresponding node pairs and represent explicit
user-item interactions by weighting the corresponding edges
with ratings. Meanwhile, its use soon widened to algebra.
By indexing user nodes and item nodes with rows and
columns of a matrix, respectively, a bipartite graph can be
directly converted into a matrix, where its elements indicate
the existence (i.e., 0/1) or weight (i.e., ratings) of edges
in the bipartite graph, which enables the implementation of
algebraic theory in recommendation (Secs. III-A1 and III-B1
give details). Fig. 1 gives toy examples to illuminate how to
represent explicit user-item interactions by a bipartite graph
and meanwhile to convert it into a matrix.

A homogeneous graph [101] Ghomo = (E,R, E ,R)
where |E| = 1 and |R| = 1 or a heterogeneous graph
[102], [103] Ghete = (E,R, E ,R) where |E| > 1 and/or
|R| > 1 can be used to represent side information. Without
loss of generality, this article terms the general graph to
unify both of them. Under this definition, one could consider
bipartite graphs as a subcategory of general graphs. However,
a bipartite graph would prefer to represent side information
but are constraind from doing so by that its edges can only
exist between nodes with different types. Since side informa-
tion could be both homogeneous and heterogeneous, edges
should be allowed to exist between nodes of the same type.
In contrast, a general graph is more flexible in representing
side information, like representing user’s social information
containing one node type (i.e., user) and one edge type (i.e.,
friend relationship) by a homogeneous graph, or representing
more enriched user’s social information with attributes of
users and items by a heterogeneous graph. To employ side
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TABLE 2. A brief comparison between bipartite graph, general graph and knowledge graph. |E| and |R| represent the number of different node types and
different edge types, respectively.

Graph representation Carried information |E| |R| Relative complexity

bipartite graph user-item interactions = 2 = 1 low
general graph side information ≥ 1 ≥ 1 middle

knowledge graph knowledge →∞ →∞ high

(a) (b)

Tom

Bob

Alice 5  4  3  0

?  0  2  5

0  1  0  5

Avengers 4: 

the final battle

The Truman 

Show

Flipped

Gone with the 

Wind

Avengers 4: 

the final battle

The Truman 

Show

Flipped

Gone with the 

Wind

5

4

3

1

5

2
5

?

Tom

Bob

Alice

FIGURE 1. Represent user-item interactions by a bipartite graph and a matrix, respectively. In (a), the weighted bipartite graph represents the explicit
user-item interactions from a movie recommender system, where, for example, the edge weighted 5 between Alice and Avengers 4: the final battle represents an
explicit interaction {Alice, Avengers 4: the final battle, 5}, meaning that Alice watched Avengers 4 and rated it five points. The bipartite graph in (a) can be directly
converted into a weight matrix as shown in (b), where the value 0 corresponds to the unobserved edges in (a), indicating the unobserved interactions between
users and movies.

information in recommendation, it’s a common-used way to
integrate a general graph with a bipartite graph through their
jointly owned nodes as connections (because side informa-
tion is generally about users and items, which are involved in
user-item interactions).

By using triplets (subject, predicate, object) to transform
knowledge into a model-readable form, a knowledge graph
[24] can be used to represent the entities and their relations
split out from knowledge. Formally, let E denote the set of
subjects and objects and let R denote the set of predicates,
knowledge can be represented by triplets S = (h, r, t), where
h ∈ E is termed head entity (i.e., subject), t ∈ E is termed
tail entity (i.e., object), and r ∈ R is a directed edge from
h to t. Based on these triplets, a knowledge graph can be
constructed. Fig. 2 gives toy examples to illuminate the con-
struction process. Since the properties like boundless scale
and complex semantics of knowledge, a knowledge graph
Gkg = (E,R, E ,R) generally contains extremely diverse
node types and edge types such that |E| → ∞ and |R| → ∞,
which can be considered as the most complex instance of
general graphs. In order to sufficiently and efficiently rep-
resent these properties of knowledge graphs, research into
multi-viewed graphs and multi-layered graphs has been
a tendency recently (Sec. V-A gives details). In practice
for commercial applications such as those in IBM [104],

Amazon [105] or Alibaba [106], representative knowledge
graphs include YAGO [107], WikiTaxonomy [108], DBpedia
[109], Wikidata [110] and WebOfConcepts [111], to name
a few, constructed by automatic knowledge harvesting tech-
niques [112]–[114]. These open knowledge graphs provide
resources for recommendation. Similar in being employed
in recommendation to side information dose, a knowledge
graph can be integrated with a bipartite graph through their
jointly owned nodes as connections. In the same way, a
knowledge graph also can be integrated with a general graph.

3) K-order proximity

After representing observed information for recommendation
by graph representations, it comes to measure the proxim-
ity [115], [116] between users and items (i.e., between the
corresponding user nodes and item nodes in graph repre-
sentations), which is a key step of recommendation’s imple-
mentation, from the perspective of link (i.e., edge) prediction
[41], [42]. Specifically, user-item proximity is used to record
or predict the similarity between user-item node pairs both
linked by edges or not, which can be used to quantify the
likelihood of occurrence of unobserved user-item interactions
in recommender systems. Intuitively, the higher similarity
between a not-linked user-item node pair, the higher user’s
affection degree on the item, and then a higher likelihood
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FIGURE 2. Represent knowledge by a knowledge graph. In (a), the subjects, predicates and objects contained in the profile of a classic movie Avengers 2: age
of ultron can be split out and can be represented by multiple triples organized as (subject, predicate, object). Then, these triplets are used to construct a knowledge
graph shown in (b).

of occurrence of the corresponding unobserved user-item
interaction.

In general, the first-order proximity of a node pair vi−vj
is defined as their local pairwise proximity, which can be
measured by the existence (i.e., 0/1) or weight (i.e., rat-
ing if exists) of edge (vi, vj). Take Fig. 1 as an example,
the first-order proximity of node pair Tom-Flipped can be
measured as 2 by the edge’s weight (i.e., rating), record-
ing the similarity between them. Since the edge between
Tom and Avengers 4: the final battle did not exist, the
similarity between Tom-Avengers 4: the final battle need to
be predicted based on the observed user-item proximity by
methods (i.e., recommendation models). However, edges in
a graph representation are usually in a small proportion as
a result of the sparsity problem of recommendation, which
casts the first-order proximity into doubt about its precision
on recording or predicting user-item similarity. In fact, the
proximity between two not-linked nodes does not always
have to be zero measured by the first-order proximity, like
in situations where the corresponding two users could still be
intrinsically related. For example, the first-order proximity
of Tom-Bob in Fig. 1 is measured as zero while the two
users might share common movie preferences, which can
be intuitively inferred from the fact that they co-rated the
movie Gone with the Wind with the same points of five, and

thus be intrinsically related. To make up for the flaw of the
first-order proximity, the second-order proximity of a node
pair vi − vj is defined as the overall first-order proximity
between the two nodes’ respective neighborhoods. Formally,
denote Si = {s(1)i,1 , s

(1)
i,2 , ..., s

(1)
i,|V |} as a collection of the first-

order proximity s
(1)
i,j between node vi and the other nodes

vj in a graph representation, respectively. Following that,
the second-order proximity between vi and vj is measured
based on Si and Sj by such as cosine index [117], Pearson
coefficient (PC) [118] or Jaccard index [119]. Apparently, if
two nodes vi and vj do not have any other co-lined node, the
second-order proximity of vi − vj is measured as zero, such
as that of Avengers 4: the final battle-Gone with the Wind
shown in Fig. 1. Iteratively, the higher-order proximity of
a node pair can be analogously defined as above, which has
been a popular research focus in recent years (Sec. IV-A2
gives details).

Under these definitions of proximity with different orders,
it is more obvious why is it feasible to alleviate the cold start
and sparsity problems of recommendation by employing side
information or knowledge. Take Fig. 1 for example, when
coming to a new movie Avengers 2: age of ultron represented
by a node, it is isolated in the bipartite. Consequently, it is
impossible to measure the proximity between the new movie
and any other user or movie, let alone to predict the similarity
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between them and estimate user’s preferences on this new
movie, which leads to the cold start problem as illustrated
beforehand. However, after employing side information or
knowledge in recommendation, it is another matter. For ex-
ample, by integrating the knowledge graph shown in Fig. 2
with the bipartite graph, more hidden (or indirect) relations
between the new movie Avengers 2: age of ultron and other
movies can be uncovered, like that with Avengers 4: the
final battle. These new relations enable the implementation
of measuring user-item proximity related to the new movie.
Benefits are not limited to this, enriched relations uncovered
by side information or knowledge can also make the original
graph denser, with newly established edges between nodes.
In this way, not only the sparse problem of recommendation
could be alleviated but also user-item proximity could be put
in more diverse orders, ensuring the precision of measured
user-item similarity.

In different recommendation methods, the value of user-
item proximity is generally entitled different practical mean-
ings, like the ratings of items given by users by matrix
factorization-based method (Sec. III-A1 gives details), the
Pearson coefficient (PC) [118] between nodes by k-nearest
neighbors-based method (Sec. II-A4 gives details), the allo-
cated resources on items diffused from users by diffusion-
based method (Sec. II-A4 gives details) or the occurrence
probability of user-item interactions by deep learning-based
method (Sec. III-A3 gives details). On the other hand, the
value of user-item proximity could be meaningless, such as
that in translation-based method (Sec. IV-A1 gives details).
Without loss of generality, this article generalizes the def-
inition of proximity to be a metric, which can be used to
quantify the relative magnitude of similarity between nodes
in graph representations. Note that the term proximity also
can be called similarity.

4) Methods and conventional models
As illustrated above, in order to quantify the likelihood of
occurrence of unobserved user-item interactions, recommen-
dation models aim to predict the similarity between unob-
served user-item pairs based on observed user-item proxim-
ity, among which collaborative filtering [28], [120]–[123],
diffusion-based [14], [30], [124], [125] and content-based
[126]–[128] are three prevalent ones. Respectively, based
on the assumption that a user’s preferences for items might
be affected by those of his neighbors, collaborative filtering
method predict the similarity between an unobserved user-
item pair by analyzing the observed proximity between the
item and the user’s neighbors sharing interacted items with
the user. Diffusion-based method pioneered a strategy for
applying physic diffusion processes, such as heat spreading
[29] or mass diffusion [30], to recommendation. Content-
based method runs by building user’s profiles, which are used
to match with item’s attributes or descriptions. As for con-
ventional recommendation models, user-based collaborative
filtering (UBCF) [28] and probabilistic spreading (ProbS)
[30] are two common-used ones of collaborative filtering

method and diffusion-based method, respectively. The rest
of this section illustrates the two models, used as instances
to illuminate the rationale behind conventional recommen-
dation implemented by directly analyzing graph topological
characteristics. At the same time, the two models are used as
experimental benchmarks in Sec. VI.

Based on the bipartite graph shown in Fig. 1, to predict
Tom’s similarity with the two movies not interacted with him,
UBCF measures the second-order proximity between Tom
and other users by Pearson coefficient (PC) [118] as

SPC
i1i2 =

∑
j∈∩

(ri1j − ri1)(ri2j − ri2)√∑
j∈∩

(ri1j − ri1)
2
√∑

j∈∩
(ri2j − ri2)

2
, (II.1)

where ∩ = R(i1)
+ ∩ R(i2)

+ denotes the set of items
rated by both users i1 and i2, and ri denotes the average of
ratings given by user i. Following that, the similarity between
Tom and The Truman Show, which represents the predicted
rating r̂∗j of The Truman Show (denoted by j) given by Tom
(denoted by ∗), can be calculated by

r̂∗j = r∗ + α
∑

i∈N(∗)

S∗i(rij − ri), (II.2)

where N(∗) is a collection of neighbors within the second-

order hops from Tom, and α =
1∑

i∈N(∗) |S∗i|
is a nor-

malization factor. For example, in Fig. 1, based on the ob-
served proximity that Alice and Tom both rated Flipped as
well as Bob and Tom both rated Gone with the Wind, and
calculated by Pearson coefficient in Eq. (II.1), the second-
order proximity between Tom and Alice can be measured as
−0.9795 and that between Tom and Bob can be measured as
0.8593. Following that, based on the observed proximity that
Alice rated The Truman Show by 4 points and Bob rated The
Truman Show by 1 point, the similarity r̂∗j (i.e., predicted
rating) can be calculated by 3.5 + 1

1.8388 [−0.9795 × (4 −
4) + 0.8593× (1− 3)] ≈ 2.5654, according to Eq. (II.2).

Different from UBCF resolving topological characteristics
of users’ co-interactions with common items, ProbS runs
a mass diffusion process on a graph, using dynamically
diffused and aggregated resources to represent the similarity
between nodes. Take Tom in Fig. 3 as the user waiting to
be recommended, in the first step, ProbS allocates a unit
of resources for all the movies that interacted with Tom,
respectively. Then, in the second step, the resources allocated
to movies are equally distributed and diffused along edges
from each movie to its interacted users, where the aggregated
resources reached to Alice and Bob can be used to represent
their respective second-order proximity with Tom. In the
third step, these resources allocated to users are again equally
distributed and diffused along edges from each user back
to his interacted movies. Finally, the aggregated resources
reached to movies can be used to represent their similarity
with Tom, which indicates that Tom’s preference for The
Truman Show could be beyond that for Avengers 4: the
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FIGURE 3. Schematics of ProbS. The first step is to allocate resources. The second and third steps combine a two-step process of resource diffusion.

final battle. Note that the second and third steps of ProbS
combine a two-step diffusion process, which can be iterated
to multiple rounds for a higher recommendation accuracy.

B. GRAPH EMBEDDING
In the last section, the rationale for conventional recommen-
dation is illuminated by two models as instances, which are
implemented by resolving graph’s topological characteris-
tics. However, this rationale prohibits conventional recom-
mendation from efficiently implementing on different rec-
ommendation scenarios, especially with big data, because
it has to repeat the resolution on graph representations
mechanically, which lags behind graph embedding-based
recommendation in scalability and migration. In contrast,
graph embedding-based recommendation runs by directly
reusing nodal embedding vectors, which represent users
and items, once learned from graph representations. On top
of that, after incorporating machine learning methodology,
graph embedding-based recommendation can be equipped
with abilities to pattern discovery, which contributes to a
higher recommendation accuracy. This section presents basic
concepts of graph embedding as well as its application in
recommendation.

1) Definitions and concepts
Graph embedding [31], [129]–[131] is a technique used
to generate features of non-Euclidean data for machine
learning-based downstream tasks, like node classification
[33], [34], graph classification [35]–[39], link prediction
[40]–[43], clustering [44] and stuff. In general, in order to
satisfy the input format of machine learning models [132],
features (usually represented by multidimensional vectors)
of objects in data should be generated in the first place. For
that purpose, until recently, researchers usually resorted to
artificial generation methods [133] implemented based on
hand-engineering with expert knowledge and bag-of-words

methods [134] as strategies for generating features of Eu-
clidean data. However, as illustrated in Secs. II-A1 and II-A2
that most of the information (or data) for recommendation
is represented by graph representations with complex and
diverse hidden relation (or connectivity) patterns, character-
ized by non-Euclidean. For that gap, in recent research, graph
embedding techniques began, for the first time in large num-
bers, to be used to generate features of non-Euclidean data,
which can project non-Euclidean graph representations into
a low-dimensional Euclidean space consisting of embedding
vectors (also called embeddings) of nodes, edges, subgraphs
or whole graphs as their features. These embeddings preserve
the intrinsic topological characteristics of graph representa-
tions, which can be used to reconstruct them.

Formally, in terms of generating features of nodes, graph
embedding is defined as a mathematical process using a
mapping Φ : G → Rn×k to project a graph representation
G into a Euclidean space Rn×k, where n is the size of G
(i.e., G contains n nodes) and k (k ≪ n) is the Euclidean
space’s dimension. Through the mapping, the embedding (a
k-dimensional vector) of an arbitrary node vi in G can be
generated as Φ(vi) ∈ Rk. Based on these embeddings, the
proximity between two nodes vi and vj can be measured as
F(Φ(vi),Φ(vj)), where F : (·, ·) → R (like dot-product
[135]) is a mapping that can project two embeddings to R,
where a greater value of F(Φ(vi),Φ(vj)) is generally recog-
nized as a higher possibility of the existence of edge (vi, vj).
Following that, G can be approximately reconstructed by
adding these possible edges between node pairs. Intuitively,
a well-performed graph embedding technique can determine
a mapping Φ : G → Rn×k related to F : (·, ·) → R, whether
it is directly set up or learned by machine learning methods,
which is supposed to be used to approximately reconstruct
G’s topological characteristics as much as possible.

When it comes to machine learning-based graph embed-
ding techniques, which are the most prevalent ones in re-
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cent years [132], the process of determining the mapping
Φ : G → Rn×k runs by optimization algorithms (Sec. II-B3
gives details). Specifically, given a graph representation G
with a node-set V , constructing training samples and test
samples is the first step. With a set of node pairs Strain =
{(vtraini , vtrainj )|vtraini , vtrainj ∈ V } randomly sampled from
G by a specified proportion and a set of their observed
proximity P train = {ptrainij |ptrainij ∈ R}, correspondingly,
training samples can be constructed as (Strain, P test), and
in the same way, so do test samples (Stest, P test) that sat-
isfy Strain ∩ Stest = ∅. Then, in the second step, from
a beforehand defined hypothesis space Φ [132] contain-
ing all possible mappings, machine learning-based graph
embedding techniques aim to learn a candidate mapping
Φlocal ∈ Φ that could minimize the average error be-
tween predicted proximity F(Φlocal(vtraini ),Φlocal(vtrainj ))
and observed proximity ptrainij on training samples. Next, in
order to assess their performance, the average error between
F(Φlocal(vtesti ),Φlocal(vtestj )) and ptestij on test samples is
calculated. Until the error is lower than a target precision,
the learning process on training samples will iterate run by
optimization algorithms, searching for the optimal Φglobal ∈
Φ that can minimize that average error on test samples.
In fact, the rationale behind machine learning-based graph
embedding lies in the (high-order) input-output data fitting,
aiming to learn embeddings that can capture and preserve
the complex patterns hidden in graph representations as
much as possible, which contributes to reconstructing the
original graphs. Unless otherwise specified, the graph em-
bedding techniques retrospected in this article are all machine
learning-based.

2) Recommendation based on graph embedding
When incorporating graph embedding techniques in recom-
mendation, it comes to a sort of straightforward. By imple-
menting graph embedding techniques on graph representa-
tions involving user nodes and item nodes, the embeddings
of users and items can be learned to measure user-item
proximity and predict their similarity for recommendation,
which is called graph embedding-based recommendation.
Methodologically, similar in the process of learning a map-
ping Φ : G → Rn×k to graph embedding techniques,
in the first place graph embedding-based recommendation
constructs two hypothesis spaces U and V for users and
items, respectively, from which two mappings that project
user nodes and item nodes of G into a common Euclidean
space can be determined. In order to determine the optimal
mappings, objective functions are set up to measure the
average error between predicted proximity F(U(vi), V (vj))
of user-item node pairs and observed ones pij on both
training samples and test samples, formally constructed as
E[L(F(U(vi), V (vj)), pij)] where L is a loss function and
E is an objective (or expectation) function. Based on it, the
embeddings of users and items can be learned by optimiza-
tion algorithms. Using these embeddings, the probabilities
of existence of each unobserved user-item interaction can

be predicted by F(U(vi), V (vj)), which is the ground for
sorting candidate items in descending order and select the
top-N ones as recommendations returned to users.

From a practical perspective, the embeddings of users and
items learned from side information and knowledge related
to users and items are reusable and are possibly optimal for
preserving and reconstructing the original graph representa-
tions. In that case, they could intrinsically carry the properties
of users and items as well as the hidden relations between
users (since the embeddings of edges can be derived from the
embeddings of their endpoints through some calculations).
Resorting to combing these embeddings as a supplement
with those learned from user-item interactions, enriched
information can be employed in recommendation, which
contributes to alleviating the cold start problem by building
relations between ever non-interacted user-item pairs and
the sparsity problem by uncovering more hidden relations
between sparsely connected user-item pairs. As an overview,
categorized by different recommendation tasks, the graph
embedding-based recommendation methods retrospected in
this article are summarized in Tab. 3, including their respec-
tive pros, cons and recent focus.

In practice, the applications of graph embedding tech-
niques are not only throughout recommender systems but
far outside it as well [77], like knowledge graph completion,
question answering and query expansion.

3) Optimization algorithms
Objective functions, once formulated, can be solved as opti-
mization problems by numerical or analytical optimization
algorithms [47], [136], [137], which are used to implement
the learning process of searching for the optimal Uglobal and
V global from beforehand defined hypothesis spaces, in order
to satisfy the extremum of objective functions. In this way,
the effectiveness and efficiency of optimization algorithms
determine the performance of graph embedding-based rec-
ommendation.

Briefly, common-used optimization algorithms for graph
embedding-based recommendation include stochastic gra-
dient descent (SGD) [138] and its parallel version ASGD
[139], the two most popular ones out of their simplicity and
efficiency, as well as other representative latest advances like
Mini-bath Adagrad [140], nmAPG [141], Adam [142] and
ADMM [143].

C. A GENERAL DESIGN PIPELINE OF GRAPH
EMBEDDING-BASED RECOMMENDATION
Overall, under the framework of machine learning method-
ology, a graph embedding-based recommendation model can
be mathematically presented as

argmin
Φ

E

(
L
(
F(Φ(vi),Φ(vj)), pij

)
,Θ

)
,

Φ ∈ H,∀vi, vj ∈ G,
(II.3)

where Φ : G → Rn×k denotes a mapping that projects
a graph representation’s n nodes into an embedding matrix
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TABLE 3. A comparison between different graph embedding-based recommendation methods. Categorized by recommendation tasks, recent focuses
concentrate on developing the pros and solving the cons of the respective methods.

Task Method Section Pros Cons Recent focus

Bipartite
graph

embedding
for recom-
mendation

Matrix
factorization

(MF)

III-A1
III-A4
III-B1

1. has well extensi-
bility

2. can achieve non-
negative embedding
3. can capture user’s

long-term preferences

1. faces non-convex
optimization problem
2. is shallow learning
3. could violate the
triangle inequality

principle

1. non-negative MF
2. metric learning

3. fast online learning

Bayesian
analysis III-A2

1. can achieve automatic
hyperparameter adjust-

ment
2. can achieve pair-

wise ranking

1. is shallow learning
1. automatic machine

learning
2. casual inference

Markov
processes III-B2 1. can capture user’s

short-term preferences 1. is shallow learning 1. combined with MF

Deep
learning III-A3

1. can discover non-
linear patterns

2. can achieve fast
parallel computing
3. has well input

compatibility

1. lacks explainability
2. faces higher hyper-
parameter adjustment

difficulty

1. deep metric learning
2. casual learning

3. sequential recom-
mendation

General
graph

embedding
for recom-
mendation

Translation IV-A1
IV-B

1. can preserve local
topological features

2. can flexibly distin-
guish the multiplicity
of nodes and relations

1. could lose global
topological features

1. sequential recom-
mendation

Meta path
(Random walk)

IV-A2
IV-B

1. can preserve global
topological features

1. requires expert
knowledge for meta

path design

1. random walk on
heterogeneous graphs

2. combinations with MF
3. automatic meta path
construction by using

graph topology

Deep
learning

IV-A3
IV-B

1. can preserve non-
linear topological

features
2. can run (semi-)un-
supervised learning

1. could lose infor-
mation through the

Encoder

1. attention mechanism and
self-attention mechanism

Knowledge
graph

embedding
for recom-
mendation

Graph neural
network
(GNN)

V-A
V-B

1. can achieve fast
parallel computing
2. can capture the

multiplicity and dy-
namics of knowledge

graphs

1. carries popularity
biases in negative

sampling

1. propagation module
2. sampling module
3. pooling module

Multi-viewed
graph

V-A
V-B

1. can capture relati-
onal multiplicity

1. could lose nodal
multiplicity

1. attention mechanism
for weight distribution

Multi-layered
graph

V-A
V-B

1. can be used for
cross-domain recom-

mendation

1. requires expert know-
ledge for modeling

1. translation method
2. meta path method

3. attention mechanism

Rn×k consisting of k-dimensional row vectors, H denotes
a hypothesis space designed beforehand, F : (·, ·) → R
denotes a proximity measurement, L denotes a loss function
which is used to measure the error between predicted values
and observed (or true) values on training samples or test
samples, E denotes an objective function measuring the
expectation of overall loss, pij is the observed proximity
between nodes i and j, and Θ denotes a hyper-parameter set.
From the perspective of Eq. (II.3), this section decomposes
the designing process of graph embedding-based recom-
mendation into several steps and proposes a general design

pipeline of that, as shown in Fig. 4.

Specifically, in Fig. 4, the first step is to collect information
for recommendation from such as public data sets, practical
recommender systems, Internet of things or other commercial
data products, among which public data sets are recognized
as the priority of designing and evaluating a recommendation
model because of their cost-effective and widespread access.
Then, representing the information by graph representations
is the second step. In this step, selecting an appropriate
graph representation G that can capture and preserve the
complexity (or multiplicity) involved in original information
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as much as possible is crucial, which directly determines
the design of recommendation models and the accuracy of
recommendation results. After that, the third step is to build
proximity measurements F : (·, ·) → R, used to measure
the proximity between node pairs in graph representations.
Methodologically, as for a specific recommendation scenario,
once identified, the first-order proximity could give clue to
the possible forms of proximity measurements fitting this
scenario, which helps researchers build higher-order ones.

When it comes to designing a graph embedding-based rec-
ommendation model (the fourth step in Fig. 4), a hypothesis
space H should be constructed in the first place, from which
the optimal mapping Φ in Eq. (II.3) can be searched out.
On training samples, after determining an initial mapping Φ
from a constructed hypothesis space, nodal embeddings can
be generated through it. As the input of F , these embeddings
can be used to measure the observed proximity between node
pairs. In order to assess the precision, loss function L is
designed to calculate the error between predicted proximity
and the corresponding observed (i.e., true) proximity of a
node pair. After being implemented on all node pairs of
training samples, the expected loss can be calculated by an
objective function E, an expectation function. Searching out
(or training) the optimal mapping Φ on training samples from
the hypothesis space runs by optimization algorithms, which
will be used to predict unobserved proximity on test samples.
Methodologically, designing an appropriate loss function,
objective function or optimization algorithm is generally not
hectic because a lot of related theories and experiences have
matured as a recipe, which can be easily accessed from pre-
vious research. In fact, what really matters in step 4 is to con-
struct a hypothesis space fitting to a specific recommendation
task. Completely pioneering a novel model is usually not
easy. In this regard, as references, Tabs. 5, 6, 7, 8, 9, 10 and 11
summarize several common-used architectures of different
graph embedding techniques and different recommendation
methods, including their respective hypothesis spaces, loss
functions or objective functions.

As shown in Fig. 4, the four steps are recurrent as an
iteratively revising and refining process. For example, when
designing a recommendation model, if its performance has
hit its ceiling while still not being able to reach one’s expecta-
tion, it could be helpful to modify or even reconstruct a more
appropriate hypothesis space or proximity measurement. In
this process, as said before, constructing appropriate graph
representations which can capture and preserve the com-
plexity (or multiplicity) of original information is crucial.
For that purpose, combined with analyzing the topology
characteristics of a graph representation constructed in step
2, going back to step 1 to check if it can well fit the original
information is a strategy, which gives clues to refine the
structures of graph representations.

On the other hand, the design pipeline on its face is
data-oriented (or task-oriented), which might be preferred
by computer science researchers, who generally design rec-
ommendation models starting from specific tasks related to

collected data (i.e., information). To be sure, by means of
data mining techniques, this data-oriented designing strat-
egy could quickly dig out the hidden patterns of data and
incorporate them in modeling, which can achieve a higher
recommendation accuracy on a specific task. However, these
models designed in this way face fundamental limits on their
generalization to other tasks, because they are data-oriented
while different tasks generally carry distinctive data patterns,
scales or sparsity. On top of that, by starting from step 4,
the designing process based on this pipeline can also be
run by generalization-oriented, aiming to design versatile
recommendation models fitting to diverse tasks with different
data properties, in which case physicists and mathematicians
might prefer. For all they are two different perspectives for
designing models, there is no priority between data-oriented
and generalization-oriented strategies. In fact, by combining
their respective advantages, it could be more beneficial for
researchers to design recommendation models, where multi-
task learning [144], [145] seems to be a promising direction.

At the end of this section, notations used in this article
are presented in Tab. 4. The following Secs. III, IV and V
retrospect embedding techniques for bipartite graphs, general
graphs and knowledge graphs, respectively, as well as their
corresponding applications in recommendation.

III. BIPARTITE GRAPH EMBEDDING FOR
RECOMMENDATION
To reveal user’s preferences for items, recommendation mod-
els are generally run by analyzing user-item relations which
are directly recorded in observed user-item interactions and
also can be uncovered with side information or knowledge.
As the bedrock, recommendation models based on bipartite
graphs are of top priority in research, which can be gener-
alized to recommendation models based on general graphs
or knowledge graphs. According to the taxonomy of user-
item interactions (illustrated in Secs.II-A1), Secs. III-A and
III-B retrospect recommendation models based on bipartite
graph embedding techniques for static user-item interactions
and temporal user-item interactions, respectively.

A. RECOMMENDATION WITH STATIC USER-ITEM
INTERACTIONS
In general, recommendation models based on bipartite graph
embedding techniques for static user-item interactions can
be divided into three categories: those based on methods of
matrix factorization, Bayesian analysis and deep learning.
From an overview, as the pioneer of bipartite graph em-
bedding techniques, the matrix factorization method has a
virtue of extensibility dear to researchers. As a probabilistic
version of the matrix factorization method, the Bayesian
analysis method can alleviate the non-convex optimization
issue out of data sparsity problem suffered by the matrix
factorization method, in a manner that setting model’s regu-
larization terms with prior knowledge, like the fact that the
error follows a Gaussian distribution. As for learning and
preserving the non-linear patterns involved in data, the deep
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FIGURE 4. A general design pipeline of graph embedding-based recommendation.

learning method has significant advantages over the above
two methods.

1) Models based on matrix factorization
The rationale behind matrix factorization-based recommen-
dation models basically lies in the singular value decompo-
sition (SVD) [146], which can decompose a matrix AM×N

into A = UΣV T , where U and V are two orthonormal
Eigen matrices and Σ is a diagonal matrix composed of
A’s singular values. In turn, implementing matrix product
on U, V and Σ can approximately reconstruct A. Within
this framework, through SVD, a user-item rating matrix R
is supposed to be decomposed into such elements as the
embedding matrices of users and items, based on which R
can be approximately reconstructed by implementing matrix
product on the embedding matrices as well.

For that purpose, latent semantic analysis (LSA) [147] is
recognized as one pioneer of SVD’s application in textual
information retrieval. Based on documents and terms appear-
ing in at least two documents, LSA firstly constructs a term-
document matrix A where its element aij denotes the fre-
quency of term i’s appearance in document j. Then, through
truncated SVD [148] (an accelerated version of SVD), A can
be decomposed by A ≈ Â = UkΣkV

T
k , based on which the

embedding of term i can be represented by the i-th row of
matrix UkΣk and that of document j can be represented by
the j-th row of matrix VkΣk, which are both in a common k-
dimensional vector space. To complete a user’s information
retrieval with a query q (a set of query words), LSA can
generate the embedding of q as q̂ = qTUkΣ

−1
k , which will

be used to measure the query q’s proximity with each of the
documents, by doing operations (such as dot product) on their

corresponding embeddings.
Feasible as LSA in theory, when coming to recommender

systems where the number of users and items are generally
hundreds of millions, LSA becomes unfeasible in decompos-
ing such an extremely huge user-item interaction matrix R
as a result of the high complexity of SVD and the sparsity
of U and V which brings the NP-hard problem [149]. To
break those limitations, on his blog Simon Funk proposed
FunkSVD inherited from LSA’s idea, which resorts to opti-
mization algorithms as a strategy for efficiently running on a
large-scale matrix for recommendation (Tab. 5 gives details).
Slightly different from LSA, FunkSVD does not directly
decompose R by R = UΣV T but rather hypothesizes that
R can be represented by the dot product of two matrices U
and V , the embedding matrices of users and items. After
initializing their element values, FunkSVD will search the
optimal U and V by optimization algorithms, satisfying
UV T = R̂ ≈ R as approximately as possible.

FunkSVD has several virtues dear to researchers. One
remarkable aspect of those is its salient extensibility, which
makes it compatible with auxiliary information (such as user
biases or item biases) contributing to a higher recommen-
dation accuracy. In view of that, FunkSVD’s variants soon
widened in subsequent research. For instance, by defining
the biases in ratings as a term bij = µ + bi + bj linearly
appended to UV T , BiasSVD [78] can incorporate user biases
bi and item biases bj (Tab. 5 gives details) into FunkSVD. By
defining user’s preferences as a term (Tab. 5 gives details)
appended to Ui, SVD++ [78] can further incorporate user’s
implicit interactions into BiasSVD, which decreases the devi-
ations between bij and UiV

T
j . Auxiliary information that can

be incorporated into recommendation is not limited to these
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TABLE 4. Notations used in this article.

Notations Meaning

R
The observed user-item rating matrix, where its element rij represents the rating of item j given
by user i.

R̂ The predicted user-item rating matrix.

R(i)+,R(i)− The set of items rated (unrated) by user i.

N(i)+, N(i)− The set of items implicitly interacted (non-interacted) by user i.

U The user embedding matrix consisting of row vectors Ui of each user i.

V The item embedding matrix consisting of row vectors Vj of each item j.

S
The item-item (user-user) proximity (or similarity) matrix, where Sj1j2 (Si1i2 ) is the proximity
between items j1 and j2 (users i1 and i2).

bij The user-item interaction bias involved in rating rij , consisting of user bias bi and item bias bj .

Gkg = (E,R, E,R)
A knowledge graph, where E is the set of entities and R is the set of relations, E andR represent
the set of node types and the set of relation types, respectively.

(h, r, t)
A knowledge triplet, where h, t ∈ E represent a head entity and a tail entity, respectively; r ∈ R
represents the relation between entities.

h, t, r The embedding vectors of h, t and r.

s
(1)
ij , s

(2)
ij The first-order proximity and second-order proximity between nodes vi and vj .

forms. For instance, on the advice of pattern mining and data
analysis, Hu et al. [154] discovered that a positive correla-
tion could hide out between an individual business’ ratings
given by customers and those of its geographical neighbors
(regardless of their business type), revealing that the market
environment might play an influential role in an individual
business’ popularity. After quantifying this correlation with
terms, Hu et al. proposed NCRPD-MF, which can incorporate
the discovered auxiliary information into BiasSVD (Tab. 5
gives details).

In addition, the strong extensibility of FunkSVD and its
variants can also enable them to be integrated with k-nearest
neighborhood-based (KNN) recommendation models. For
instance, Koren et al. [155] proposed a 3-tier SVD++ model,
which can integrate the item-item proximity calculated by
KNN models with SVD++. From another perspective, in-
stead of calculating the item-item proximity matrix by sim-
ilarity metrics (like Pearson correlation coefficient) as KNN
models do, Slim [156] learns this matrix by means of op-
timization algorithms under the framework of FunkSVD
(Tab. 6 gives details). Moreover, by applying matrix factor-
ization to learn two embedding matrices P and Q preserving
the patterns between items, FISM [157] can estimate the
item-item proximity matrix S with P and Q, which is used to
be integrated with KNN models. All in all, these integrated
methods help out of the dependence on users’ co-interactions
with items in terms of calculating the item-item proximity
matrix S, which has been a fundamental limitation on the
accuracy of KNN models as a result of the sparsity problem
of recommendation.

However, like any model, FunkSVD and its variants have
their critics. Yet much of the criticism is based on the fol-
lowing two flaws. The first one is that the embeddings of

users and items learned by the FunkSVD framework could
involve negative values, which have difficulties in being well
interpreted in practice due to the general meaninglessness
of negative values in reality. One way out of this dilemma
is to develop methods of non-negative matrix factorization
[158]–[164]. The other flaw is that the implementation of the
FunkSVD framework generally violates the triangle inequal-
ity principle [165], [166] because it is put in Hilbert space
to measure the user-item proximity by dot-product, which
could hinder the preservation of find-grained user preference.
To tackle this issue, methods based on metric learning [167],
[168] of measuring the user-item proximity can satisfy the
triangle inequality principle since they are put in a metric (or
Banach) space. In detail, these methods run by constructing
a transformed user-item rating matrix R (like by converting
a method to convert R into a distance matrix [169]) in the
metric space and factorizing it as the FunkSVD framework
does [169]–[173]. Note that the metric space is unnecessary
to be Euclidean. For instance, constructing and factorizing
the matrix R in hyperbolic space can also work well [174].

In mathematics, most of the aforementioned recommen-
dation models are built on a global low-rank assumption of
matrix factorization. Differently, Lee et al. [175] built an
assumption that the user-item matrix R is partially observed,
which is characterized by a low-rank matrix restricted in
the vicinity of certain row-column combinations. Aharon
et al. [176] overturned the conventional assumption that
a transform matrix should always be observed and fixed.
Halko et al. [177] built a randomization assumption, which
contributes to a fast matrix factorization on large-scale data.
Establishing novel factorization frameworks based on other
assumptions from a perspective of mathematics appears to be
a challenging, intriguing and promising direction of research
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TABLE 5. Examples of modeling matrix factorization-based recommendation. (1) In FunkSVD, by penalizing the magnitudes of parameters,
λ(∥Ui∥2

2 + ∥Vj∥2
2) is used as a regularization term for preventing from overfitting [150]. (2) In BiasSVD, µ is the average of the values in R and bi (bj ) is the user

(item) bias. (3) In SVD++, |N(i)+|−
1
2
∑

k∈N(i)+ yk represents user i’s preferences for his implicitly interacted items, where yk is item k’s embedding vector. (4)
In SRui, F+

(i) and Q+
(j) represent the top-N social neighbors of user i and item j, respectively, whose proximity s∗∗ is measured by Pearson correlation

coefficient [151]. (5) In NCRPD-MF, vn and vc represent the features of item’s geography information and category, respectively; and the received review words vw

of an item can be used to represent its intrinsic characteristics with Vj . α1, α2 ∈ [0, 1] correspondingly control the influence of geographical neighborhood and
category; and z represents both popularity and geographical distance. (6) In FM, in order to predict the rating r̂(x) of an item given by a user, a feature vector x is
constructed, consisting of the features of the user and the item both represented by one-hot encoding and the ratings of other items rated by the user and stuff.
w0, wi ∈ R represent the global bias and the strength of the i-th variable, respectively; and vi represents the embedding of the i-th feature in all n features.

Model Factorization (hypothesis space) Objective function

FunkSVD r̂ij = UiV
T
j argmin

U,V

∑
(i,j)∈R(i)+

(rij − UiV
T
j )2 + λ(∥Ui∥22 + ∥Vj∥22)

BiasSVD r̂ij = µ+ bi + bj + UiV
T
j

argmin
U,V,b∗

∑
(i,j)∈R(i)+

(rij − µ− bi − bj − UiV
T
j )2

+λ(∥Ui∥22 + ∥Vj∥22 + b2i + b2j )

SVD++

r̂ij = bij +

(
Ui

+|N(i)+|−
1
2

∑
k∈N(i)+

yk

)
V T
j

argmin
U,V,b∗,y∗

∑
(i,j)∈R(i)+

(
rij − bij −

(
Ui + |N(i)+|−

1
2

∑
k∈N(i)+

yk

)
V T
j

)2

+λ(∥Ui∥22 + ∥Vj∥22 + b2i + b2j +
∑

k∈N(i)+

yk)

SRui see [152]

argmin
U,V

1

2

∑
(i,j)∈R(i)+

(rij − UiV
T
j )2 +

α

2

m∑
i=1

∑
f∈F+(i)

sif∥Ui − Uf∥2F

+
β

2

n∑
j=1

∑
q∈Q+(j)

sjq∥Vj − Vq∥2F +
λ1

2
∥U∥2F +

λ2

2
∥V ∥2F

NCRPD-MF

r̂ij = µ+ bi + bj + z

+Ui

(
1

|Wj |
∑

w∈Wj

vw +
α1

|Nj |
∑

n∈Nj

vn

+
α2

|Cj |
∑
c∈Cj

vc

)T

argmin
U,V,b∗,v∗,β∗

∑
(i,j)∈R(i)+

(rij − r̂ij)
2 + λ1

(
∥Ui∥2 +

∑
w∈Wj

∥vw∥2
)

+λ2(b
2
i + b2j + β2

i + β2
j ) + λ3

( ∑
n∈Nj

∥vn∥2 +
∑
c∈Cj

∥vc∥2
)

FM

r̂(x) = w0 +
n∑

i=1

wixi

+
n∑

i=1

n∑
j=i+1

⟨vi,vj⟩xixj

see [153]

into matrix factorization-based recommendation models.

2) Models based on Bayesian analysis

In practice, since the giant amount of users and items while
generally very sparse interactions between them in recom-
mender systems, the matrix factorization method could face
the non-convex optimization problem [178] when factorizing
such a huge and sparse user-item rating matrix, in which
case, at best, its recommendation accuracy could largely
fluctuate flowing from different model hyper-parameters set-
tings and at worst, its convergence in training (or learning)
by optimization algorithms could even be damaged as a
result of setting inappropriate model hyper-parameters. As a
tool of automatic hyper-parameter adjustment [179], [180],
Bayesian analysis method, to some extent, can be used
to guide the proper settings of hyper-parameters in matrix
factorization-based recommendation models, like by defining

regularization terms involved with prior knowledge.
The rationale behind Bayesian analysis-based recommen-

dation can be illuminated by probabilistic matrix factoriza-
tion (PMF) [181], a probabilistic version of FunkSVD (Tab. 7
gives details). In detail, by hypothesizing that the error rij −
r̂ij obeys the Gaussian distribution as N (rij −UiV

T
j |0, σ2),

where user embedding Ui and item embedding Vi obey
the zero-mean spherical Gaussian priors [182], respectively,
PMF can maximize the log of the posterior distribution by

argmin
U,V

1

2

M∑
i=1

N∑
j=1

Iij(rij − UiV
T
j )2

+
λU

2

M∑
i=1

∥Ui∥22 +
λV

2

N∑
j=1

∥Vj∥22,

(III.1)

where λU =
σ2

σ2
U

, λV =
σ2

σ2
V

. Similar in form of the objective
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TABLE 6. Examples of integrating matrix factorization-based models with neighborhood-based collaborative filtering methods. (1) In FISM,
r̂ij = bi + bj + (n+

i − 1)−α ∑
k∈R(i)+\{j} PkQ

T
j , where n+

i is used to control the agreement between the items rated by user i with respect to their
respective similarity to item k. (2) In SVD with prior, E is set up to measure the squared loss, absolute loss or generalized Kullback-Liebler divergence. R(U, V ) is
a regularization term and α is a coefficient used to balance the effects of unobserved ratings.

Model Objective function

Slim argmin
S

1

2
∥R−RS∥2F +

β

2
∥S∥2F + λ∥S∥1

FISMrmse argmin
P,Q

1

2

∑
i,j

∥rij − r̂ij∥2F +
β

2
(∥P∥2F + ∥Q∥2F ) +

λ

2
∥bi∥22 +

γ

2
∥bj∥22

FISMauc argmin
P,Q

1

2

∑
i

∑
j1∈R(i)+,j2∈R(i)−

∥(rij1 − rij2 )− (r̂ij1 − r̂ij2 )∥
2
F +

β

2
(∥P∥2F + ∥Q∥2F ) +

γ

2
∥bj1∥

2
2

SVD with prior argmin
U,V

∑
(i,j)∈R(i)+

E(rij , UiV
T
j ) + α

∑
(i,j)∈R(i)−

E(r̂0, UiV
T
j ) +R(U, V )

function to FunkSVD, Eq. (III.1) is further involved with
prior knowledge (i.e., the value ranges of λU and λV ), which
can definitely contribute to the settings of hyper-parameters
in FunkSVD. However, when inappropriately setting the
σ and σ2

∗ in Eq. (III.1), which are still hyper-parameters,
PMF could be over-fit in training samples. Faced with this
situation, instead of following the hypothesis of PMF that U
and V are independent, Bayesian PMF (BPMF) [183] argues
that the distributions of U and V are supposed to be non-
Gaussian and that λU and λV can both obey the Gaussian
distribution (Tab. 7 gives details). Moreover, in light of the
Markov random field [184], Mrf-MF [185] hypothesizes that
the prior distributions of U and V should be relevant to
user’s neighborhood (Tab. 7 gives details). The contributions
of Bayesian analysis method are not only throughout the
FunkSVD framework but far outside it as well, like those
in recommendation based on ordinal data [186] by means of
Poisson factorization [187], Bernoulli-Poisson factorization
[188] or OrdNMF [163]. Since a widespread tool for hyper-
parameter adjustment, Bayesian analysis method can exert
its great value in automatic machine learning [179], [180],
[189], which has been the focus of recent research into
recommendation and other machine learning-based fields.

In addition, Bayesian analysis method can be used to
design new strategies for ranking items. Until recently, most
recommendation models adopt a point-wise strategy for com-
paring user’s preferences for different items by ranking one’s
ratings on items, according to their relative size. In recent re-
search, BPR-OPT [190] (based on Bayesian analysis method)
pioneered a pair-wise ranking strategy, comparing user’s
preferences for each pair of different items, in a more fine-
grained way. In other words, it hypothesizes that one gen-
erally prefers his interacted items more than non-interacted
ones (Tab. 7 gives details). Methodologically, for each user i,
BPR-OPT builds a training sample DS := {(i, jm, jn)|jm ∈
R(i)+ ∧ jn ∈ R(i)−}, abbreviated as >i, where the tuple
(i, jm, jn) represents that the user prefers item jm more than

item jn. Based on the built training samples for all users,
maximizing the log of the posterior distribution runs by

argmin
Θ

∑
(i,jm,jn)∈DS

− ln
1

1 + e−x̂ijmjn
+λΘ∥Θ∥2, (III.2)

where λΘ represents regularization parameters. Besides, the
pair-wise ranking strategy can also be integrated with the
matrix factorization-based method by, for instance, defining
x̂ij = UiVj to represent x̂ijmjn with x̂ijm − x̂ijn [190]
under the BPR-OPT framework. So this way, the matrix
factorization method, usually oriented to recommendation
based on explicit user-item interactions, can be implemented
on that based on implicit ones.

As a promising research direction, by means of the prior
knowledge of Bayesian analysis method, causal inference
[52], [55] aims to understand user’s behaviors in recommen-
dation, which contributes to the explainability of recommen-
dation results or even models.

3) Models based on deep learning
Despite general acknowledgement of the feasibility and ef-
fectiveness of matrix factorization and Bayesian analysis
methods, they are generally based on shallow learning, only
being able to capture and preserve the linear patterns involved
in user-item interactions in recommendation. From a mathe-
matical point of view, by representing the features of user i
and item j with vectors vi ∈ Rn and vj ∈ Rn, respectively,
the implementation of recommendation can be described as
the process of learning a mapping f : Rn × Rn → R
such that f(vi, vj) = r̂ij ≈ rij . However, if leaned by
matrix factorization method or Bayesian analysis method,
the mapping f has to be linear, which is insufficient in
fitting any non-linear relation between (vi, vj) and rij (in
fact, these relations in practical recommender systems are
generally non-linear). Given these inadequacies, recent years
have witnessed a boom in applying deep learning methods
[192] into recommendation, in order to build deep learning-
based recommendation models with non-linear mappings.
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TABLE 7. Examples of modeling Bayesian analysis-based recommendation. (1) In PMF, Iij is an indicator function, equaling to 1 if user i rated item j and 0
otherwise. (2) In BPMF, W is the Wishart distribution related to the freedom degree ν0 and a D × D identity matrix W0, where ν0 = D and µ0 = 0. (3) In mrf-MF,

U−i is a user set where user i is removed. Ũi =
∑

i′ KU
k (i,i′)U

i′
KU

where KU is the number of neighbors, KU
k (i, i′) contains user i’s k-nearest neighbors, and

ΣU = I × σ2
U . The same is true of items. (4) In BPR-OPT, x̂ijmjn is a function of vector Θ, used to represent the relationship among i, jm and jn. (5) In RBM,

R̃i ∈ Rm×L is an observed binary indicator matrix of user i, with values R̃r
ij = 1 if the user rated movie j by score r and 0 otherwise.

Model Prior distribution Posterior distribution (hypothesis space) Objective function

PMF

P (R|U, V, σ2) =

M∏
i=1

N∏
j=1

[N (rij |UiV
T
j , σ2)]Iij ,

P (U |σ2
U ) =

M∏
i=1

N (Ui|0, σ2
UI), P (V |σ2

V ) =
N∏

j=1

N (Vj |0, σ2
V I)

P (U, V |R, σ2, σ2
U , σ2

V ) ∝
P (R|U, V, σ2)P (U |σ2

U )P (V |σ2
V )

see Eq. (III.1)

BPMF
BPMF gives the prior distributions of µ and σ for PMF:

P (µU , σ2
U I|µ0, σ

2
0I) = N (µU |µ0, (β0σ

2
U I)−1)W(σ2

U I|W0, ν0)
P (µV , σ2

V I|µ0, σ
2
0I) = N (µV |µ0, (β0σ

2
V I)−1)W(σ2

V I|W0, ν0)
see [183]

see [183], used
Markov Chain Monte
Carlo approximation

mrf-MF
P (Ui|U−i) =

1√
(2π)dUΣU

exp(−
1

2
(Ui − Ũi)

TΣ−1
U (Ui − Ũi))

P (Vj |V−j) =
1√

(2π)dV ΣV

exp(−
1

2
(Vj − Ṽj)

TΣ−1
V (Vj − Ṽj))

P (U, V |Ω,Θ) =
P (R+, U, V |Ω,Θ)∫∫

P (R+, U, V |Ω,Θ)dUdV
see [185]

BPR-OPT

P (>i |Θ) =
∏

(i,jm,jn)∈DS

P (jm >i jn|Θ)

=
∏

(i,jm,jn)∈DS

1

1 + ex̂ijmjn (Θ)
, P (Θ) ∼ N(0,ΣΘ)

P (Θ| >i) ∝
P (>i |Θ)P (Θ)

see Eq. (III.2)

RBM

P (R̃r
ij = 1|Ui) =

exp(brj +
∑K

k=1 UikW
r
jk)∑L

l=1 exp(b
l
j +

∑K
k=1 UikW

l
jk)

,

P (Uik = 1|R̃i) = σ(bk +
m∑

j=1

L∑
l=1

Rl
ijW

l
jk)

P (R̃i) =
∑
Ui

exp(−E(R̃i, Ui))∑
R̃′

i,U
′
i
exp(−E(R̃′

i, U
′
i))

see [191]

Among these models, Youtube Net [193] is a pioneer
whose schematics are shown in Fig. 5. Through pre-training,
the embeddings of all Youtube videos are learned, based on
which the feature vector of each user can be constructed,
according to one’s video watches. Besides, a user’s feature
vector is also involved with one’s side information like
search tokens, geographical information of gender infor-
mation. After that, the feature vector will be taken as the
input of a deep neural network with multiple layers, used
to learn user’s embedding. Finally, unobserved implicit user-
item interactions can be predicted by using all of the user’s
embeddings. Researchers have come to see the merits of
Youtube Net, including its fast parallel computing [194] and
non-linear mapping learning (since it adopts a deep learning
framework). Later, its use soon widened to various practical
applications, which benefit from its high compatibility of
diverse data forms as input.

Under the Youtube Net framework, specific implementa-
tions have been proposed. For instance, in order to prepare
the embeddings for constructing user’s feature vector, neural
collaborative filtering (NCF) [195] bases the pre-training
on user’s implicit interactions with items combined with
user’s characteristics. The same is true of constructing item’s
feature vector. After that, as shown in Fig. 5, when coming
to predicting an implicit user-item interaction, NCF concate-

nates the feature vectors of the corresponding user and item,
used as the input of a generalized matrix factorization (GMF)
layer and multiple MLP layers, respectively, which are both
jointed to a NeuMF layer outputting the final prediction. As
for being compatible with side information as input, ConvMF
[196] proposes an enhanced PMF [181] based on convolution
neural networks (CNNs) [197], which can be used to learn the
representations of documents. However, these deep learning
models could encounter the over-fitting problem. To alleviate
that, Cheng et al. [133] proposed to combine deep learning
with wide learning [198] as a strategy.

In addition, as for measuring user-item proximity in
recommendation, compared with linear operators (like dot
product) pervasively adopted by models based on shallow
learning, the deep learning framework can be generalized
as a non-linear operator for proximity measurement, which
is more robust since it could uncover the complex non-
linear relations between user-item pairs. For instance, by
means of a deep neural network, NCF can learn the non-
linear relations between an implicit user-item interaction and
the two embeddings of the corresponding user and item. Its
implementation was soon generalized to based on explicit
user-item interactions by deep matrix factorization (DMF)
[199], which can learn the non-linear relations between an
explicit user-item interaction and the corresponding values
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in a user-item matrix Y constructed from both implicit and
explicit user-item interactions, as shown in Fig. 5.

One difficulty, however, was that deep learning-based
recommendation models generally lack well explainability,
since the bedrock of these models is the fitting and opti-
mization theory, long been concerned as almost a black-
box. Faced with this situation, causal learning (or casual
inference) [51], [53], [54], [56], [57] seems to be a potential
solution, among which restricted Boltzmann machine (RBM)
[191] pioneered the application of causal learning in rec-
ommendation. As shown in Fig. 5, for a user RBM takes
each element of the user’s feature vector as an independent
unit. Then, it builds the so-called causal relations from these
units to the user’s interacted items encoded by one-hot, used
to model the causality between the user’s features and his
behaviors (i.e., represented by his interactions with items).
As a result, by learning the weights of relations, RBM
could unravel how user’s features influence his behaviors
correspondingly and give them practical meanings oriented
to different scenarios, which are definitely helpful to ex-
plain the formation of user-item interactions. On the other
hand, factorization machine (FM) [153] can be recognized
as another pioneer, resorting to casual learning as a strategy
for alleviating the sparsity problem in recommendation. In
detail, from a fine-grained perspective, FM builds the causal
relations between each pair of elements in user’s feature
vector, named feature interactions, by integrating support
vector machine (SVM) with SVD (Tab. 5 gives details). In
that case, as a supplement, these discovered causality hidden
in user’s feature vector contributes to enriching recommenda-
tion information. Although RBM and FM are models based
on shallow learning, their rationales soon widened to based
on deep learning and motivated a variety of deep causal
learning-based recommendation models, including DeepFM
[200], xDeepFM [201], deep Boltzmann machine [202],
[203] and stuff.

4) Other models
Until recently, in the popular conception it was usually
claimed that the user exposure assumption [204] should be
the bedrock of recommendation models, which hypothesized
that the reason for the existence of unobserved user-item in-
teractions lies in user’s limited view of items in recommender
systems. In other words, the non-interacted items for a user
were those that haven’t ever been exposed to the user, thereby
being considered valueless as information for recommenda-
tion (because no positive or negative preference of the user
had any chance for these items). However, this assumption
is not invariably true. In recent research, there are condi-
tions under which as Devoogth et al. [205] argued that non-
interacted items might not always be beyond a user’s view but
could be eschewed by the user just as a result of dislikes (the
so-called not missing at random assumption [206], [207]) can
contradict it. In that case, the user exposure assumption will
neglect user’s negative preferences for items, which in fact
are valuable to be used to construct negative samples [208]

for improving training precision. As Devoogth et al. [205]
put it, by defining a term α

∑
(i,j)∈R(i)− E(r̂0, UiV

T
j ) (r̂0 is

a prior estimation on predicted ratings) to measure the proba-
bility that an item could be eschewed by a user, the accuracy
of the SVD model can be promoted built on the not missing
at random assumption (Tab. 6 gives details). In addition, by
using a matrix constructed based on the Bernoulli condition,
Liang et al. [204] proposed to represent the probability of an
item’s exposure to a user, as a supplement to recommendation
models.

In practice, there are still two flaws in the implementation
of the not missing at random assumption. First, this assump-
tion is not fit to implicit user-item interactions because im-
plicit ones only record user’s interactions with items without
directly carrying user’s preferences, which is the so-called
positive-unlabeled problem [85], [209], [210]. Second, the
general strategy adopted by recommendation models built on
the not missing at random assumption is to represent user’s
negative preferences by equally allocated weights, which
could eliminate the deviations in user’s negative preferences
for different items in reality. In respect to the two flaws, for
instance, Saito et al. [211] used a bias to distinguish user’s
affection degrees toward different items. In addition, by re-
placing the second term in the objective function of SVD with
prior shown in Tab. 6 with

∑
(i,j)∈R(i)− cjE(r̂0, UiV

T
j ),

where cj is the confidence of item j to be non-interacted by
users caused by a true negative preference, He et al. [212]
proposed a negative weighting allocation strategy consider-
ing the popularity of user’s non-interacted items.

By bridging two or more recommender systems together
and sharing information for recommendation as supplements
to either side, cross-domain recommendation [213]–[215]
seems to be a promising direction, which contributes to
alleviating the cold start and sparsity problems. In detail, the
cross-domain [213] refers to two types of domains: one is tar-
get domain in which the final recommendation is directly im-
plemented, and the other is source domain consisting of other
recommender systems that could provide observed user-item
interactions as supplements corresponding to the unobserved
ones in target domain. By utilizing these supplemental user-
item interactions from source domain, hidden user-item rela-
tions in target domain can be uncovered as enriched observed
ones for recommendation. This is sort of similar to the
utilization of side information and knowledge into recom-
mendation but is fundamentally different in rationales. For
illustration, suppose a user has zero or very few interactions
with items in target domain, leading to the cold start and
sparsity problems in recommendation. Meanwhile, in source
domain if the user ever interacted with sufficient items that
also existed in target domain, his preferences for items can
still be analyzed and uncovered in source domain, which
can be transferred and utilized in target domain to complete
recommendation. Methodologically, transfer learning [216]–
[220] is a prevalent technique to realize that mechanism. For
instance, in order to transfer user embeddings from source
domain to those in target domain, EMCDR [213] learns a
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FIGURE 5. Schematics of Youtube Net, NCF, DMF and RBM. In (a), the generation component for recommendations of Youtube Net is presented, which runs by
minimizing the cross-entropy loss with a descent on the output through sampled softmax. In (b), NCF firstly learns four mappings, used to project user i’s one-hot
code to UMLP

i and UMF
i and to project item j’s one-hot code to V MLP

i and V MF
i , respectively. Then, cross-combinations on them are implemented by

ϕ
GMF

= U
MF
i ⊙ V

MF
j and ϕ

MLP
= aL(W

T
L (aL−1(...a2(W

T
2 (U

MLP
i V

MLP
j )

T
+ b2))...)) + bL), respectively, used as the input of neural networks to learn

user i’s embedding and item j’s embedding, based on which the final prediction can be outputted as ŷij = σ(hT (ϕGMF ϕMLP)T ). In (c), the corresponding row in
matrix Y indexed by user i is mapped to Yi∗ as user i’s embedding Ui, and the same is true of item j’s embedding Vj . Based on Ui and Vj , predicting their
interaction Sij = cosine(Ui, Vj) can be performed by minimizing the objective function
L = −

∑
(i,j)∈R(i)+∪R(i)− (

Rij
max(R)

log R̂ij + (1 −
Rij

max(R)
) log(1 − R̂ij)). In (d), RBM has a two-layer architecture based on a neural network framework,

where the left layer with K units (i.e., the K elements of user’s feature vector) represents user’s binary hidden features, and the right layer represents the one-hot
encoding of all items. Edges are built between the user and his interacted items, which can be weighted by scores from 1 to L.

one-to-one mapping to bridge the users and items commonly
existed in the two domains, in which case the embedding of
a cold-start user in target domain can be transferred from that
learned in source domain. Besides, based on the assumption
that user’s preferences for items are almost consistent in
different recommender systems, DDTCDR [221] can further
support the information exchange between the two domains
back and forth by means of dual transfer learning [222]–
[224].

In the past, the theories in optimization algorithms used
in recommendation models have escaped widespread in-
vestigation. It is only recently when data scale increased
dramatically that research into the efficiency of optimization
algorithms has attracted any substantial scholar attention,
aiming to realize the optimal performance of recommenda-
tion models as quickly as possible while consuming possibly
less computing resources. For that purpose, speeding up the
learning (i.e., convergence) process of recommendation mod-

els plays a large role. Methodologically, for instance, in order
to reduce the time complexity of ALS to linearity, He et al.
[212] proposed an element-wise ALS (eALS). By switching
the constraints and regulation terms in objective functions,
Boyd et al. [225] applied ADMM [143] to speed up the opti-
mization process of SLIM. GFNLF [226] achieves a faster
convergence process of non-negative matrix factorization
(NMF) via adopting α−β−divergence in objective functions
and incorporating a generalized momentum method.

B. RECOMMENDATION WITH TEMPORAL USER-ITEM
INTERACTIONS

Temporal factors of user-item interactions primarily flow
from the following situations: (1) New user-item interactions
are constantly occurring by existed or new coming user’s
new interactions with other items unobserved before or newly
entered. (2) User’s long-term and short-term preferences for
items could be changed. As a feasible tool, real-time recom-
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mendation [227]–[229] relies for capturing these temporal
factors on dynamically updating the embeddings of users
and items, which can learn and preserve user’s behavioral
changes and contribute to the recommendation accuracy.

The common-used methods of real-time recommenda-
tion include the online learning (or online recommendation)
method [230], [231], which enables the matrix factorization-
based recommendation models to absorb temporal (or newly
occurring) user-item interactions in a low computing com-
plexity, and the Markov processes method, which can repre-
sent the changes in user’s short-term preferences for items.

1) Models based on matrix factorization
A simple strategy for accommodating newly occurring user-
item interactions into recommendation is to reload recom-
mendation models and to repeatedly learn the embeddings of
users and items based on the whole interactions combined
with the existed and newly occurring ones. Apparently, this
strategy is so extremely high in computing resources that
could be infeasible in large-scale data. Alternatively, by using
only the newly occurring interactions, online learning (or
online recommendation) method [230], [231] can directly
update the embeddings of users and items based on those pre-
viously learned ones. In general, online learning methods im-
plement based on the matrix factorization framework, whose
objective functions or optimization frameworks can be per-
fectly compatible with appended terms representing newly
occurring interactions. For instance, as shown in Tab. 8,
the objective function of SL with prior can be separated
into n blocks, each of which can be used to measure the
changes in user’s embeddings. Based on the optimization
framework of FunkSVD, SGD-PMF and DA-PMF [232]
define appended terms to accommodate a newly occurring
interaction (ui, vj , rij), incorporated into the updating pro-
cess of embeddings Ui and Vj (Tab. 8 gives details). So this
way, the changes of user’s short-term preferences for items
can be captured dynamically.

In terms of capturing the changes of user’s long-term
preferences for items, the matrix factorization framework is
also compatible with temporal factors, by setting independent
variables of objective functions or optimization algorithms
to represent the changes in embeddings of users and items.
For instance, as an extension of SVD++, TimeSVD++ [233]
extends the terms bi, bj and U of SVD++ to bi(t), bj(t)
and Ui(t) related to time variables. Other methods include
moving the time window [234] or setting instance-decay
[235].

2) Models based on Markov processes
Markov processes is another method used to capture the
changes of user’s short-term preferences, implemented based
on analyzing user’s sequential activities [91]. Its idea lies
in learning an overall-shared transition matrix [238] which
can capture and represent the latest user-item interactions
(i.e., could reveal user’s latest preferences for items), where
its elements are transition probabilities between item pairs,

that is, the probabilities that a user will interact with each of
his unobserved items after having interacted with previously
observed ones (i.e., could reveal the probabilities that user’s
preferences would transition from his interacted items to
each of the unobserved ones). Through the learned transition
matrix, unobserved interactions can be predicted by ranking
the items that mostly meet the transition probability from
one’s interacted items to unobserved ones. During the whole
process, learning an accurate transition matrix is crucial
for Markov processes-based recommendation, in which case
considering environmental factors [239] in modeling the
transition probability seems to contribute a lot.

However, Markov processes-based recommendation mod-
els cannot capture the changes of user’s long-term prefer-
ences. To overcome the flaw, combining the Markov pro-
cesses framework with the matrix factorization framework is
a promising strategy since the latter generally performs well
in capturing user’s long-term preferences. Methodologically,
for instance, by means of the Markov processes framework,
FPMC [238] builds several transition matrices corresponding
to each user used to aggregate into a tensor, where the
missing values correspond to unobserved user-item interac-
tions. After that, through Tucker decomposition (TD) [241],
FPMC factorizes the tensor into the embedding matrices
of users and items, used to approximately reconstruct the
original tensor in order to predict the missing values, as
the matrix factorization framework does. Besides, by fusing
user’s long-term preferences learned by the matrix factoriza-
tion framework and user’s short-term preferences captured
by a high-order Markov chain, Fossil [240] can represent
user’s hybrid preferences for items. By applying embedding
techniques to build the transition matrices of the Markov
processes framework, Wu et al. [242] enabled the transition
probabilities to involve user’s long-term preferences. Since
most of these works fuse user’s long-term and short-term
preferences linearly, they inevitably lose the higher-order
patterns hidden in user-item interactions. In this regard, Wang
et al. [243] proposed a two-layer structure constructed with
different aggregation operations.

In addition, based automatic hyper-parameters adjust-
ment on Bayesian analysis method, the accuracy of Markov
processes-based recommendation models can be enhanced to
some extent. Take MFMP [244] as an instance, the proba-
bilistic version of TimeSVD++ [233]. By hypothesizing that
the changes of Ui(t) and Vj(t) over time follow the Gaussian
Hidden Markov processes rule, maximizing the posterior
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TABLE 8. Examples of modeling temporal matrix factorization-based recommendation. (1) In SL with prior, SV =
∑

j V T
j Vj is a k × k matrix, which is

independent from i. (2) In SGD-PMF, η is the step size controlling the convergence rate during updating iterations. (3) In DA-PMF, YUi
is the approximation of

(
∑

(r̂ij − rij)r̂
′
ijVj)/|R(i)+|.

Model Objective function Optimization

SL with prior
argmin
Ui,Vj

∑
i∈R(i)+

∑
j∈R(i)+

[(rij − UiV
T
j )2 − α(UiV

T
j )2]

+αUiS
V UT

i

using randomized block coordinate descant [236]
and line search [237]

SGD-PMF
argmin
Ui,Vj

(rij − r̂ij)
2 +

λU

2
∥Ui∥22

+
λV

2
∥Vj∥22

Ui ← Ui − η((r̂ij − rij)r̂
′
ijVj + λUUi)

Vj ← Vj − η((r̂ij − rij)r̂
′
ijUi + λV Vj)

DA-PMF
argmin
Ui,Vj

(rij − r̂ij)
2 +

λU

2
∥Ui∥22

+
λV

2
∥Vj∥22

YUi
←
|R(i)+| − 1

|R(i)+|
YUi

+
1

|R(i)+|
(r̂ij − rij)r̂

′
ijVj

YVj
←
|N (j)+| − 1

|N (j)+|
YVj

+
1

|N (j)+|
(r̂ij − rij)r̂

′
ijUi

Ui = argmin
ω
{Y T

Ui
ω + λU∥ω∥22}

Vj = argmin
ω
{Y T

Vj
ω + λV ∥ω∥22}

TABLE 9. Examples of modeling Markov processes-based recommendation. (1) In Fossil, the model can be reduced to the first-order when L = 1. (2) In
MFMP, Xi(t) ∼ N (Xi(t)|0, σ2

UI) and Yj(t) ∼ N (Yj(t)|0, σ2
V I). The parameters in Eq. (III.3) are defined as ρU := σ

2
/Σ

2
U , ρV := σ2/Σ2

V , λU := λ2/σ2
U

and λV := σ2/σ2
V .

Model Prior distribution Posterior distribution (hypothesis space) Loss function

Fossil see [240]

Pi(j|R(i)+t−1,R(i)+t−2, ...,R(i)+t−L)

∝ βj + ⟨
1

|R(i)+ \ {j}|α
∑

k∈R(i)+\{j}

Pk

+

L∑
l=1

(ηl + ηil ) · PR(i)+
t−l

, Qj⟩

S-BPR [240]

MFMP
P (R(t)|U(t), V (t)) =

T∏
t=0

∏
i,j∈R(i)+t

N (rij(t)|Ui(t)Vj(t)
T , σ2)

Ui(t+ 1) = Ui(t) +Xi(t), Vj(t+ 1) = Vj(t) + Yj(t)
P (Ui(0)) = N (Ui(0)|0,Σ2

UI), P (Vj(0)) = N (Vj(0)|0,Σ2
V I)

P (U(t), V (t)|R(t)) see Eq. (III.3)

distribution can run by

arg min
U(t),V (t)

T∑
t=0

∑
(i,j)∈K(t)

(
Rij(t)− Ui(t)Vj(t)

T

)2

+ ρU∥U(0)∥22 + ρV ∥V (0)∥22

+ λU

T∑
t=1

∥U(t)− U(t− 1)∥22

+ λV

T∑
t=1

∥V (t)− V (t− 1)∥22.

(III.3)

IV. GENERAL GRAPH EMBEDDING FOR
RECOMMENDATION
As illustrated in Sec. II, employing side information (like the
properties of users and items) in uncovering hidden (indirect)

user-item relations can alleviate the cold start and sparsity
problems, which contributes to the recommendation accu-
racy. However, since side information is usually represented
by general graphs which are far beyond bipartite graphs
in complexity, the matrix factorization method as well as
other methods designed for bipartite graph embedding face
fundamental limits on the practice of the recommendation
involving side information. To make up for the flaw, until
recently, researchers have tried to extend the matrix factor-
ization method for general graph embedding, like methods
of collective matrix factorization [245], [246] and spectral
[247]–[250]. Although being feasible, these new methods
still cannot run efficiently enough on large-scale data at-
tributed to their high computing complexity.

In recent research, in order to uplift the model scalability
on general graphs with large-scale, general graph embedding
techniques have been developed. In the first place, Sec. IV-A
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divides these techniques into three categories by those based
on methods of translation, meta path and deep learning.
Based on that, Sec. IV-B retrospects their corresponding ap-
plication in recommendation from two different perspectives:
technique-oriented and scenario-oriented.

A. THREE CATEGORIES OF TECHNIQUES FOR
GENERAL GRAPH EMBEDDING
Techniques of general graph embedding can be divided into
three categories: those based on methods of translation, meta
path and deep learning. From an overview, built on algebraic
theory, the translation-based techniques have come to see the
merit of being able to sufficiently preserve local topological
features in a graph. To further capture a graph’s global
topological features, the Meta path-based techniques are run
by random walking across nodes. Being similar in mecha-
nism to the deep learning-based models for bipartite graph
embedding, the deep learning techniques can also capture and
preserve the non-linear topological features hidden in general
graphs.

1) Techniques based on translation
The triplets (h, r, t) illustrated in Sec. II-A2 describes a
relation r from the head node (or entity) h to the tail node
t, whose embeddings are denoted by h, r and t, respectively.

From the perspective of algebraic theory, TransE [251]
takes r as a translation from h to t in a metric space, which
satisfies that when (h, r, t) existed h + r ≈ t indicating
that t is supposed to be one of the nearest neighbors of
h + r while h + r should be far away from t otherwise.
However, in practice, a node shared by multiple communities
in a general graph could play different roles like, for example,
that a head node h could have positive impacts on other tail
nodes in a community (e.g., a boss could bring interests to
the staffs of his own incorporation) but may have negative
impacts on another community (e.g., the boss could earn
some profits from the staffs of competitive incorporation), in
which case h should be denoted by h0 and h1 oriented to
its different roles (i.e., impacts), respectively. Consequently,
representing h0 and h1 by a common embedding h as TransE
does would not be able to distinguish the different practical
meanings. TransH [252] gives clues to out of this dilemma.
Based on the assumption that a node’s distinctive roles of
different communities in a general graph could be revealed
(or represented) by its diverse relations with other nodes (i.e.,
the positive relations of the node with other nodes could
reveal its positive role in the related community and vice
versa), TransH maps each pair of (h, t) to multiple relation-
specific hyper-planes wr, which are used to represent the
diverse relations between nodes. Analogously, in a general
graph (especially a heterogeneous graph), a relation between
two nodes could also play multiple roles. For example, a
triplet (location, contains, location) can be interpreted by
multiple semantics such as country-contains-city, country-
contains-university or something. Consequently, representing
the relation by one embedding r is insufficient in distinguish-

ing such abundant relational semantics. In this regard, TransR
[67] separately maps nodes and relations into a node space
and different relation spaces corresponding to the diverse
relational semantics between head-tail pairs, respectively.
Moreover, on the advice of the diverse semantics of a specific
relation r, CTransR [67] clusters r’s linked node pairs (h, t)
into multiple groups, corresponding to the different seman-
tics of r. In these ways, TransR and CTransR can preserve
multiplex semantics of nodes and relations in a general graph.
Tab. 10 gives details of these techniques.

Besides, in a general graph, the multiplicity (i.e., diverse
types or appended attributes) of nodes and relations is far
beyond their multiple semantics, which plays a large role in
representing a general graph as precisely as possible. In view
of that, TransD [253] takes the multiple types of nodes and
relations into account. Ji et al. [68] proposed that relations
could belong to different graph patterns like that some of
them are linked with a large number of node pairs while
others may not. In addition, Ji et al. also discovered that
relations could have uneven balances that the quantity of
node pairs linked with relations could differ a lot. Moreover,
by means of the Chinese restaurant process (CRP) [254],
TransG [255] can cluster the semantic components πr,m in
(h, r, t) of nodes and relations. Tab. 10 gives details of these
techniques.

An efficient objective function for the above translation-
based techniques is

L =
∑

(h,r,t)∈S

∑
(h′,r′,t′)∈S′

[fr(h, t)+γ−fr(h
′, t′)]+, (IV.1)

which can be run by minimizing a margin-based ranking cri-
terion in optimization, where [x]+ denotes the positive part of
x, and γ > 0 is a margin hyper-parameter. fr(h, t) is the loss
function such as those shown in Tab. 10. S = {(h, r, t)|h, t ∈
E} is the golden triplets set or named training samples,
and S′ = {(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E} is
the negative triplets set or named negative samples, whose
efficiency could largely influence the training process, which
is generally constructed by replacing either the head node or
the tail node with a negative one selected by random (but
usually not both at the same time).

Nevertheless, since built on the mechanism of algebraic
transformation on local topology, the above translation-based
techniques could lose the global topological features in a gen-
eral graph. In this case, researchers resorted to deepening the
proximity order of transformation as a strategy for capturing
and preserving global topology under the translation-based
framework. For instance, by building a path space used to
preserve relational semantics, RPE [256] can measure the
higher-order proximity of non-adjacent node pairs connected
by paths in the space. However, a limitation of extending the
translation-based framework to higher-order ones is clear:
high computing complexity. In order to reach higher ef-
ficiency in representing the global topological features in
a general graph, meta path-based techniques are hitherto
prevalent, as illustrated in the next section.
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TABLE 10. Examples of modeling translation-based techniques (1) In TransH, after being mapped to a hyper-plane wr , the embeddings of nodes h and t in a
pair (h, t) are denoted by h⊥ and t⊥, respectively. Correspondingly, the embedding of the relation between them on wr with a specific meaning is denoted by dr .
(2) In TransR, Mr is a transformation matrix used to map a head-tail pair with a relation r into different relation-specific spaces corresponding to distinctive relationsl
semantics. (3) In TransD, hp, tp ∈ Rn represent the semantics of head node and tail node, respectively, and rp ∈ Rm represents the semantics of the relation
between them. Mrh,Mrt ∈ Rm×n are two transformation matrices. (4) In TranSparse, θ measures the sparse degree of a matrix, recording the fraction of zero
elements over the total number of elements. For each relation r, a sparse transfer matrix Mr(θ) ∈ Rm×n is constructed. 0 ≤ θmin ≤ 1 is a hyper-parameter,
which denotes the minimum sparse degree, Nr denotes the number of node pairs linked by the relation r, and Nr∗ denotes the maximum number in Nr .

Technique Mapping Loss function

TransE none fr(h, t) = ∥h+ r − t∥22

TransH h⊥ = h−wT
r hwr, t⊥ = t−wT

r twr fr(h, t) = ∥h⊥ + r − t⊥∥22

TransR hr = hMr, tr = tMr fr(h, t) = ∥hr + r − tr∥22

CTransR hr,c = hMr, tr,c = tMr fr(h, t) = ∥hr,c + rc − tr,c∥22 + α∥rc − r∥22

TransD Mrh = rph
T
p + Im×n,Mrt = rpt

T
p + Im×n

h⊥ = Mrhh, t⊥ = Mrtt
fr(h, t) = −∥h⊥ + r − t⊥∥22

TranSparse(share) θr = 1− (1− θmin)Nr/Nr∗

hp = Mr(θr)h, tp = Mr(θr)t
fr(h, t) = ∥hp + r − tp∥22

TranSparse(separate) θlr = 1− (1− θminN
l
r/Nr∗ )

l∗ (l = h, t)
hp = Mh

r (θ
h
r )h, tp = M t

r(θ
t
r)t

fr(h, t) = ∥hp + r − tp∥22

TransG see [255]

P{(h, r, t)} ∝
Mr∑
m=1

πr,mP (ur,m|h, t)

=

Mr∑
m=1

πr,me
−

∥uh+ur,m−ut∥
2
2

σ2
h
+σ2

t

2) Techniques based on meta path

Meta path-based techniques were inspired from the basic
thought of word representation [257] in natural language
processing (NLP). Given N words chosen from a corpus
containing hundreds of millions of words, a legal sentence
like w1, w2, ..., wN (w∗ represents a word) with effective
meanings can be made up with them. Since words appearing
in the same context of a sentence are hypothesized to be
similar in meanings, the representations (i.e., embeddings) of
these words are supposed to be close in proximity. Method-
ologically, by taking legal sentences as training samples, NPL
[258] can learn the representation of a given word, which
could involve the word’s context (Fig. 6 gives details). From
a reverse perspective, Skip-gram [259] aims to learn the rep-
resentations of words in a given context around the context’s
central word, which could capture and preserve the linguistic
patterns among these words (Fig. 6 gives details). Compared
with NPL, Skip-gram appears to be more available for large-
scale data. Furthermore, by using hierarchical softmax [260]
to identify phrases, Word2vec [261] can extend Skip-gram
from a word-based model to a phrase-based one. Tab. 11
gives details of these models.

In the same way, if taking a graph as the analogy of a
corpus, the thought of word representation can be applied in
graph embedding. Given N nodes picked up from a graph by
random walking which starts or ends at an arbitrary node, a

nodal sequence can be made up with them. After repeating
random walking multiple times, a set of nodal sequences
can be generated. Much as words in sentences, the nodes
appearing in a nodal sequence with higher frequency are
hypothesized to be represented by embeddings with closer
proximity. The feasibility of this transferred thought was
firstly proven by DeepWalk [262], [263]. In detail, Deep-
walk adopts the depth-first searching strategy for generating
random walks Wvr

= (W1
vr
,W2

vr
, ...,Wk

vr
) rooted at an

arbitrary node vr, where Wk+1
vr

is a node randomly picked up
from Wk

vr
’s neighbors. In reality, path Wvr can be recognized

as a particular “sentence”. After denoting the embedding of
each node vi ∈ Wvr

by vi ∈ Rd and denoting its surrounding
context by vj ∈ Wvr

[i − w : i + w] (where the window
size is 2ω + 1), the training process can be run by max-
imizing P (vj |vi) with hierarchical softmax [260] (Tab. 11
gives details). So this way, DeepWalk can well capture and
preserve the high-order proximity between nodes. On the
other hand, by adopting the breadth-first searching strategy
for generating random walks, LINE [264] can concentrate
on the first-order and second-order proximity between nodes,
which is generally called “WideWalk” (Tab. 11 gives details).

However, being in sharp contrast to word representation
whose legitimacy of constructed sentences generally can be
guaranteed by human linguistic knowledge, the legitimacy of
random walks still lacks a recognized examination standard,
which could hurt the accuracy of learned embeddings since
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inaccurate or even incorrect random walks are insufficient
to capture a graph’s global topology. Under this condition,
based on the frameworks of DeepWalk or LINE, designing
more intelligent random walking rules has been the focus
of subsequent research into meta path-based techniques. For
instance, by defining a more flexible notion of node’s neigh-
bors, Node2vec [69] equips random walking with abilities
in identifying nodes of a common community or of similar
roles in a general graph. In detail, Node2vec designs a biased
random walking rule guided by a return parameter p and an
in-out parameter q as

P (vi|vi−1) =
1

Z
αpq(i− 2, i) · ωi−1,i,

αpq(i− 2, i) =


1/p if di−2,i = 0,

1 if di−2,i = 1,

1/q if di−2,i = 2,

(IV.2)

where vi−1 walks from vi−2, vi is a neighbor of vi−1, di−2,i

is the shortest path between vi−2 and vi, Z is a normalization
constant, and ωi−1,i is the weight of edge (i − 1, i) (Tab. 11
gives details). Moreover, as for designing new random walk-
ing rules from a deeper perspective in algebra, NetMF [265]
unifies DeepWalk, LINE and Node2vec into a matrix factor-
ization framework.

In practice, as illustrated in Sec. IV-A1, nodes and rela-
tions in general graphs carry diverse semantics, types and
attributes. However, the above techniques are basically ori-
ented to homogeneous graphs. In order to capture and pre-
serve the multiplicity of heterogeneous graphs (most general
graphs are heterogeneous ones), for instance, PTE [266]
extends LINE to be available on bipartite graphs (Tab. 11
gives details). In addition, by decomposing a bipartite graph
into two homogeneous graphs, BiNE [267] designs a random
walking rule of “rich nodes are getting richer”, in order to
satisfy the power-law distribution phenomenon. Recently,
by means of manually built meta paths [268], [269] based
on expert knowledge, designing random walking rules on
heterogeneous graphs has been a promising solution, which
aims to cover the multiplicity by meta paths as sufficient
as possible. HIN2Vec [270] is a case in point. By captur-
ing multiple relational types between nodes, HIN2Vec can
jointly learn the embeddings of nodes based on training
samples ⟨u, v, r, L(u, v, r)⟩, which indicate that a relation r
exists between u and v when ⟨u, v, r⟩ = 1 and vice versa.
Moreover, during random walking, Metapath2vec/ Metap-
ath2vec++ [271] can capture the diverse nodal and relational
types in meta paths by defining a translation probability
between nodes as

P (vi|vt−1
i−1) =


1

|Nt(v
t−1
i−1)|

(vi, v
t−1
i−1) ∈ E, ϕ(vi) = t,

0 (vi, v
t−1
i−1) ∈ E, ϕ(vi) ̸= t,

0 (vi, v
t−1
i−1) /∈ E.

(IV.3)
Where vt−1

i−1 ∈ Vt−1, Nt(v
t−1
i−1) denotes the Vt type of vt−1

i−1 ’s
neighborhood and vi ∈ Vt. Besides, there are also techniques

[272]–[274] used to represent the multiplicity of relations in
general graphs.

3) Techniques based on deep learning
As illustrated in Sec. III-A3 that deep learning methods are
equipped with abilities in capturing the non-linear features
in a bipartite graph, by the same token it is also true of
those in a general graph. Among them, AutoEncoder [277]
is a representative one, an unsupervised deep learning frame-
work, which is different from those based on supervised
deep learning frameworks in Sec. III-A3. In detail, as shown
in Fig. 6, AutoEncoder consists of two components: the
Encoder and the Decoder. The Encoder can learn the input
X’s embedding, which will be stored in the hidden layer Z.
Then, taking the learned embedding as input, the Decoder
is used to reconstruct X by Y , which is supposed to be
approximate to X as much as possible, by minimizing the
reconstruction error between X and Y . Subsequently, this
framework has matured as different variants. For instance, by
corrupting the input X to X̃ and minimizing the reconstruc-
tion error between X̃ and Y , Vincent et al. [278] can enhance
the robustness of the learned embedding (i.e., Z) (Fig. 6
gives details). Salakhutdinov et al. [279] proposed a multi-
layer version of AutoEncoder named Deep AutoEncoder.
More variants of AutoEncoder include SCAE [280], gener-
alized AutoEncoder (GAE) [281], variational AutoEncoders
(VAEs) [282] and deep hierarchical variational AutoEncoder
(Nvae) [283], to name a few. When it comes to generaliz-
ing the AutoEncoder framework and its variants to general
graph embedding, SDNE [284] provides a semi-supervised
deep model, preserving the second-order proximity between
node pairs by reconstructing their common neighborhoods
with two deep AutoEncoders sharing common parameters.
Meanwhile, SDNE can also preserve the first-order proximity
between nodes by using a Laplacian Eigenmaps-based super-
vised component.

However, one fundamental limitation of the AutoEncoder
framework is that the dimension of hidden layer Z is fixed,
and so are its variants. In truth, if the input X’s dimension is
far higher than that of Z, from X to Z essential information
could be lost through the Encoder, which is insufficient to
represent the original X . For instance, as shown in Fig. 7, if
the input sequence (x1, x2, ..., xn) of Seq2seq [285] is high
in dimension, compressing z1, z2, ..., zn (generated from
(x1, x2, ..., xn) correspondingly) into an embedding with
fixed dimension could lose essential patterns of correlation
among X’s elements. To deal with the issue, by means of the
attention mechanism [286]–[289], attention weights a∗ for z∗
of Seq2seq can be learned, used to quantify z∗’s importance.
In other words, Seq2seq with attention mechanism aims to
distinguish the (generally different) importance of z∗ by
learning their respective attention weights a∗, in order to
pick up the most representative ones which can carry most
of X’s information and to represent them with an embed-
ding as output. This way enables the learned embedding to
maximally represent the primary information of X with a
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TABLE 11. Examples of modeling meta path-based techniques. (1) In Skip-gram, wO and wI denote a word w’s input and output embedding, respectively. N
is the number of words in a corpus, L is the number of words in a sentence (i.e., a training sample) and c is the size of a context. (2) In Word2vec, N ′ is the number
of negative samples, and Pn(w) is a noise distribution. (3) In LINE, the embedding of v is denoted by v when treating v as a vertex while by v′ when a “context”.
(4) In PTE, nodes in a bipartite graph are divided into two sets VA and VB . P (vj |vi) denotes the conditional probability that node vj in set VB is walked from
node vi in set VA.

Technique Random walk strategy Loss function

Skip-gram depth-first search P (wO|wI) =
exp(wT

OwI)∑N
k=1 exp(w

T
kOwkI)

Word2vec depth-first search P (wO|wI) = log σ(wT
OwI) +

N′∑
k=1

Ewk ∼Pn(w)[log σ(−wT
kOwI)]

DeepWalk depth-first search P (uj |vi) =
⌈log |V |⌉∏

l=1

P (bl|vi)

LINE breadth-first search
P1(vi, vj) =

1

1 + exp(−vi · vj)
,

P2(vj |vi) = log σ(v
′T
j · vi) +

∑N′

k=1 Evk∼Pn(v)[log σ(−v
′T
k · vi)]

PTE breadth-first search P (vj |vi) =
exp(vT

j · vi)∑
k∈VB

exp(vT
k · vi)

Node2vec see Eq. (IV.2) P (vj |vi) =
exp(vT

j · vi)∑
k∈V exp(vT

k · vi)

Metapath2vec see Eq. (IV.3) P (vj |vi) =
exp (vT

j vi)∑
k∈V exp (vT

k vi)

Metapath2vec++ see Eq. (IV.3) P (vjt |vi) =
exp (vT

jt
vi)∑

kt∈Vt
exp (vT

kt
vi)

limited dimension. Methodologically, attention weights can
be learned by an attention function mapping a query Q and
a set of key-value pairs K,V to an output (Fig. 7 gives
details). Subsequently, Kim et al. [290] proposed a structured
attention network (SAN), which can take the structured de-
pendency of the attention layer into account. By substituting
a self-attention component used to learn the attention weights
for the RNN structure in the Encoder, Transformer [291]
can support parallel computing (Fig. 7 gives details). The
attention and self-attention mechanisms can also be applied
to the AutoEncoder framework-based general graph embed-
ding. For instance, GATs [292] can construct a masked self-
attention block layer for graph convolution (Fig. 7 gives
details).

B. RECOMMENDATION INVOLVING SIDE INFORMATION
This section retrospects recommendation models involving
side information from two different perspectives: technique-
oriented and scenario-oriented.

Firstly, in technique, extracting properties of users and
items from general graphs and incorporating them into rec-
ommendation can be implemented by the three categories
of techniques retrospected in Sec. IV-A. Based on the
translation-based general graph embedding framework, for

instance, TransRec [293] can generalize TransE to sequen-
tial recommendation, in a manner that regarding a user as
the translation between the pairs of items he sequentially
interacted during a certain period (of course these item
pairs are adjacent in the timeline in terms of this user’s
interactions), which means that as for a user embedding
−→
user the relation

−→
prev. item +

−→
user≈

−→
next. item should

always hold between the embedding of the user’s previous
interacted item

−→
prev. item and that of his next (or sequential)

interacted items
−→

next. item. However, TransRec inherits the
defect of TransE that only be suited for 1-to-1 relations (i.e.,
take different relational types as the same one). In practice,
since user’s next interacted items are usually diverse in types,
distinguishing the diverse relational types between these item
pairs is supposed to be a necessity. By building multiple
semantic-specific matrices for the transition between dis-
tinctive item types, CTransRec [294] can further represent
the different relational types between item pairs, extending
TransRec to the 1-to-n relational translation.

In order to employ the meta path-based general graph em-
bedding framework into recommendation, a common-used
strategy is to base a user-item proximity matrix on random
walks, which will be used as the input of the matrix fac-
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(c) AutoEncoder
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FIGURE 6. Schematics of NPL, Skip-gram, AutoEncoder and SDAE. In (a), a legal sentence wt, wt−1, ..., wt−n+1 is made up with n sequential words, where
w∗ records a word’s index in a corpus. NPL takes the sentence as a training sample and transforms it into x = (C(wt−1), C(wt−2), ..., C(wt−n+1)), where
C(w∗) is the one-hot code of w∗. The training process can be run by maximizing P (wt = α|wt−1, ..., wt−n+1) = softmax(b + Wx + U tanh(d + Hx)),
which represents the probability of wt ’s index to be α. In (b), from a reverse perspective, by taking wt as the input, Skip-gram can reconstruct wt ’s surrounding
context as the output. In (c), according to different tasks, the Encoder can be flexibly constructed, such as by an LSTM [275] in a task of machine translation (MT) or
by a CNN [276] in a task of computer vision (CV). Since it could largely determine the precision of learned embedding in Z as well as the lower bound of
reconstruction error between X and Y , appropriately constructing the Encoder is an important step. In (d), diverse strategies can be adopted in corrupting X to X̃,
like Additive isotropic Gaussian noise (GS), Masking noise (MN) and Salt-and-pepper noise (SP), among which SP is only for binary data.

torization framework to implement recommendation. Take
HIN [295] for instance. In a general graph, HIN hypothesizes
that a user’s preferences for items could be visualized by
random walking along designed meta paths from this user
to items within a boundary centered on this user. Under this
assumption, the accumulated frequency of passes through an
item on the user’s random walks could be recognized as the
item’s proximity with the user, which could further be used
to quantify the user’s preference for this item. Intuitively,
the higher the accumulated frequency is, the more indirect
relations (i.e., paths) between the user-item pair, so the more
possible that an unobserved interaction exists between them.
After implementing the diffusion mechanism on each user,
a global user-item proximity matrix can be built, based on
which the matrix factorization will run for recommendation.
Similarly, by generating multiple local user-item proximity
matrices corresponding to different meta paths, FMG [296]
can learn multiple distributed embeddings for each user-item
pair. These embeddings will be used as the input of FM [153],
which enables FMG to represent the feature interactions
between inter-meta paths. In the practice of various recom-
mendation scenarios, under the meta path-based framework,
designing efficient meta paths which could maximally cap-

ture the diverse characteristics of a general graph to rule
random walking directly determines a model’s recommenda-
tion accuracy. At this point, for instance, by remaining only
the nodes of users and items in meta paths, Shi et al. [297]
designed a graph schema used to distinguish the two nodal
types during random walking. However, manually designing
meta paths could require much expert knowledge. In order
to automatically generate meta paths by random walking
without hand-craft design, by triggering multiple “ripples”
from user’s historical interacted items as centers, RippleNet
[298] can stimulate user’s preference diffusion in a general
graph along hierarchical propagation traces as multiple meta
paths. Besides, by using an LSTM layer [275] to identify
the holistic semantic of meta paths, KPRN [299] can realize
reasoning on meta paths. Chen et al. [300] further took into
account the temporal factors in general graphs and proposed
a temporal meta path guided explainable recommendation
(TMER).

When it comes to applying the deep learning-based gen-
eral graph embedding framework into recommendation, the
AutoEncoder framework motivated a variety of recommen-
dation models. For instance, according to explicit user-item
interactions (i.e., ratings, where the unobserved ones are
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FIGURE 7. Schematics of Seq2seq with attention mechanism, Transformer(self-attention) and GATs. In (a), as an Encoder, Seq2seq can learn the
embedding Z with a fixed dimension compressed from z1, ..., zn (generated from the input x1, ..., xn) by minimizing
p(y1, ..., yT ′ |x1, ..., xT ) =

∏T ′
t=1 p(yt|Z, y1, ..., yt−1), where X = (x1, .., xT ) is the input, y1, ..., yT ′ is the output, and T is generally not equal to T ′. After

incorporating the attention mechanism into Seq2seq, attention weights can be learned by a ∼ p(a|K,Q), where K represents the input X and Q is the result of
the last iteration in the Decoder. Different from the pure Seq2seq where the output Z is directly compressed from z1, ..., zn, in Seq2seq with attention mechanism
the importance of z∗ can be assigned by attention weights a∗. In (b), as for a node i, GATs takes the node’s neighborhood h∗ ∈ RF as the input, based on which

the attention weights between node i and its neighbors can be learned by aij =
exp(LeakyReLU(aT[Whi||Whj]))∑

k∈Ni
exp(LeakyReLU(aT[Whi||Whk]))

, where W ∈ RF ′×F is a shared weight

matrix, a ∈ R2F ′
is a weight vector, Ni is some neighborhood of node i, and || is the concatenation operator. After that, the embedding of the input h′

i ∈ RF ′
can

be learned by hi = σ(
∑

j∈Ni
aijWhj). In (c), the input X = (x1, ..., xn) is firstly mapped into Q∗, K∗ and V∗ through transformation matrices WQ,WK and

WV , respectively, as model parameters. Based on them, z1, ..., zn can be generated by Z = softmax(QKT√
dk

)V , where dk is the dimension of Q∗ and K∗.

Q,K and V are all vectors, among which K is equal to V .

represented by value 0), AutoRec [301] firstly builds a rat-
ing vector with a dimension equaling the number of all
items. Then, this rating vector will be used as the input
of AutoEncoder, which can complete the missing elements
(i.e., ratings 0) in the input as predicted ratings by recon-
structing it. In terms of recommendation based on implicit
user-item interactions, by assuming that user’s preferences
for items should be represented with the corrupted layer
of SDAE because of the possible incompleteness of one’s
observed implicit interactions, Wu et al. [302] applied SDAE
to recommendation. Besides, Liang et al. [303] firstly ap-
plied variational AutoEncoders (VAEs) [282] to recommen-
dation. As a Bayesian version of VAEs, CVAE [304] can
simultaneously employ explicit user-item interactions as well
as item’s profiles into recommendation. Similar in being

equipped with the attention and self-attention mechanisms
to the AutoEncoder framework, recommendation models can
also be incorporated with them, For instance, by means of
the attention mechanism, AFM [305] can weigh the feature
interactions in FM [153]. Xu et al. [306] proposed a multi-
layered long- and short-term self-attention network (LSSA)
for sequential recommendation.

It is positive that the above thoughts of employing general
graph embedding techniques into recommendation have also
made successful attempts in the industry. For instance, by
taking the records about user’s session-based online activities
in Taobao as side information, Alibaba [307] constructed a
weighted and directed network that is comprised of user-
item interactions in a continuous period [308] and that can
be used to extract hidden consumption habits of users to
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promote recommendation accuracy. By taking the semantic
networks, social networks and profile networks of users as
side information simultaneously, SHINE [309] can predict
the sign of a sentiment link (i.e., each of user’s attitudes
towards items) without analyzing textual information like
user’s comments on items.

On the other hand, from a scenario-oriented perspective,
the rest of this section retrospects the utilization of user’s so-
cial information [310]–[312] and location information [313]
as side information in recommendation, in which case recent
years have pioneered the location-based social recommenda-
tion [314] thriving for a long period. In general, user’s online
information can be collected from online social platforms
where users are allowed to express their needs, desires or
attitudes towards items and events by such as tweeting or
posting. This online information usually carries user’s prefer-
ences for items, which is more timely and explicit compared
with user-item interactions [99]. Collecting user’s online
information across multiple social platforms could link these
different platforms together by their shared users. In other
words, diverse side information could be therefore integrated
in this way, which contributes to improving recommenda-
tion accuracy by collaboratively revealing more about user’s
preferences. In this regard, it is not to deny that users are
encouraged to use their social platform accounts (like Twitter
or Weibo) to log on to other online platforms like Amazon or
Taobao, which enables user’s comments on products, a type
of social information revealing one’s hobbies or demands
shared on social platforms, to be employed in e-commerce
recommender systems.

For the purpose of incorporating user’s online social infor-
mation in recommendation, multitudinous recommendation
models were proposed. For instance, by collecting user’s
properties from microblogging, METIS [99] can learn item’s
demographics which could be depicted with the properties of
its interacted users. Methodologically, by means of classifica-
tion algorithms METIS can detect user’s purchase intents and
at the same time can extract item’s demographic attributes
from user’s microblogging information in real-time, based
on which recommendation can be run by matching users and
items. Take MART [315] for another instance. Built on user’s
online social information, MART firstly constructs several
social networks (i.e., a type of general graphs) related to
recommender systems by users as bridges. When coming to a
cold-start user, MART can retrieve the user’s social informa-
tion from these social networks, which would provide valu-
able information for recommendation such as his attributes
like gender, age or career, aiming to analyze his preferences
for items. The rationale behind MART lies in learning a
transformation matrix used to map user’s information of
properties from social networks to his corresponding embed-
dings in recommender systems. Apart from user’s properties,
there is more valuable information from social networks that
could be employed in recommendation. Another instance is
user’s social ties [316], a concept used to distinguish the
strong and weak ties of users’ friendship. With respect to

it, Granovetter et al. [317] exemplified the more crucial role
of weak ties in social networks compared with strong ones,
because the weak ties can largely determine the connection
patterns of clustered components in social networks. Wang
et al. [318] discovered that by distinguishing user’s social
ties in a social network the recommendation accuracy can
be improved. Based on the discovery, by measuring the tie
strength between node pairs with Jaccard’s coefficient to
classify them into strong or weak ones, Wang et al. proposed
TBPR, a recommendation model that can distinguish each
user’s interacted items into five types in order to quantify
user’s different preferences for them. Finally, these distin-
guished preferences will be the input of the BPR framework
[190], used to perform the pair-wise ranking strategy for
training.

Besides, methods of employing user’s location informa-
tion in recommendation are also a recent research focus. For
instance, Wang et al. [319] discovered that more than 80%
of a user’s visited new places are located within a 10km
vicinity of the user’s latest visited places, unraveling the
influence of one’s location information on his decisions of
future visits. The resources of user’s location information are
diverse, among which user’s spatial trajectory information
is a general one collected from user’s mobile techniques,
like GPS [320], WiFi [321] or ad-hoc networks [322] with
permission. Besides, user’s check-in information of visits is
also a source. In contrast with spatial trajectory information,
it requires lower privacy rights because it can be directly
collected from user’s visit records. However, it cannot be
updated in real-time as the spatial trajectory information
does. In fact, a user’s location information is usually related
to his online social information, for one would like to share
profiles of his visited places on social platforms, such as
comments, experiences, photos or moods. To some extent
these profiles can be used to express the motivation of one’s
visits to some places [323] and further be used to uncover
his preferences for them. In this regard, recent research
has explored enhancing the recommendation accuracy by
employing user’s location information as a supplement to
online social information, called the location-based social
recommendation.

For the purpose of incorporating user’s location informa-
tion in recommendation, models of location-based social rec-
ommendation are proposed. For instance, by means of user’s
check-in records to link users and locations, LFBCA [319]
constructs a bipartite graph, based on which the proximity
between user-location pairs can be measured by analyzing
users’ co-visits under the UBCF framework. In addition,
based on PageRank with BCA [324], LFBCA can also utilize
user’s social relationships in uncovering (hidden) relations
between users in the bipartite graph, in order to enhance the
precision of proximity measurement. However, two flaws of
LFBCA were clear. In the first place, ignoring the timeliness
of user’s location information could cause embarrassment,
like recommending a place that is far away from one’s
current location. To deal with it, users can be subdivided
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into two categories: in-town and out-town [325]. Second,
user’s location information is usually sparse because of one’s
limited visits to new places due to the constraints of his
economic or time income. For that, digging out more side
information of places, like their profiles given by users or
local people’s preferences for them [326], as a supplement is
helpful. Among them, place profiles are particularly valuable
because they can reveal sentimental attributes, like user’s
positive or negative attitudes towards these places, which can
be used to infer whether a place meets a user’s sentimental
preferences and needs. For instance, sentimental attributes
can be used to measure the proximity between user-location
or location-location pairs [323], in which case the techniques
of textual sentiment analysis [327], [328] in NLP could wield
its predominance. In recent years, taking into account tem-
poral factors in the location-based social recommendation is
setting off a new tendency [329], [330].

V. KNOWLEDGE GRAPH EMBEDDING FOR
RECOMMENDATION
As illustrated in Sec. II-A2, knowledge graphs are usually
recognized as the most complex case of general graphs.
The complexity of knowledge graphs is characterized by an
extreme abundance of node types and edge types, making
knowledge graph embedding confront several challenges,
like the large-scale, multiplicity and evolution of knowledge
graphs. On the other hand, benefit from their complexity
property of far more diverse carried information compared
to general graphs, knowledge graphs have a virtue of uncov-
ering abundant hidden user-item relations dear to researchers,
in order to enhance the recommendation accuracy.

Feasible as general graph embedding techniques are in
employing knowledge graphs in recommendation, the scal-
ability of them is constrained by the large-scale of knowl-
edge graphs. Defects are not limited to this, general graph
embedding techniques are usually insufficient in capturing
and preserving the features in a high multiplicity of knowl-
edge graphs. Faced with this situation, one way out of
the dilemma was to develop more efficient techniques for
knowledge graph embedding. For that, in the first place,
Sec. V-A illustrates the three challenges of knowledge graph
embedding and retrospects the corresponding solutions (i.e.,
techniques for knowledge graph embedding). Based on that,
Sec. V-B retrospects the application of these techniques in
recommendation from two perspectives: embedding-based
and path-based. Finally, Sec. V-B highlights two promising
research directions.

A. THREE CHALLENGES OF KNOWLEDGE GRAPH
EMBEDDING
In general, knowledge graph embedding meets three chal-
lenges [331]: the large-scale, multiplicity and evolution of
knowledge graphs. The large-scale challenge means that
knowledge graphs are usually too enormous in scale to
be completely observed, making general graph embedding
techniques have difficulty in running with an acceptable

computing complexity. Besides, the multiplicity of knowl-
edge graphs is generally characterized by the following three
cases: graphs with multi-typed nodes and single-typed edges,
graphs with single-typed nodes and multi-typed edges or
graphs with both multi-typed nodes and edges. In view of
these cases, sufficiently capturing and preserving the multi-
plicity is firmly anchored in precisely representing a knowl-
edge graph. For that purpose, general graph embedding tech-
niques would prefer to be used to represent knowledge graphs
but are constrained from doing so by the lack of versatile
expert knowledge in designing meta paths for such complex
knowledge graphs and the general inability of translation-
based techniques in capturing higher-order topological fea-
tures. Moreover, since knowledge is constantly and rapidly
growing in scale and multiplicity, the evolution of knowledge
graphs largely challenges the computing complexity in up-
dating the embeddings once learned from knowledge graphs.

In the face of the large-scale challenge, graph neural
networks (GNNs) [25], [332], [333] can provide an efficient
framework supporting parallel computing and fast response.
The rationale behind GNNs lies in label propagation (or
message passing) [334], [335], which is built on the assump-
tion that each node with its features can be reconstructed by
means of its connection with neighbors as well as its neigh-
bors’ features in a graph. Methodologically, in GNNs each
node consists of two components: aggregator and updater.
By collecting and aggregating the features from a node’s
neighbors, the aggregator can build a node’s context em-
bedding. After that, the node’s context embedding combined
with other input information (like side information) will be
used to generate its embedding by the updater. Furthermore,
by stacking each node’s K different adjacent neighbors or
repeating the propagation process K times on each node,
the receptive field of GNNs can be expanded to a K-hop
graph neighborhood. Subsequently, under the GNNs frame-
work, more variants were proposed, among them transductive
learning [336] and inductive learning [337], [338] are two
prevalent strategies for implementing the label propagation,
where the former aims to infer the labels of unlabelled nodes
based on labeled ones and the latter aims to learn a global
function for labeling. In detail, for example, the inductive
learning strategy takes each node in a graph as both the
receiver and disseminator of information (like features) from
and to its neighbors within specified hops, in which case
the features of nodes can be updated during such a contin-
uous information exchanging process, a parallel computing
process of label propagation used to refine the embeddings
of all nodes until which reaching a global convergence.
Moreover, by extracting a graph’s critical components based
on the spectral sparsification theory [339], spectral methods
[265], [340] can achieve a fast response. By generating new
relationships between hidden semantic properties (such as
analogical properties [341] or circular correlation [342]) to
equip a knowledge graph with enriched topological proper-
ties, generative graph methods [286], [341], [342] can speed
up the learning process on large-scale graphs.
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When it comes to capturing and preserving the multiplicity
of knowledge graphs, GNNs have become adept in represent-
ing both the features and topological structures of knowledge
graphs, in a manner of the label propagation between nodes.
Because GNNs have come to see the merits of constructing
highly expressive embeddings by composing extracted multi-
scale localized spatial features like convolutional neural
network (CNN) [343] dose while being suitable for non-
Euclidean data like graphs. In addition, in terms of building
other effective graph representations which could carry the
multiplicity of a graph as much as possible, on which embed-
ding techniques run, multi-viewed graphs [344] can provide
a clearer view of depicting a heterogeneous graph containing
single-typed nodes and multi-typed edges (Fig. 8 gives exam-
ples). Based on them, multi-viewed graph embedding aims
to integrate the information carried by the different views of
a multi-view graph together (termed as collaboration [345])
and at the same time to preserve their distinctive properties
carried by each view (termed as preservation [345]). In this
way, the learned embeddings can represent both the local fea-
tures of nodes in each homogeneous community (i.e., views)
as well as their global features across different communities.
Methodologically, multi-viewed clustering [346]–[348] and
multi-viewed matrix factorization [217], [349] were two at-
tempts while still lacking sufficient collaboration as a conse-
quence of their simple and independent concatenations of the
learned embeddings from different views. In fact, complet-
ing both the collaboration and preservation is inextricably
tied up with the good performance of multi-viewed graph
embedding. For that purpose, more efficient methods have
been proposed recently. For instance, by building random
walk pairs across different views, Mvn2Vec [345] can capture
the global structure of a graph. In addition, for each node i,
by learning an overall-shared embedding hc

i ∈ Rd of it as
well as its distinctive embeddings hv

i ∈ Rs in a specific
view v, MNE [350] can combine hc

i and hv
i by hv

i =
hc
i + ωvXvThv

i , where XvT ∈ Rs×d is a transformation
matrix and ωv indicates the global importance of view v,
in order to complete the preservation and collaboration for
node i. Among these works, apparently, distributing proper
importance weights ωv to different views is essential [351],
in which case the attention mechanism seems to be promising
assistance.

As for the other case of multiplicity that graphs with both
multi-typed nodes and edges, multi-layered graphs [352]–
[354] provide another category of intuitive graph represen-
tations, which have diverse applications ranging from multi-
scale graph embedding [355], [356] to cross-domain sce-
narios like critical infrastructure systems [357] or collabo-
ration platforms [358]. Among them, the simplest form of
multi-layered graphs is coupled heterogeneous graph, which
consists of two types of nodes and three types of edges
(Fig. 8 gives examples). When it comes to a knowledge graph
about actors and movies, the two layers in Fig. 8 can be
constructed by an actor community representing the cooper-
ation among actors and a movie community representing the

category relations between movies, respectively. The edges
between the two layers can be used to represent the partic-
ipation relationships between actors and movies. Method-
ologically, a variety of translation-based methods have been
proposed recently for coupled heterogeneous graph embed-
ding. For instance, as a node-oriented model, EOE [359] can
map nodal embeddings from different layers to each other
through an overall-shared harmonious matrix. However, such
a node-oriented strategy could neglect the influences of inter-
connection edges between different layers. To deal with that,
an edge-oriented strategy [272], [360] was proposed to take
into account the inter-connection edges. When coming to
a multi-layered graph with enormous layers, applying meta
path-based methods can achieve better computing efficiency.
For instance, by building ruled random walks across different
layers, PMNE [361] can capture the global topological fea-
tures of a coupled heterogeneous graph. Furthermore, based
on the previous example of an actor-movie knowledge graph,
if the attributes of actors and movies need to be represented
with nodes in multi-types in layers, a more complex multi-
layered graph that can distinguish different types of nodes
and edges is required, as shown in Fig. 8 for example. For
that, promising models include GATNE-T/GATNE-I [362]
and DMNE [363], to name a few. One common idea of these
models is to apply fast learning algorithms to represent the
heterogeneous information in each layer efficiently and use
an attention mechanism to learn their different importance.

Capturing and preserving the temporal factors involved in
dynamical knowledge graphs in the face of the evolution
challenge has become a research direction in recent years.
Benefitting from its structure and label propagation (or mes-
sage passing) mechanism, GNNs can be used to represent
dynamic graphs [333]. Other attempts include ctRBM [364],
M2DNE [365], HTNE [366] and TGAT [367], to name a few.
See [368] for an in-depth review.

B. RECOMMENDATION INVOLVING KNOWLEDGE
Embedding-based and path-based are two typical strategies
for equipping the knowledge graph embedding techniques
retrospected in Sec. V-A in recommender systems, in order to
efficiently employ knowledge in recommendation for higher
accuracy and better interpretability.

By learning the supplemental features as embeddings of
users and items from knowledge graphs, the embedding-
based strategy can employ knowledge in recommendation by
methods of cross-domain recommendation or transfer learn-
ing retrospected in Sec. III-A4. Built on this strategy, various
models were proposed. For instance, by means of a textual
knowledge graph, kaHFM [369] can learn item’s embeddings
of semantic features as a supplement to factorization machine
(FM) [153]. After extracting the structural, textual and visual
features of items from three different knowledge graphs,
CKE [370] can construct a synthetic embedding for each
item as a supplement. In general, since the efficiency in
representing the features of entities and relations in knowl-
edge graphs, it is a common-used method to apply GNNs
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(a) A multi-viewed graph

Layer1
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Layer3

(c) A complex multi-layered 

graph

FIGURE 8. Examples of a multi-viewed graph, a coupled heterogeneous graph and a complex multi-layered graphs. In (a), the multi-viewed graph
represents a heterogeneous graph containing single-typed nodes colored in grey and three types of edges colored in green, purple and blue, respectively, where
each view represents a homogeneous component connected by edges of the same type. In (b), the multi-layered graph represents a heterogeneous graph
containing two types of nodes and three types of edges by clustering the nodes into two layers colored in green and blue, respectively, where each layer contains
nodes of the same type and the interconnections between layers are colored in purple. In (c), it is a complex multi-layered heterogeneous graph with cross-domains,
where the intra-connections in each layer are one-typed that belong to a particular domain while the nodes are heterogeneous.

to the embedding-based strategy [335], [371]. Among them,
as for a user, how to accurately measure the high-order
proximity between his interacted items and those far away
from him (named “remote” items) in a knowledge graph is an
open and important issue because the “remote” items can be
recognized as candidates of diverse recommendations to the
user. For such purposes, for instance, by deepening the range
of neighborhood from one hop to multiple hops away, KGCN
[335] can measure the proximity between nodes with a longer
distance. Meanwhile, discriminating the unequal influences
on a node from its different neighbors is another focus.
Based on GATs [292], KGAT [371] builds an attention-based
aggregator that can learn the different contribution weights
from a node’s neighbors. In the same way, in the hyperbolic
space Hyper-Know [372] builds an aggregator that can learn
hyperbolic attention with Einstein midpoint. In the training
process of these models, unobserved edges were used to
be commonly considered as negative samples [86], [212].
However, Togashi et al. [373] uncovered that such a negative
sampling strategy could aggravate the cold start problem
as a consequence of taking new items as negative samples,
leading to biased and sub-optimal recommendation results
toward already popularized items. To make up for the flaw, by
applying pseudo-labeling [374] to distinguish possible weak-
positive pairs in unobserved edges, Togashi et al. proposed
KGPL. Besides, more subsequent works [375], [376] have
been devoted to this focus in recent years.

In contrast to the embedding-based strategy which aims
to learn supplementary features as embeddings of users
and items from knowledge graphs, the rationale for path-
based strategy lies in extracting user-item relations from
knowledge graphs through random walking across mul-
tiple types of nodes and edges guided by designed
meta paths, in order to achieve explainable recommen-
dation [45], [48]–[50]. By following the extracted user-
item relations along multi-hop meta paths, user’s prefer-

ences for items could be better understood [299]. Intu-
itively, take Fig. 2 for example, by following the relations
(or paths) (Alice, Watched, Avengers4)∧(Avengers4, Pro-
duceBy, TWDC)∧(TWDC, Produce, Avengers2) and (Alice,
Watched, Avengers4)∧(Avengers4, StarBy, Robert)∧(Robert,
star, Avengers 2), which shows that Avengers 2 was produced
by the same company as that of Avengers 4 and also has
a common actor in Avengers 4 that Alice watched in the
past, it is deducible that Avengers 2: age of ultron would
meet Alice’s preferences for movies. Apparently, this strat-
egy could equip recommendation with abilities in reasoning
and explainability. Methodologically, in order to precisely
generate random walks on a knowledge graph which are inte-
grated with a bipartite graph containing user nodes and item
nodes, the path-based strategy generally meets the following
three issues: first, how to design reasonable meta paths used
to rule random walking? Second, how to measure user-item
proximity through random walks? Three, how to distinguish
the different importance of multiple random walks in order
to highlight the most valuable ones? As resorts, for instance,
by learning the embeddings of nodes in each random walk,
KPRN [299] can represent the hidden sequential patterns
between nodes, which will be used to learn the random
walk’s embedding representing its holistic semantics through
a long short-term memory (LSTM) [275]. These learned
embeddings of random walks can be used to measure user-
item proximity. Furthermore, by means of a weighted pooling
layer, KPRN can also distinguish the different importance of
multiple random walks between a user-item pair. However,
the pooling layer is built by enumerating all possible random
walks between a user-item pair, requiring a high comput-
ing complexity, particularly on knowledge graphs with an
enormous scale. Alternatively, Xian et al. [377] designed
a soft reward strategy that can quickly highlight the most
valuable random walks between a user-item pair. After taking
into account user’s history click sequences, Zhu et al. [72]
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further proposed a strategy for weighting random walks.
Recently, Chen et al. [300] discovered that ignoring the
temporal factors in user-item interactions could result in less
convincing and inaccurate recommendation explainability.
For that, Chen et al. proposed TMER to construct item-
item instance paths between consecutive items for sequential
recommendation.

In application, there are two promising research direc-
tions of knowledge graph embedding-based recommenda-
tion. One is the conversational recommender system (CRS)
[70], [378]–[380], which is equipped with abilities in chatting
with users, understanding their expressions (i.e., language)
and reasoning their preferences for items on the advice of
semantic knowledge or domain knowledge. The motivation
of CRS lies in taking actives steps to solve the issue of
user privacy infringement encountered by conventional rec-
ommendation systems, like those that manage to collect
side information from user’s social and location information,
which is generally protected as privacy. In contrast, CRS can
straightforwardly ask needed information for recommenda-
tion from users, in which case users have endowed the rights
to determine which information they would prefer to share.
In general, CRS consists of two components [381]: one is
the dialog component designed to interpret human language
into proper machine-readable forms and generate responses
to users through a multi-round natural language conversa-
tional system [382], [383]. The other is the recommendation
component designed to reason user’s preferences for items by
analyzing the content of user-machine conversations, based
on which recommendations can be generated and returned to
users. Based on the two components, the implementation of
CRS basically includes the following three stages: initiation,
conversation and display [384]. In detail, by raising a suitable
question the dialog component can initiate a conversation
with users. This conversation will continue to collect needed
information for recommendation from users through multi-
round questions and answers. After analyzing user’s prefer-
ences for items from the collected information, the recom-
mendation component can pick up possible candidates which
would meet user’s interest and then generate the top-N items
as recommendations returned to users. The three stages will
iteratively implement many rounds till the returned recom-
mendations satisfy users. In addition, by means of knowledge
graphs CRS can also reason on user’s preferences for items,
realizing the explainability of recommendation results. For
example, suppose a user expressed his affection on Avengers
2: age of ultron and Avengers 4: the final battle in con-
versations with CRS. Combined with the knowledge graph
in Fig. 2, CRS can infer that the user may also like other
movies produced by TWDC or stared by Robert. Actually, by
building user’s profiles in the dialog component and match-
ing them with item’s attributes (like reviews [381]) in the
recommendation component as illustrated above, CRS can
be recognized as a content-based recommendation method.
Methodologically, item-oriented method [384]–[389] is the
most common-used implementation for CRS, which aims

to uncover hidden relations between items by employing
knowledge graphs. Furthermore, Zhou et al. [390] discovered
that the word-level enrichment in conversations could reveal
user’s personal habits in word usage and hence would be
valuable to understand user’s preferences. In light of that,
Zhou et al. proposed a word-oriented method, which can
assist the item-oriented models in learning user embeddings.
Recently, research into efficiently guiding users from non-
recommendation scenarios to some desired ones via proac-
tive conversations has become a crucial direction of CRS
[381], [391]–[393].

The other promising direction of knowledge graph
embedding-based recommendation in the application is news
recommender systems [394]–[397]. Compared with recom-
mendation based on non-textual scenarios, since the primary
information for recommendation in news recommender sys-
tems is textual content [398], there raise three more ques-
tions: first, the news is distinctly time-sensitive. In other
words, the relevance to reality makes the news fade away
rapidly over time, where out-of-date news is constantly re-
placed by new ones. Second, user’s interests in the news
are generally topic-sensitive, diversified and changeable, re-
lated to current social focuses and issues. Third, news lan-
guage is generally comprised of both professional knowledge
structured logically and common sense presented causally.
To understand, reason and represent it, techniques in NLP
combined with graph embedding are both required, which are
more sophisticated than previous ones for non-textual recom-
mendation. Equipping content-based recommendation meth-
ods with knowledge as external resources enable the learning
and representation of relatedness between news words as well
as their latent knowledge-level connections more precisely.
For instance, by employing an enormous knowledge graph
in recommendation DKN [398] can build relations between
the word entities identified and extracted from the news,
used to construct a small domain knowledge graph for each
piece of news consisting of these word entities and relations.
Based on the domain knowledge graph, DKN can learn the
embeddings of news pieces through a convolutional neural
network (CNNs) [399].

VI. PERFORMANCE EVALUATION

This section designs and runs control experiments and
displays experimental results on representative graph
embedding-based recommendation models and the most
common-used conventional recommendation models, com-
paring their pros and cons on six tasks related to different
recommendation scenarios, data scales and data sparsity, in
order to make a trade-off between them oriented to specific
scenarios. In the first place, Sec. VI-A designs the experiment
setups, including data sets, evaluation metrics and evaluated
models. Then, Sec. VI-B presents experimental results and
analysis.
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A. EXPERIMENT SETUPS
Although comprehensive evaluations on conventional recom-
mendation models or graph embedding-based recommenda-
tion models did by existed research or published program
libraries [400], [401], there still lacks sufficient comparisons
between both of them under a unified experimental frame-
work, providing little prospect on analyzing and utilizing
their respective strengths to complement each other. For
that gap, this section designs six recommendation tasks for
predicting both implicit and explicit user-item interactions,
based on which several graph embedding-based and con-
ventional recommendation models will be evaluated on five
common-used metrics.

1) Data sets
Three data sets from two different recommendation scenarios
and with distinctive data scales and sparsity used in exper-
iments are described in Tab. 12. Among them, MovieLens
100K1 and MovieLens 1M2 are two data sets from a popular
online movie recommender system named MovieLens where
users are allowed to explicitly express their preferences for
watched movies by giving ratings, which will be used to
implement further movie recommendations. As a control
experimental group, the two data sets record the ratings of
movies given by users while being different from scales and
sparsity, used to evaluate the performance of recommenda-
tion models in the same recommendation scenario but with
different data scales and sparsity. In addition, another data
set is Jester 617K3 recording the ratings of jokes given by
users, which is from a popular joke review platform where
users are allowed to explicitly express their preferences for
jokes.

As explicit user-item interactions, the ratings recorded in
the three data sets are slightly different in value: in Movie-
Lens 100K, user i gave a rating of item j on a scale from
0.5 through 5, i.e.,r(100K)

ij ∈ [0.5, 5], with step 0.5, while
in MovieLens 1M it is r

(1M)
ij ∈ [1, 5] with step 1, and in

Jester 617K it is r
(617K)
ij ∈ [−10, 10] with step 0.0005. For

unity, r(617K)
ij ∈ [-10, 10] is normalized to r

(617K)
ij ∈ [0, 5] by

r
(617K)
ij = 5×

r
(617K)
ij -(-10)

10-(-10)
in experimental settings. Fur-

thermore, by converting the ratings no less than 3 into value 1
while the rest of the ratings less than 3 into value 0, the corre-
sponding implicit user-item interactions can be constructed.
In this way, six different recommendation tasks are designed
for evaluations of recommendation models.

Based on the above settings to implement model evalu-
ations, each of the data sets is organized into tuples (user,
item, rating/0/1) and is randomly split into a training set by
80% of the data set and a test set by 20% of the data set. Fol-
lowing that, recommendation models can implement based

1https://grouplens.org/datasets/movielens/
2https://grouplens.org/datasets/movielens/
3http://eigentaste.berkeley.edu/dataset/

on the observed interactions in the training set, generating
a recommendation list for each user. Then, the hit rate of
the recommendation list can be calculated by checking how
many items recommended to each user meet the observed
interacted ones according to the test set. However, such a
split strategy inevitably yields deviations of the recommen-
dation accuracy based on different realizations (i.e., different
randomly split training-test sets). To assure the reliability
of results, 20 realizations are randomly generated, based on
which each of the six recommendation tasks repeatedly and
independently implement in order to obtain the average and
standard deviation of results.

2) Evaluation metrics
Evaluation metrics [402], [403] used in experiments include
mean absolute error (MAE) [404] and root mean squared
error (RMSE) [296], [404] for evaluations on recommen-
dation accuracy in predicting explicit user-item interactions,
and Precision [319], Recall [319], [326] and Rank [405] for
those in predicting implicit user-item interactions.

Specifically, denote the training sets and test sets as Tr
and Te, respectively, in which only the users and items that
appear both in the training sets and test sets remain while the
ones not satisfying the condition as well as the corresponding
interactions between them are removed. Denote the observed
rating on item j by user i in the test set as rij and the
predicted one as r̂ij . Then, MAE and RMSE are defined as

MAE =
1

|Te|
∑

(i,j)∈Te

|rij − r̂ij |, (VI.1)

RMSE =

(
1

|Te|
∑

(i,j)∈Te

(rij − r̂ij)
2

) 1
2

. (VI.2)

Intuitively, MAE and RMSE can quantify the overall devia-
tion between rij and r̂ij , where a smaller value indicates a
better recommendation accuracy.

For a user i, denote the generated recommendation list
containing the top L predicted items in which the user might
be most likely to be interested as Oi, and denote the items that
the user has interacted with within the test set as Si. Suppose
there are M users in the test set. Then Precision and Recall
are defined as

Precision =

∑M
i=1 |Oi

⋂
Si|

ML
, (VI.3)

Recall =

∑M
i=1 |Oi

⋂
Si|

|Te|
, (VI.4)

where L = 50 in experiments. Intuitively, Precision and
Recall can quantify the hit rate of a recommendation list (i.e.,
in a recommendation list the proportion of items meeting a
user’s interacted items within the test set) in two different
methods. A higher Precision or Recall indicates a better
recommendation accuracy.

Rank is a more fine-grain metric to evaluate the recom-
mendation accuracy. For a user i, denote the Rank of each
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TABLE 12. Descriptions of data sets. Density, defined as the ratio of the observed number of interactions to the maximum possible number of interactions
between all users and items, is used to quantify data sparsity. |U | and V denote the number of users and items, respectively.

Datasets |U | |I| Observed interactions Density(%)
MovieLens 100K 610 9724 100836 1.7
MovieLens 1M 6040 3682 1000209 4.497

Jester 617K 24938 100 616913 24.738

of his interacted item j ∈ Si by Rij =
1

log2(pj + 2)
if item

j appears in Oi, where pj is the ranking position of item j
in Oi that ranging from 0 to L, and 0 otherwise. Then, the
overall Rank of items in Te is defined as

Rank =
1

|Te|
∑

(i,j)∈Te

Rij . (VI.5)

A higher overall Rank indicates a better recommendation
accuracy.

3) Evaluated models
The representative graph embedding-based recommendation
models pioneering subsequent variants in each category
from Secs. III, IV and V are partially selected as evaluated
models in experiments. As benchmarks, some of the most
commonly used conventional recommendation models are
selected. Tab. 13 gives an overview of them.

In detail, as for recommendation tasks for predicting ex-
plicit user-item interactions, three graph embedding-based
recommendation models are selected from Secs. III-A1,
III-A2 and IV-A3, including FunkSVD [78], probabilistic
matrix factorization (PMF) [181] and AutoRec [301], re-
spectively. In addition, factorization machine (FM) [153]
selected from Sec.III-A1 is a representative model used to
tackle the sparsity problem in recommendation. Meanwhile,
as benchmarks, three conventional recommendation models
including Overall Average, user-based k-nearest neighbor
collaborative filtering (UserKNN) [406] and item-based k-
nearest neighbor collaborative filtering (ItemKNN) [28] are
selected, among which Overall Average [13] takes a user’s
average rating on items in the training set as the predicted
rating on his non-interacted items. UserKNN is illustrated
in Sec. II-A4 and ItemKNN is an item-oriented version of
UserKNN. HybridKNN is a combination of UserKNN and
ItemKNN. The recommendation accuracy of these models
in predicting explicit user-item interactions is evaluated by
metrics MAE and RMSE.

As for recommendation tasks for predicting implicit user-
item interactions, three graph embedding-based recommen-
dation models are selected from Sec. III-A3, including gen-
eralized matrix factorization (GMF) [195], multi-layer per-
ceptron (MLP) [195], [407] and neural collaborative filtering
(NCF) [195]. In addition, another evaluated model is TransE
[251] selected from Sec. IV-A1, used to explore the perfor-
mance of the application of models oriented to general graphs
on bipartite graphs. Meanwhile, six conventional recommen-
dation models, including UserKNN [406], ItemKNN [28],

hybrid k-nearest neighbor collaborative filtering (Hybrid-
KNN) [408], heat spreading algorithm (HeatS) [29], prob-
abilistic spreading algorithm (ProbS) [30] and hybrid spread-
ing (HybridS) [409], are selected as benchmarks, among
which HeatS, ProbS and HybridS are models established
on theories of physical dynamics, and HybridS combines
the advantages of ProbS oriented to high recommendation
accuracy and HeatS oriented to high recommendation diver-
sity [410]. The recommendation accuracy of these models
in predicting implicit user-item interactions is evaluated by
metrics Precision, Recall and Rank.

B. RESULTS AND ANALYSIS
On the basis of the above experiment setups, experimental
results of evaluated models in predicting explicit and im-
plicit user-item interactions are shown in Tabs. 15 and 16,
respectively. The hyper-parameter settings in experiments of
evaluated models are given in Tab. 14. Codes and data are
available4.

1) Predicting explicit user-item interactions
In predicting explicit user-item interactions (i.e., ratings),
graph embedding-based recommendation models overall out-
perform conventional recommendation models in recommen-
dation accuracy, in which case such the advantage of graph
embedding-based models becomes more salient with the
increase of data scales while data sparsity seems not to be
a decisive factor. However, graph embedding-based models
are overall less stable than conventional models.

As shown in Tab. 15, the average MAE of graph
embedding-based recommendation models on MovieLens
100K, Jester 617K and MovieLens 1M, which are sorted
by data scales in ascending order, are 4.15% less, 5.86%
less and 13.61% less than that of conventional recommen-
dation models, respectively. At the same time, in terms
of the average RMSE, it is 2.76% greater, 5.05% greater
and 6.32% less than that of conventional recommendation
models, respectively. Apparently, with the increase of data
scales, the average MAE and RMSE of graph embedding-
based recommendation models are getting overall lower
than those of conventional ones. It appears that the ma-
chine learning methodology adopted by graph embedding-
based recommendation models plays a large role in those
experimental results, benefiting from the better data fitting
performance based on a larger data scale. However, when
concerning data sparsity the results in Tab. 15 seem to show

4https://github.com/pitteryue/Recommender-Systems
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TABLE 13. Evaluated models. Corresponding to the data sets, recommendation tasks in experiments are divided into two aspects: predicting explicit and implicit
user-item interactions, respectively.

Recommendation tasks Graph embedding-based models Conventional models (benchmarks)

Predicting explicit
user-item interactions FunkSVD, PMF, FM, AutoRec Overall Average, UserKNN, ItemKNN

Predicting implicit
user-item interactions GMF, MLP, NCF, TransE UserKNN, ItemKNN, HybridKNN

HeatS, ProbS, HybridS

TABLE 14. Hyper-parameter settings. The evaluated models’ hyper-parameter settings in Sec. VI-B follow the principle of making a balance between model’s
recommendation accuracy and computing efficiency. As for the conventional recommendation models, on the three experimental data sets the k-nearest neighbors
(K) of UserKNN, ItemKNN and HybridKNN are set to 10 and the combination ratio (α) of HybridKNN and HybridS is set to 0.5. As for graph embedding-based
recommendation models, the optimal embedding dimension (dim) is searched in the space of [4, 8, 16, 32, 64, 128] and the optimal learning rate (lr) is searched in
the space of [0.1, 0.05, 0.01, 0.005, 0.001]. In addition, as for deep learning-based models, their layers and dropout rate are set by experience. More details are
shown below, where n.a. indicates that a model failed to implement on a data set.

MovieLens 100K MovieLens 1M Jester 617K

UserKNN K=10 K=10 K=10
ItemKNN K=10 K=10 K=10

HybridKNN K=10, α = 0.5 K=10, α = 0.5 K=10, α = 0.5
HybridS α = 0.5 α = 0.5 α = 0.5

FunkSVD dim=4, lr=0.01 dim=8, lr=0.01 n.a.
PMF dim=16, lr=0.01 dim=8, lr=0.01 dim=64, lr=0.01
FM dim=8, lr=0.01 dim=4, lr=0.01 dim=4, lr=0.01

AutoRec dim=4, lr=0.01 dim=32, lr=0.001 dim=8, lr=0.05
GMF dim=128, lr=0.01 dim=128, lr=0.005 dim=4, lr=0.05

MLP dim=64, lr=0.05,
layers=3, dropout=0.5

dim=32, lr=0.005,
layers=3, dropout=0.5

dim=16, lr=0.01,
layers=3, dropout=0.5

NCF dim=128, lr=0.01,0.01,0.005,
layers=3, dropout=0.5

dim=64, lr=0.01,0.01,0.005,
layers=3, dropout=0.5

dim=128, lr=0.01,0.01,0.01,
layers=3, dropout=0.5

TransE dim=128, lr=0.01 dim=64, lr=0.005 dim=128, lr=0.1

TABLE 15. Results on explicit user-item interactions. All results to the nearest 0.001 are averaged over 20 realizations, and the value in brackets is the
standard deviation to the nearest 0.001. To make the comparison clearer, the comparatively lower average MAE and average RMSE of models on each data set are
in bold. Note that n.a. indicates that FunkSVD failed on Jester617K as a consequence of the gradient disappearance and explosion problem [411].

Data sets MovieLens 100K MovieLens 1M Jester 617K
Metrics MAE RMSE MAE RMSE MAE RMSE

Overall Average 0.827 (0.005) 0.909 (0.003) 0.934 (0.001) 0.966 (0.001) 1.144 (0.031) 1.070 (0.015)
UserKNN 0.697 (0.004) 0.906 (0.005) 0.772 (0.001) 0.977 (0.001) 0.960 (0.024) 1.185 (0.030)
ItemKNN 0.717 (0.004) 0.906 (0.005) 0.719 (0.001) 0.908 (0.001) 0.915 (0.021) 1.131 (0.027)

Avg. 0.747 (0.003) 0.907 (0.004) 0.808 (0.001) 0.950 (0.001) 1.006 (0.025) 1.129 (0.024)
FunkSVD 0.705 (0.005) 0.918 (0.006) 0.693 (0.002) 0.887 (0.002) n.a. n.a.

PMF 0.740 (0.006) 0.969 (0.008) 0.694 (0.006) 0.882 (0.007) 0.897 (0.019) 1.132 (0.025)
FM 0.678 (0.009) 0.881 (0.006) 0.682 (0.005) 0.870 (0.003) 0.892 (0.019) 1.123 (0.027)

AutoRec 0.742 (0.006) 0.959 (0.007) 0.724 (0.003) 0.919 (0.004) 1.053 (0.046) 1.304 (0.067)
Avg. 0.716 (0.007) 0.932 (0.007) 0.698 (0.004) 0.890 (0.004) 0.947 (0.028) 1.186 (0.119)

nothing of its role. Although the increase of density from
MovieLens 100K to MovieLens 1M brings overall greater
advantages in MAE and RMSE of graph embedding-based
models beyond conventional models, it is the opposite as the
density continues to increase from MovieLens 1M to Jester
617K. Admittedly, these experimental results are insufficient
to prove the existence of an optimal data sparsity making
the overall recommendation accuracy of graph embedding-
based recommendation models better than that of conven-
tional ones. On the other hand, Tab. 15 shows that graph
embedding-based recommendation models have greater val-
ues of standard deviations of the average MAE and average
RMSE than those of conventional one on all three data sets,
manifesting the overall lower stability of graph embedding-
based recommendation models compared with conventional

ones.

In addition, it can be observed in Tab. 15 that FM out-
performs all other models in recommendation accuracy on
the three data sets. It appears that the rationale for modeling
all interactions between variables (i.e., feature intersection)
behind FM helps uncover richer patterns hidden in sparse
data for a more accurate recommendation, particularly on
MovieLens 100K with the lowest data density. This obser-
vation encourages the research into models like FM that can
base on small and sparse data sets to achieve high enough rec-
ommendation accuracy. Similar to few-shot learning [412],
[413], FM and its variants might be a potential direction for
the future breakthrough.
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TABLE 16. Results on implicit user-item interactions. The length of
recommendation list is set to be 50 (denoted by @50). All results to the
nearest 0.001 are averaged over 20 realizations, and the value in brackets is
the standard deviation to the nearest 0.001. To make the comparison clearer,
the comparatively higher average Precision, average Recall and average Rank
of models on each data set are in bold. Note that as for conventional models
HeatS merely oriented to recommendation diversity is not taken into account
for the average results of recommendation accuracy.

MovieLens 100K
Metrics Precision@50 Recall@50 Rank@50

UserKNN 0.126 (0.002) 0.247 (0.003) 0.078 (0.001)
ItemKNN 0.125 (0.002) 0.245 (0.003) 0.079 (0.001)

HybridKNN 0.141 (0.002) 0.274 (0.003) 0.089 (0.001)
HeatS 0.013 (0.001) 0.024 (0.001) 0.017 (0.051)
ProbS 0.120 (0.002) 0.235 (0.003) 0.075 (0.001)

HybridS 0.128 (0.002) 0.251 (0.004) 0.080 (0.001)
Avg. 0.128 (0.002) 0.250 (0.003) 0.080 (0.001)
GMF 0.099 (0.003) 0.192 (0.005) 0.057 (0.002)
MLP 0.072 (0.004) 0.140 (0.009) 0.040 (0.003)
NCF 0.117 (0.006) 0.228 (0.011) 0.072 (0.004)

TransE 0.055 (0.002) 0.107 (0.004) 0.032 (0.001)
Avg. 0.086 (0.004) 0.167 (0.007) 0.050 (0.003)

MovieLens 1M
Metrics Precision@50 Recall@50 Rank@50

UserKNN 0.155 (0.000) 0.280 (0.001) 0.086 (0.000)
ItemKNN 0.157 (0.000) 0.283 (0.001) 0.086 (0.000)

HybridKNN 0.178 (0.000) 0.322 (0.001) 0.100 (0.000)
HeatS 0.058 (0.002) 0.104 (0.004) 0.021 (0.001)
ProbS 0.127 (0.001) 0.230 (0.001) 0.072 (0.000)

HybridS 0.143 (0.000) 0.259 (0.001) 0.082 (0.000)
Avg. 0.152 (0.000) 0.275 (0.001) 0.085 (0.000)
GMF 0.137 (0.004) 0.248 (0.007) 0.071 (0.003)
MLP 0.100 (0.014) 0.181 (0.026) 0.041 (0.008)
NCF 0.120 (0.015) 0.216 (0.027) 0.050 (0.009)

TransE 0.050 (0.006) 0.089 (0.011) 0.024 (0.003)
Avg. 0.102 (0.010) 0.184 (0.018) 0.047 (0.006)

Jester 617K
Metrics Precision@50 Recall@50 Rank@50

UserKNN 0.034 (0.001) 0.755 (0.020) 0.331 (0.005)
ItemKNN 0.040 (0.000) 0.906 (0.002) 0.383 (0.001)

HybridKNN 0.041 (0.000) 0.913 (0.002) 0.389 (0.001)
HeatS 0.037 (0.000) 0.836 (0.003) 0.288 (0.004)
ProbS 0.042 (0.000) 0.948 (0.001) 0.414 (0.001)

HybridS 0.042 (0.000) 0.948 (0.001) 0.419 (0.001)
Avg. 0.040 (0.000) 0.894 (0.005) 0.387 (0.002)
GMF 0.039 (0.006) 0.879 (0.143) 0.332 (0.081)
MLP 0.042 (0.001) 0.939 (0.021) 0.358 (0.013)
NCF 0.042 (0.000) 0.946 (0.002) 0.365 (0.015)

TransE 0.031 (0.002) 0.705 (0.046) 0.215 (0.025)
Avg. 0.039 (0.002) 0.867 (0.053) 0.318 (0.036)

2) Predicting implicit user-item interactions

In predicting implicit user-item interactions (i.e., 0/1), graph
embedding-based recommendation models overall underper-
form conventional ones in recommendation accuracy on the
three data sets, in which case recommendation scenario
seems to be a decisive factor. Meanwhile, the lower sta-
bility of graph embedding-based recommendation models
than conventional ones as manifested in Sec. VI-B1 is also
embodied in these tasks.

As shown in Tab. 16, graph embedding-based recommen-
dation models underperform conventional ones on Movie-
Lens 100K by 32.81%, 33.20% and 37.50% over average
Precision@50, average Recall@50 and average Rank@50,
respectively. On MovieLens 1M these results of graph

embedding-based recommendation models are 32.89% less,
33.09% less and 44.71% less than those of conventional ones,
respectively. On Jester 617K are 2.50% less, 3.02% less and
17.83% less, respectively. As these results put it, neither data
scale nor sparsity is a decisive factor in recommendation
accuracy. In other words, increasing data scale no longer
brings consistent improvement in recommendation accuracy
for graph embedding-based recommendation models. From
Jester 617K to MovieLens 1M, the average Precision, av-
erage Recall and average Rank of graph embedding-based
recommendation models are lower than those of conventional
ones in a wider gap, while the case from MovieLens 100K to
Jester 617K is the opposite. Meanwhile, it can be observed
that decreasing data sparsity can shorten the accuracy gap
between graph embedding-based recommendation models
and conventional ones in terms of their average results on
MovieLens 1M and Jester 617K, while this case does not
hold on MovieLens 100K and MovieLens 1M. In view of
that, the decisive factor influencing recommendation accu-
racy most likely lies in recommendation scenario distin-
guished by the difference in the relative number of users
and items, for that of Jester 617K, a joke recommendation
scenario dominated by the number of users, is distinguished
from the cases on MovieLens 100K and 1M about a movie
recommendation scenario. When concerning model stabil-
ity, apparently, conventional recommendation models outper-
form graph embedding-based ones in terms of the standard
deviation of their average results on all three data sets.

In conclusion, based on the above experimental results,
this section provides some constructive suggestions on mak-
ing a trade-off between graph embedding-based and conven-
tional recommendation in different recommendation tasks,
and also proposes some open questions for future research.

The graph embedding-based and conventional recommen-
dation perform distinctively on different tasks. First, as for
recommendation accuracy, graph embedding-based recom-
mendation is a prior choice in predicting explicit user-item
interactions, especially when the data scale is large. Mean-
while, in predicting implicit user-item interactions, conven-
tional recommendation could still maintain a priority to graph
embedding-based recommendation without considering the
utilization of side information and knowledge. Second, when
concerning stability, conventional recommendation is always
a prior choice benefit from its less adjustment for hyper-
parameters compared with graph embedding-based recom-
mendation. Third, recommendation efficiency is also a ne-
cessity to be taken into account, especially for practical
applications with big data. In this regard, graph embedding-
based recommendation appears to be always considered as a
priority because of its rationale for reusing the embeddings
once learned for recommendation.

In practice, recommender systems usually involve both
tasks for predicting explicit and implicit user-item interac-
tions. Besides, recommender systems intrinsically develop
from small to large in data scale and from sparse to dense in
data sparsity, especially after being incorporated with side in-
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formation and knowledge. Correspondingly, making a trade-
off between graph embedding-based and conventional rec-
ommendation appears to vary in these different development
stages of recommender systems, as the experimental results
manifest in this section. As suggestions, in recommender sys-
tems’ early developing stages conventional recommendation
could perform well on a small data scale. At the same time its
better explainability compared with graph embedding-based
recommendation provides clearer views on user’s behaviors,
consider as straightforward feedback for guiding a more
adaptive recommendation (models’) configuration. With the
increase of data scale when advancing into the following de-
veloping stages of recommender systems, graph embedding-
based recommendation is supposed to gradually dominate
recommendation configuration for better efficiency and ac-
curacy. In the long run, in order to complement each other
with their respective advantages, a versatile recommendation
configuration mixing conventional and graph embedding-
based recommendation models is an optimal strategy for
improving recommender systems.

However, there still remain a few open questions. First,
does data sparsity determines a model’s recommendation per-
formance? If it does, how? Second, how to select appropriate
models for a specific recommendation scenario? Third, when
designing a recommendation model, is it better to adopt a
task-oriented strategy or a generalization-oriented strategy?

VII. DISCUSSIONS AND OUTLOOK
The rapid development of computing resources and ma-
chine learning methodology contributes to the prevalence
of graph embedding-based recommendation. In summary,
as retrospected in this article, bipartite graph embedding-
based recommendation can provide an extensible framework
based on which the auxiliary information and temporal fac-
tors involved in user-item interactions can be incorporated.
However, it can not sufficiently and efficiently incorporate
side information or knowledge. To fill this gap, general
graph embedding-based recommendation was invented. Fur-
thermore, in order to enhance the abilities of recommenda-
tion models in representing the multiplicity and evolution
of large-scale data, knowledge graph embedding-based rec-
ommendation has recently attracted many scholar attention.
Nevertheless, among these techniques, flaws and challenges
also exist as illustrated in this article. For that, complement-
ing them to each other with their respective advantages is
seemly promising, by such as combining embedding-based
methods with path-based methods or extending shallow mod-
els to deep learning ones like deep matrix factorization [414].
To the end, this section puts forward some open questions
of graph embedding-based recommendation as well as their
correspondingly possible solutions as follows.

A. GRAPH TOPOLOGICAL ANALYSIS FOR
RECOMMENDATION
To promote model accuracy, how could graph topological
analysis contribute to graph embedding-based recommen-

dation? In making great strides in recommender systems
from conventional recommendation to graph embedding-
based one, are we really making much progress on its
performance? This debate has been raised many times in
recent years, where Dacrema et al. [62] threw cold water
on DNN-based recommendation (a recently prevalent focus)
and proved that conventional recommendation models can
still achieve higher accuracy compared to graph embedding-
based ones in some tasks, as verified in Sec. VI. In view
of that, graph topological analysis (the rationale behind
conventional recommendation ) seemly still plays a large
role in model’s accuracy. As yet, recent research into com-
bining graph topological analysis on subgraphs, motifs or
neighborhoods with graph embedding-based recommenda-
tion has come to see the merit in improving the perfor-
mance of model’s accuracy. For future research, analyzing
graph’s higher-order topological characteristics [415]–[418],
namely network cycles, cliques and cavities, and employing
them into graph embedding-based recommendation appears
to be a potential direction, for these characteristics can be
used to uncover higher-order relations between nodes, which
are beyond nodes’ pair-wise relations where most current
methods concentrated. Methodologically, in order to realize
the combination between graph’s higher-order characteristics
and graph embedding-based recommendation, it could resort
to utilizing higher-order graph topology as a guideline for
random walking in some graph embedding-based recommen-
dation models. In addition, it is also positive to base more suf-
ficient graph representations (like hypergraphs [417], [419])
beyond the conventional three categories in Sec. II-A2 on
their higher-order topology. Moreover, designing novel label
propagation (or message passing) mechanisms for GNNs
based on graph’s higher-order topology is also a promising
direction.

B. EXPLAINABLE RECOMMENDATION
Explainable recommendation drives recommendation mod-
els to evolve from machine perceptual learning based on
data fitting to machine cognitive learning for reasoning, long
regarded as a necessity for comprehending user’s preferences
for items, assuring recommendation results’ reliability af-
fecting user’s trust (i.e., users should know why did them
receive these recommendations), and contributing to illumi-
nating the black-box mechanism of graph embedding-based
recommendation (at least in a phenomenon-level). For those
purposes, promising future research directions might include
knowledge-based explainable recommendation [45], [48]–
[50], causal learning (causal inference) [51]–[57] and neural
network interpretability [145].

C. PROTECT USER’S PRIVATE INFORMATION IN
RECOMMENDATION
In practice, explicit interactions and side information (like
social networks) are common-used information for recom-
mendation. However, one might be loath to share with rec-
ommender systems the two kinds of recommendation since
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his privacy could be leaked or even be infringed by others.
From another perspective, perceiving user’s preferences for
items (i.e., explicit interactions) from the frequency of im-
plicit user-item interactions (e.g., click or play counts and
viewing time) would be a potential solution. On the other
hand, instead of escaping from utilizing this privacy-sensitive
information, federated learning [145], [420], [421] is also a
promising solution, which can require for user’s private data
to train several distributed models on user’s local devices
and then upload the parameters of these learned models to
a terminal server to support an aggregated big model. In this
process, user’s privacy remains on their own devices without
being shared with the terminal server. Nevertheless, since
user’s local devices could lack enough computing efficiency
for training a model, efficient embedding techniques for
large-scale data are necessary for federated learning.

D. EMPLOY SOCIAL SCIENCES AND NLP TECHNIQUES
IN RECOMMENDATION

Sufficiently incorporating rich information in recommenda-
tion requires for identification and preservation of hidden
patterns and multiplicity involved in this information by, for
example, identifying different tie strengths in social networks
or distinguishing possible abundant semantics of knowledge,
in which case techniques of such as community detection or
language representation and reasoning play essential roles. In
light of that, social sciences and natural language processing
(NLP) seemly are two fields most likely overlapped with
research into graph embedding-based recommendation. As
conversational recommender systems (CRS) has become a
promising solution to user privacy protection and explainable
recommendation, the techniques of CRS in semantic senti-
ment analysis and dialogue system are largely based on NLP.

In the future, it is conceivable that recommender sys-
tems will be a perpetual theme in the information age,
as long as users have the demand to quickly access their
preferred or needed items from millions of candidates and
commercials have the willingness to efficiently reap prof-
its by their products through Precise Marketing. The rise
of graph embedding-based recommendation is just starting,
underlying challenges are coming, and promising solutions
are sprouting. Expanding the research into graph embedding-
based recommendation from the current focus on recom-
mendation accuracy to improving the diversity and novelty
of recommendation could also broaden its potential appli-
cations. Opening up more applications of graph embedding-
based recommendation in practice would give full play to its
social and commercial values. It is worth noting that more
comprehensive papers about recommender systems can be
found and downloaded on public projects5.

.

5https://github.com/hongleizhang/RSPapers
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