From: AAAI Technical Report WS-98-08. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Recommender Systems
for Problem Solving Environments

Naren Ramakrishnan, Elias N. Houstis and John R. Rice
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907
{naren,enh,jrr}@cs.purdue.edu

Abstract

Traditionally, recommender systems have been stud-
ied in domains that focus on harnessing distributed
information resources, collaborative filtering, informa-
tion aggregation, social schemes for decision making
and user interfaces. In this paper, we present rec-
ommender systems in a different context — primarily
as systems that select (scientific) software appropriate
to a user’s needs. This application is motivated by
the wide acceptance of problem solving environments
(PSEs) which are high level environments for doing
computational science. We give an overview of the do-
main, argue the need for recommender systems and
describe our work in this area. The research issues in
this discipline are also highlighted.

Introduction

Most research in computational science and engineer-
ing involves designing computational models of real-
life scientific phenomena and simulating them with ad-
vanced computing paradigms. Problem solving envi-
ronments (PSEs) are high level environments for doing
computational science (Gallopoulos, Houstis, & Rice
1994). Example PSEs are MATLAB for linear algebra
and ELLPACK, PELLPACK (Houstis & Rice 1992) for
elliptic partial differential equations. Besides provid-
ing all the computational facilities necessary to solve
a target class of problems, PSEs present a natural in-
terface and use the vernacular of the underlying scien-
tific domain, so users can run them without specialized
knowledge of the underlying computer hardware.
Most existing PSEs, however, assume that the choice
of method (algorithm) to solve a given scientific prob-
lem is fixed @ priori (static) and that appropriate code
is located, compiled and linked to yield static pro-
grams. The user (scientist) still needs to select suit-
able software for the problem at hand in the presence
of practical constraints on accuracy, time and cost. A
recommender system for a PSE serves as an intelligent
front—end and guides the user from a high level descrip-
tion of the problem through every stage of the solution
process, providing recommendations at each step.

91

Recommender systems for PSEs are becoming in-
creasingly critical due to several reasons. PSEs and
WWW based ‘Problem Solving Services’ are becoming
more ubiquitous and widely accepted in scientific com-
munities; this has led to a rapid increase in the number
of online algorithms/methods that are made available
to the application scientist; and recommender systems
also aid (indirectly) in the performance evaluation of
scientific software.

Research

The PSE group at Purdue has taken several pioneering
steps in this direction. The PYTHIA system interfaces
with application specific PSEs to recommend software
for specific categories of problems such as partial dif-
ferential equations and numerical quadrature. In ad-
dition to selecting software for these domains, it also
interfaces with the GAMS (Boisvert 1996) mathemat-
ical software ontology (http://gams.nist.gov) to di-
rect the user to an appropriate location from where
the software can be retrieved. In other words, soft-
ware recommendation is complete for these classes of
problems. Please see http://www.cs.purdue.edu/
research/cse/pythia.

We have also developed a kernel (Ramakrishnan
1997) that supports the rapid prototyping of recom-
mender systems. This kernel abstracts the architec-
ture of a recommender system as a layered system
with clearly defined subsystems for problem formula-
tion, knowledge acquisition, performance evaluation &
modeling and knowledge discovery. Work is underway
to create recommender systems for several domains
in computational science ranging from domain decom-
position to the recommendation of high performance
computing architectures.

Issues

e The very nature of the recommendations in this do-
main (specific advice about the efficacy of software)
entails interesting research questions. The software
selection problem, even for specific domains in com-
putational science, is a non-trivial one and our rec-
ommender systems use a methodology that borrows

relevant information from data mining and the per-
formance evaluation of scientific software. One of
the more important research issues is the evolution-
ary improvement in the selection process as more
information is acquired.

o The space of applicable algorithms for specific prob-
lem subclasses is inherently large, complex, ill-
understood and often, intractable by brute—force
means. Approximating the problem space by a rep-
resentation (feature) space also introduces an intrin-
sic error in the modeling sense.

¢ Depending on the way the problem is (re)presented,
the space of applicable algorithms changes; some of
the best algorithms sacrifice generality for perfor-
mance and have specially customized data structures
and routines fine tuned for particular problems or
their reformulations.

o There is an inherent uncertainty in interpreting and
assessing the performance measures of a particular
algorithm for a particular problem. Different im-
plementations of an algorithm produce substantially
large variations in performance measures that render
relying on purely analytic estimates impractical.

e Recommender systems for PSEs need to communi-
cate effectively with users who have little knowledge
about the problems they want to solve plus very lit-
tle understanding of actual algorithms or their per-
formance. It is our experience that successful rec-
ommendations are obtained when information is ob-
tained about either (1) features that are easy to de-
scribe or (ii) features that are easy to determine au-
tomatically by the recommender system. This has
important parallels to areas of Al research such as
deliberation scheduling and resource-bounded rea-
soning.

e The recommender system functionality can also be
extended to provide software delivery in directly us-
able form, in addition to software recommendation.
This is one of the most important challenges facing
networked scientific computing.

o In a multi-agent context where each agent serves as a
recommender system for a specific class of problems,
learning and adaptation techniques are required that
dynamically ‘track’ the changes in the abilities of the
individual agents and also handle situations where
agents appear and disappear over time.

Results

Our design of recommender systems follows a three
pronged strategy: performance evaluation of scien-
tific software, (automatic) feature identification and
an ‘expert’ methodology. Our idea focuses on auto-
matic methods to generate and codify performance
data, modules that conduct automatic characteriza-
tion of functions, boundary geometry, conditions and
domain topology (and make extensive use of features so

92

determined) and most importantly, use relational de-
scriptions of scientific computing objects to influence
software selection.

The important issues in performance evaluation are
how best to conduct performance evaluation, deciding
on test cases and performance criteria, deciding on the
way to represent knowledge about performance data,
modes of collaboration with other servers providing
such information in a networked setting, etc. Pertinent
topics in feature determination are the categories of
mathematical entities for which we need to determine
features, deciding on a good set of features, the kinds
of mechanisms needed to conduct automated feature
determination (symbolic/numeric/imagistic/other), is
it (at all) economic to conduct automated feature iden-
tification (cost factor), elimination of redundancy, etc.
Relevant issues in the knowledge methodology are de-
ciding on the ontological entities that need to be repre-
sented in the knowledge base, what kinds of reasoning
mechanisms are needed, can knowledge from one nu-
merical domain be used for reasoning in another, etc.

As mentioned previously, one of the main goals of a
PSE is to reduce the amount of specification code re-
quired to state the considered scientific problem, to
identify the solver(s) required, to estimate the user
defined solver parameters and to control the execu-
tion of the code in a targeted computational environ-
ment. The PYTHIA kernel supports this functionality
in the Postgres RDBMS environment (Stonebraker &
Rowe 1986). Fig. 1 depicts the layered architecture of
this kernel for the domain of elliptic partial differential
equations (PDEs). The PDE problems and methods
database management subsystem (PMDM) provides
storage for problem and method information, their
mathematical, physical characteristics and numerical
compatibility information., A parametric macro repre-
sentation that uses the very high level languages sup-
ported by the PELLPACK PSE is adopted for this
purpose. The PMDM also identifies classes of PDE
problems and methods based on user defined features
and characteristics. The knowledge acquisition subsys-
tem (KAS) serves to define experiments involving PDE
problems and methods. It generates PELLPACK code,
executes them, collects performance data and logs in-
formation pertaining to a given codified set of prob-
lems. It also facilitates storage of raw performance
data using the selected database schema. The perfor-
mance data management subsystem (PDMS) organizes
and transforms performance data and provides support
for the editing and manipulation of raw performance
data. The performance analysis subsystem (PAS) con-
ducts performance rankings of methods and/or their
software parts for user defined objective levels and or-
ganizes performance knowledge. The knowledge engine
transforms this performance information and automat-
ically generates rules that will be used in knowledge-
driven inference. It also manages and assimilates these
rules. Finally, the PYTHIA recommender system ac-

cepts input from the user at a high level of problem and
constraint specification and performs algorithm selec-
tion and parameter estimation.

Experiments

We now detail results of applying our methodology to
three numerical domains. Exact details of case stud-
ies, problem and algorithm populations and results are
provided.

The first two case studies form the basis of two rec-
ommender systems for PDE solver selection (GAMS
categories I2blala and I2b1a3). Both these studies in-
volve recommending algorithms for classes of linear, el-
liptic, second-order partial differential equations with
rectangular domains (These equations are important in
that they describe the steady state behavior of many
physical systems.). Accuracy is measured as the max-
imum absolute error on the rectangular mesh divided
by the maximum absolute value of the PDE solution.
Performance studies are conducted and the amount
of time required to obtain three levels of accuracy —
10~3, 10~* and 10~% — is tabulated. We use linear
least squares approximations to the profile data as this
allows us to interpolate between the discrete values of
the meshes to specify the size necessary to obtain a
specified accuracy.

For both the PDE studies, we use the population in
(Rice, Houstis, & Dyksen 1981) of 56 linear second-
order elliptic partial differential equations. The pri-
mary motivation for developing this population was to
aid in the performance evaluation of numerical soft-
ware. Forty two of the PDEs from this population
are parameterized which gives rise to a huge number
of PDEs, numbering nearly 200. We use several fea-
tures of these PDEs to aid in algorithm selection. The
principal characteristics used are those of the operator
and right side (analytic, constant coefficients, nearly
singular behavior, oscillatory, jump discontinuity, sin-
gular, peaked, singular derivatives, entire), boundary
conditions (as being mixed, homogeneous, Dirichlet,
Neumann, constant coefficients, etc.) and those of the
domain (unit square, variable square, rectangle, etc.).
The entire gamut of performance data, error reports,
diagnostics, feature information is generated by the
PYTHIA kernel and encoded as logic predicates. For
determining rules about recommendations, the follow-
ing methodology was adopted. We first determine a
rule that has the maximum cover for the performance
data gathered. Then we remove the clauses from the
database that conform to this rule. We then repeat the
process until no more rules can be found. We perform
this procedure for all the three levels of accuracy con-
sidered. This imposes a notion of salience on the rules
which gives a priority ranking to their ordering.

Methods for Elliptic PDEs with Singularities
For this study, we use 37 PDEs from the population
described in (Houstis & Rice 1982). These problems

23

Sample Problem & Method Editing

L

PDE Problems and Methods Sample Problems, Methods
DataBase Management |v. and Classes
Subsystem T —
) A[‘-" Problems
and Methods
Codified | -——| Database
subset of probloy’

and methods

e
Knowledge Acquisition +" Performance information
Subsystem S __from Execution
~
N Raw
. Performance
Performance Data Editing v Database
Performance
l l Data //
Performance Data e
Management Subsystem [~ Transtormed Performance
\\ __’
Ranking Information A I:’;::;::::
(Computational Objectives) . Databage
‘ ‘ o ~ Performance
Performance Analysis [Information
Subsystem B .
- [~ Performance
Automatic f,‘," ,’;'.",',‘3,7,,,,,0, 7 Ranking
Rule Generation, Information — | —_| Information
s —
//
Lo
Knowledge Engine == —
) ‘n"l\—\.;:' - Rules
ules N> Knowledge Base
Managemen! —
e
7 Rules Editing
Recommender System |4~

! l

Target Problem & Solver &
Inference Parameters Machine Resources

Figure 1: Functional organization of the PYTHIA ker-
nel. The kernel can be viewed as an automatic recom-
mender system generator.

are encoded as 3-1, 3-2, 7-1, etc. where the first num-
ber indicates the generic problem and the second num-
ber corresponds to one choice of parameters for the
problem. The methods considered in this study are
the triple modules from the ELLPACK library (com-
binations of discretizer, indexing scheme and linear
solver) — encoded as ‘PS5’, ‘P3C1C’, ‘DCG’, ‘DCG4’,
‘FFT2’, ‘FFT4’, and ‘FFT6.” PS5 is the five-point star
module — a second-order finite difference scheme with
‘as is’ indexing and band Gauss elimination. P3C1C is
a fourth—order collocation scheme with Hermite bicu-
bics and Gauss elimination. DCG uses a second—order
finite difference scheme, Dyakanov iteration with a gen-
eralized marching algorithm and a conjugate gradi-
ent method. DCG4 is the same as DCG except that
it uses Richardson extrapolation to obtain a fourth—
order scheme. FFT2, FFT4 and FFT6 are second,
fourth and sixth order finite difference schemes with
Fast Fourier Transforms.

The rules discovered confirm the statistically discov-
ered conclusion in (Houstis & Rice 1982) that higher
order methods are better for elliptic PDEs with sin-
gularities. They also confirm the general hypothesis
that there is a strong correlation between the order of
a method and its efficiency. More importantly, the
first ten rules discovered impose an ordering of the
various solvers for each of the problems considered in
this study. Interestingly, this ranking corresponds al-
most exactly with the subjective rankings published in
(Houstis & Rice 1982). This shows that very simple
rules capture much of the complexity of algorithm se-
lection in this domain. There were several other inter-
esting inferences drawn. Whenever the DCG method
is best, so is DCG4. The rule that had the maximum
cover from the data was the one which stated that
FFT6 is best for a PDE if the PDE has a Laplacian
operator, homogeneous and Dirichlet boundary condi-
tions and discontinuous derivatives on the right side.
Some of the rules confirm this by recording the signif-
icant presence of a Laplace operator in a majority of
the PDE population. Other rules also indicated when
a certain method is inappropriate for a problem. The
FFT6 module, for example is a ‘bad’ method whenever
the problem has boundary conditions with variable co-
efficients. There are many more such interesting obser-
vations and we mention only the most interesting here.
Finally, an approximate ordering was requested for the
overall population. This gave rise to the ordering —
FFT6, FFT4, FFT2, DCG4, DCG2, PS5. This is per-
tinent because this ranking corresponds most closely
to that for Poisson problems which formed the bulk of
our population. In overall, the rules from this study
performed best algorithm recommendation for 100% of
the cases.

Methods for Elliptic PDEs with Mixed Bound-
ary Conditions For this study, we again use PDEs
from (Rice, Houstis, & Dyksen 1981), but chose specifi-
cally those that have mixed boundary conditions. The

94

main purpose of this study is to determine whether
the introduction of derivative terms in the boundary
conditions! causes any change in the relative efficacies
of various solvers, We consider 5 modules, one finite
element scheme and four others that use finite differ-
ences — ‘HC’, ‘PS5’, ‘DCG’, ‘DCG4’ and ‘MG.’ HC is
a fourth order finite element discretization scheme that
uses collocation with Hermite basis functions, scaled
partial pivoting and band Gauss elimination. MG is a
second order central finite difference scheme that uses
a multigrid technique for the linear system solution.
The remaining solvers are the same as those for the
previous study.

Results from the methodology again resulted in the
confirmation of the hypothesis in (Dyksen, Ribbens,
& Rice 1988) that the introduction of the derivative in
the boundary conditions does result in a degradation of
performance of all the five modules. In particular, the
same rules were inferred when the boundary condition
was changed from Neumann to Dirichlet but the ‘cov-
ers’ influencing these rules was found to come down in
magnitude. This is akin to a loss in the relative level of
confidence for the difference between the performances
of the modules as described in (Dyksen, Ribbens, &
Rice 1988). For this domain, 92% of the recommen-
dations inferred the best solving modules, 3% of them
were second best for the population considered and 5%
of the selections, while not optimal, still achieved the
performance criteria requested.

The rules also confirm the general belief that the
finite element collocation scheme (HC) is the least af-
fected by the introduction of derivatives in the bound-
ary conditions and the 5-point star module (PS5) is
the most affected. This also explains why the multi-
grid method (MG) and the Hermite collocation (HC)
solver are most suited for these problems.

The final study involved recommending algorithms
for one-dimensional numerical integration (GAMS cat-
egory H2a). Given a problem in numerical integra-
tion and constraints on time and accuracy, our recom-
mender system — GAUSS — selects an efficient algo-
rithm to solve it. It is to be emphasized that GAUSS
(Ramakrishnan & Rice 1996) does not evaluate inte-
grals (which is a popular bed for demonstrating con-
cepts in Al) but only recommends algorithms to eval-
uate them.

The libraries from which the routines are obtained
are QUADPACK, NAG, IMSL, PORT, SLATEC,
JCAM and the collected algorithms of the ACM
(TOMS). We have utilized 124 routines from various
sites in this study.

We have used a wide variety of test integrands, most
of them with special properties. The total number of
test integrands used in this study is 286. The inte-
grands are selected so that they exhibit interesting or

'A mixed boundary condition is one which is de-
scribed using both the solution across the boundary and
its outward-pointing normal derivative.

common features such as smoothness (or its absence),
singularities, discontinuities, peaks, and oscillation.
Some of the functions were selected so that they satisfy
the special considerations on which some algorithms
are designed (For example, the routine QDAWO re-
quires that its argument contain a sine or a cosine.).
Most of the functions are parameterized which gener-
ates families of integrands with similar features and
characteristics — this aids in the generalization of the
system. The number of experiments thus rises to a
huge number (286 functions times 124 routines times
10 levels of accuracy = 354, 640). However, some rou-
tines are not applicable to quite a few integrands and
results for a whole family of integrands can be quickly
and automatically determined by scripting programs
in GAUSS.

On examining the rules discovered by GAUSS, we
observe several heuristics about the domain of nu-
merical integration and associated algorithms. It was
found, for example that the adaptive algorithms use
fewer function evaluations to achieve high—accuracy re-
sults than their non—-adaptive counterparts; conversely,
they use more evaluations to meet low—accuracy con-
straints. A high accuracy adaptive algorithm has been
found to be more suitable for an oscillating integrand.
This could possibly be due to the fact that in an oscil-
lating function, subdivisions are spread over the entire
domain of integration and hence a smaller number of
subdivisions are required to achieve a fairly high degree
of accuracy. Conversely, integrands with singularities
or peaks are more amenable to low and medium ac-
curacy adaptive routines. Finally, GAUSS has helped
identify ‘redundant’ algorithms, i.e., algorithms which
perform almost exactly the same for the test functions
considered in this work. For example, on examining
the output generated from GAUSS, it was found that
the rules selecting the algorithms DPCHIA, DCSITG
and DCSPQU contained the same antecedents. On
further examination, one sees that the performance
data for these algorithms is nearly the same. All of
these are routines specially tailored to handle tabu-
lated data — DPCHIA evaluates the given integral us-
ing piecewise cubic Hermite functions, DCSITG eval-
uates the integral of a cubic spline and DCSPQU also
uses spline interpolation. Thus, these three routines
are mathematically very similar and incidentally, they
yield the best overall performance for problems spec-
ified as a table of values. In overall, GAUSS recom-
mended the best known algorithm for 87% of the cases,
selected the second best algorithm 7% of the time and
a reasonable one for 3% of the time.

Summary

The above encouraging results with the prototyping
methodology indicate that recommender systems for
domain specific problem solving environments are fea-
sible. The PYTHIA kernel can be used to automate
the construction of such systems for many related sci-

95

entific and mathematical domains. In addition to
recommending algorithms/software for the above de-
scribed classes of problems, the PYTHIA system also
interfaces with the GAMS ontology to provide real-
time software indexing on the WWW. A more elab-
orate description of this facility is provided in (Ra-
makrishnan et al. 1997). We also direct the interested
reader to (Ramakrishnan 1997) where we describe re-
sults that demonstrate the feasibility of tracking mul-
tiple recommenders with varying abilities.

References

Boisvert, R. F. 1996.
to Available Mathematical
http://gams.nist.gov.
Dyksen, W.; Ribbens, C.; and Rice, J. 1988. The Per-
formance of Numerical Methods for Elliptic Problems
with Mixed Boundary Conditions. Numerical Meth-
ods for Partial Differential Equations Vol. 4:pages
347-361.

Gallopoulos, E.; Houstis, E.; and Rice, J. 1994.
Computer as Thinker/Doer: Problem-Solving Envi-
ronments for Computational Science. IEEE Compu-
tational Science and Enginerring Vol. 1(2):pages 11-
23.

Houstis, E., and Rice, J. 1982, High Order Methods
for Elliptic Partial Differential Equations with Singu-
larities. International Journal for Numerical Methods
in Engineering Vol. 18:pages 737-754.

Houstis, E., and Rice, J. 1992. Parallel ELLPACK: A
Development and Problem Solving Environment for
High Performance Computing Machines. In Gaffney,
P. W., and Houstis, E. N., eds., Programming Envi-
ronments for High-Level Scientific Problem Solving.
North-Holland. 229-243.

Ramakrishnan, N., and Rice, J. 1996. GAUSS: An
Automatic Algorithm Selection System for Quadra-
ture. Technical Report CSD-TR-96-048, Department
of Computer Sciences, Purdue University.
Ramakrishnan, N.; Houstis, E.; Joshi, A.; Rice, J.;
and Weerawarana, S. 1997. Intelligent Networked Sci-
entific Computing. In Proceedings of the 15th IMACS
World Congress, 785-790. Wissensshaft and Technik
Verlag.

Ramakrishnan, N. 1997. Recommender Systems for
Problem Solving Environments. Ph.D. Dissertation,
Dept. of Computer Sciences, Purdue University.

Rice, J.; Houstis, E.; and Dyksen, W. 1981. A Pop-
ulation of Linear, Second Order, Elliptic Partial Dif-
ferential Equations on Rectangular Domains, Part I.
Mathematics of Computation Vol. 36:pages 475-484.

Stonebraker, M., and Rowe, L. 1986. The design of

POSTGRES. SIGMOD Record Vol. 15(2):pages 340-
355.

The NIST Guide
Software. URL:

