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Abstract. Substantial effort is wasted in scientific circles by researchers
who rediscover ideas that have already been published in the literature.
This problem has been alleviated somewhat by the availability of recent
academic work online. However, the kinds of text search systems in pop-
ular use today are poor at handling vocabulary mismatch, so a researcher
must know the words used in relevant documents in order to find them.
This makes serendipitous results unlikely.
We approach the problem of literature search by considering an unpub-
lished manuscript as a query to a search system. With this approach, the
entire text content of the paper can be used in the search process. We use
the text of previous literature as well as the citation graph that connects
it to find relevant related material. We evaluate our technique with man-
ual and automatic evaluation methods, and find an order of magnitude
improvement in mean average precision as compared to a text similarity
baseline.

1 Introduction

Science continues to grow in both numbers of practitioners and depth of knowl-
edge. Unlike the scientific landscape of even a hundred years ago, it is no longer
possible for one researcher to understand everything about even a small cor-
ner of science. As science continues down this path of specialization, the role
of the scientific literature becomes even more important. The scientific paper
is the most effective tool that we have for disseminating scientific discovery. It
allows specialized, geographically disparate scientists to work together in the
process of discovery. In order to maintain the pace of scientific discovery, it is
critical that researchers have easy access to past discoveries. Unfortunately, the
constant growth of the scientific field makes literature access an increasingly
difficult problem.

Searching the scientific literature by computer is not a new idea. The mod-
ern computer science researcher has access to general literature search engines
like Google Scholar [5], CiteSeer [4] and Rexa [13], as well as publisher-specific
engines like those offered by the ACM and IEEE. The best of these engines
incorporate not just query text but also some citation features into the docu-
ment ranking process. The bibliometrics literature provides a series of ideas for
ranking the importance and similarity of scientific works.

Most current literature search systems concentrate on short queries that are
unlikely to describe the nuance of the user’s true information need. In this work,



we instead suppose that the user is able to provide the system with a very long
query; we assume that the user has already written a few pages about the topic,
and is able to submit this document to the search system as the query. With
this additional information, we suppose that we can improve the effectiveness of
the ranked list of documents.

In this recasting of the problem, we no longer assume that the user wants doc-
uments that are topically similar to the query; instead, we assume the user wants
documents that the query document might cite. The distinction is important,
because relevant citations may take many different forms. Some relevant cita-
tions are for recent, topically related work. Other citations are for seminal works
or survey articles; these papers show a weaker topical similarity, but provide
context about the field to the reader. Finally, authors sometimes cite textbooks
and other reference materials as sources of information about algorithms and
standard methods.

We have built a system to explore this citation recommendation problem.
In the process, we have found that simple text similarity computation is not
enough to excel at this task. We show that it is necessary to use graph-based
features in the retrieval process to achieve high quality retrieval results, although
many seemingly useful features offer little benefit. Our evaluation and results are
preliminary, but we provide both automatic and manual evaluations to show the
effectiveness of our model. In conclusion, we call for a fresh look at this task by
the information retrieval community.

2 Related Work

This work depends on the idea that there is some notion of a correct or optimal
set of citations for a paper, or at least there is some partial ordering among
bibliographies. Wouters [20] cites evidence that scientists are intensely personal
about their referencing behavior, and that the accepted model of citation may
change drastically between disciplines. For example, Wouters notes that mathe-
maticians are known for very brief citation lists, while biologists are not afraid
to cite exhaustively. Wouters shows how the process of academic citation has
resisted many attempts to build a comprehensive theory explaining it.

If citing references is a matter of personal taste, then perhaps we can deter-
mine something about the author of a paper from the references they cite. Hill
and Provost prove that this is true; they find that a classifier can determine the
author of a paper with as much as 60% accuracy using only the list of references
at the end of the paper [6]. As may be expected, accuracy rates improve with
more training data, so more prolific authors tend to be easier to identify.

Our goal is to represent the scientific process of citation just well enough that
we can attempt to influence it. Wouters approaches citation as an anthropolo-
gist, trying to define what people do and why. Hill and Provost take a different
approach and show that the citation behavior of different authors is different
enough to act as a kind of fingerprint. We do not attempt to understand or
model this kind of personal behavior in citation. Our ultimate goal is to affect



some kind of change in the scientific process, which we believe may be an easier
task than fully understanding the present state of scientific writing.

The first step toward emulating the citation process is analysis, and the pio-
neer of citation analysis is Garfield and the Science Citation Index [3]. Garfield’s
Science Citation Index was, in effect, a paper version of the publication graph
that our system uses. This index linked authors and their papers, and papers
with the papers they cite. Once this data was made available, the next logical
step was to analyze patterns in the data and to make inferences from that data.
In the article we cite here, Garfield discusses the use of citation analysis to judge
the quality of academic journals. Garfield suggests that citations per work pub-
lished is a reasonable measure of the quality of a journal, and that influence in
science is concentrated in a few highly influential journals. This work is not so
different from what we attempt to do; we want to use this citation data to help
us determine what documents might be cited by a query document. Influence is
clearly an important latent variable in that equation.

This is not to say that citation data has not been used before; in fact, the
field of bibliometrics continues to thrive. White and McCain [19] write that
“Bibliometrics is the study of literatures as they are reflected in bibliographies.”
In bibliometrics, scientific literature is seen as a graph that connects authors,
journals, conferences, schools, companies and papers together. By analyzing this
graph, researchers hope to determine which authors and journals are most influ-
ential, which scientific fields are segregated from one another, and which papers
seem to be similar. It is this last category that interests us most.

Much of the recent work on link-based features in retrieval has been focused
on web pages. PageRank is the best known link-based web retrieval feature [15].
Page et al. consider a mythical web surfer, randomly moving through the web
graph by either following links, or jumping directly to other pages (presumably
by typing the address of a page into a web browser). Since this random walk is
an ergodic Markov chain, it has a unique stationary distribution; the probability
mass of each page in this stationary distribution is its PageRank.

PageRank is a global metric; it does not depend on the query. In contrast,
Kleinberg [8] proposes a query-dependent measure known as HITS. The algo-
rithm starts with an initial set of supposed relevant documents, then searches
the document graph to find those papers that point to the document set, and
those documents that the document set points to. After doing this, the algorithm
iterates to determine which papers are hubs, and which are authorities. The au-
thority scores generated are analogous to PageRank, but are query-dependent.

The task we consider can be considered a traditional retrieval task, in which
case the link metrics shown above are directly applicable. Another way to con-
sider our task is as a link prediction task; we ask the whether the query document
will cite documents in the collection in the future.

Liben-Nowell and Kleinberg [12] consider a variety of graph-based measures
in order to predict new links in a social network. Like us, they focus on the graph
of academic publications. However, instead of predicting the bibliography of a
new document, they try to predict collaborations between existing researchers.



The authors consider a variety of known measures, including PageRank, common
neighbors (similar to bibliographic coupling) and the Katz measure. The authors
find that while their best algorithms perform far better than their baselines, it
is difficult to achieve high accuracy on this collaboration task.

The closest system to the one we describe is CiteSeer [4]. The primary focus of
the CiteSeer research was the automatic extraction of citation information from
research papers found on the web. However, CiteSeer is a successful academic
search engine, and as such is related to our work. The initial query processing
done by CiteSeer is a traditional Boolean search. However, CiteSeer also of-
fers a similar documents search, which can either use textual similarity (cosine
similarity of TF-IDF vectors), header similarity, or a citation similarity (cosine
similarity of TF-IDF vectors of citations, with each citation treated as a term).
These different metrics are distinct searches in the CiteSeer interface, and are
not combined to form one single ranking metric. The authors do not attempt to
evaluate the effectiveness of their similarity searches.

Salton and Buckley [16] survey spreading activation methods for information
retrieval. The spreading activation idea comes from models of cognition, where
concepts occur on a graph, which are proxies for linked neurons. If one graph
node is activated, that activation spreads through graph connections to activate
other nearby nodes. In the document retrieval case, if one document is assumed
to be relevant, documents similar to that document are also assumed to be
relevant.

A different take on the same general idea comes from recent work by Diaz
[1]. While Salton and Buckley envision document scores propagating through a
graph structure, Diaz instead considers the problem of smoothing a function on
a graph. The result is similar; a high score at one graph node is smoothed to its
neighboring nodes.

3 Model

Text similarity is the basis of our retrieval model, as in most text retrieval
systems. Matching the term distribution between two documents is the basis of
document clustering and classification methods, and therefore gives us a strong
base to build from. However, we hypothesize that text similarity will not be
enough to perform well in this task for two reasons. First, authors are known to
create new terminology when writing about new ideas. It stands to reason that
two researchers working independently on the same idea will describe that idea
using different words and concepts. In order for this kind of search system to be
successful, we need to account for this potential change in terminology between
papers. Second, text similarity cannot adequately account for important paper
attributes like quality and authority.

Because of this, our model also exploits the citation information between
papers in the collection. We can think of the papers in the collection as nodes in
a directed graph, where the edges are citations of one paper by another. Since
we assume the query consists of only text and not citations, it is natural to think



of it as a node with no incoming or outgoing edges. We use the text similarity
measure as a proxy for actual citation information only for this node; this allows
us to approximately place the query in the citation graph.

To do this, our system uses a two stage process to find a set of documents
to rank. Let R be the initially empty set of documents to rank. In the first step,
the system retrieves the top 100 most similar papers to the query document and
adds them to R. In the second step, all papers cited by any paper in R are added
to R. In general, this process concludes with a set R that contains 1000 to 3000
documents. Initial experimentation with real academic papers suggested that
over 90% of papers that researchers actually cite would be in R at this point.
Expanding R with a third step (again adding all papers that are cited by some
paper in R) did not appear improve recall.

Publication Year The year the document was published (normalized by
subtracting 1950)

Text Similarity The similarity of the text of this candidate with the
query, as measured by the multinomial diffusion kernel

Co-citation Coupling The fraction of documents that cite this candidate that
also cite documents in the base set

Same Author Binary feature; true if this document is written by the
same author that wrote the query

Katz The Katz graph distance measure
Citation Count Number of citations of this document from all documents

in the corpus

Table 1. A list of the features used in our experimental model

We then rank the documents in R by the features shown in Table 1. Neither
text-based nor citation-based features performed well in isolation. Text-based
features are good for finding recent related work, since papers will use the same
sort of vocabulary. However, text features are not as good at finding conceptu-
ally related work that uses different vocabulary. Textual features are also poor
at establishing authority of documents. Citation features are useful for these
things, but may do a poor job at coverage (since recent documents may have no
citations).

The features are combined linearly to provide a final document score. As
shown in both Joachims [7] and Metzler [14], maximizing data likelihood is not
an effective way to train a model for high performance on the mean average
precision measure. Instead, we use coordinate ascent to find feature weights for
our model.

We use two different evaluations to show the effectiveness of our technique. In
the manual evaluation, we show that the system is capable of finding reasonable
citations for a sample paper from our collection. In the automatic evaluation,
we use real research papers with their citation lists stripped, and evaluate our



system based on its ability to find the true citation list using the mean average
precision metric.

3.1 Model Features

We use publication year as a feature since academic citation tends to focus on
recent literature. There is a legitimate debate about whether this is good or
not; a focus on recent literature allows a discipline to move forward quickly, but
this focus can turn to myopia if important discoveries from older literature are
ignored.

Citation count is also used as a feature in our model. Here we use the total
count of documents that cite a particular document. This is very similar to an
inlink count feature that might be used for web retrieval. Here we are assuming
that heavily cited pages are likely to be cited again.

In the bibliometrics literature, bibliographic coupling and co-citation cou-
pling are used as indicators that two documents are similar. Traditionally these
are compared using Pearson’s r to find a correlation score between the two
documents. We instead use the multinomial diffusion kernel recommended by
Lafferty and Lebanon [10]. In using this kernel, we assume that bibliographies
are generated by multinomial distributions of citations, and then ask whether
the bibliographies of two papers are generated by the same distribution. The
probability of this is the multinomial diffusion kernel:

K(θi, θj) = (4πt)−
|V |
2 e−

1
t arccos2(<

√
θi,
√

θj>)

We use this kernel to measure the textual similarity between two documents
as well, as done in Diaz [1]. Our decision for using this feature was motivated
both by arguments from Lafferty and Lebanon [10] and the availability of code
to generate this feature.

The Katz measure [12] is a measure of distance on a graph. Under the Katz
measure, two graph nodes are considered close if there are many short paths
between them. This gives the following formula:∑

i

βiNi

where Ni is the number of unique paths of length i between the two nodes,
and β is a decay parameter between 0 and 1. In this work, we train both the β
parameter and the weight of this feature on the document score. All paths are
assumed to start from the query document, then go through one of the base set
of textually similar documents, then on to documents that those base documents
cite.

We chose the Katz measure because Liben-Nowell and Kleinberg found it to
be the most useful of the measures they tested. It also gives us some intuition
about what the influential works in a discipline are. The citation count metric is
useful, but perhaps too coarse. For instance, computer science textbooks may be
highly cited sources by students, but are less important sources to researchers.



The Katz measure is computed within the retrieved set of documents, and can
be seen as measuring the authority that this set of documents place on each
other.

4 Experimental Platform

We built a retrieval system to evaluate the effectiveness of our approach. We
created a custom parser for the Indri [17] indexing and retrieval system in order
to parse the Rexa [13] corpus, which is described in the next section. All docu-
ments were stemmed with the Krovetz stemmer [9]. As documents were indexed
by Indri, the system also extracted citation data from the corpus and stored it
in a MySQL database.

We computed the text similarity feature using the data stored in the Indri
index, and stored these similarity values in the database. The citation count and
publication year features were also stored in the database for efficient retrieval
by the ranking component. The rest of the features, such as the Katz measure,
author feature, and co-citation coupling were computed at system runtime.

All ranking experiments were performed on a 3GHz Pentium 4 desktop run-
ning Linux. Training a model on 900 documents takes about an hour, while
running an average query takes about a second.

4.1 Rexa

This research is dependent on a corpus of data collected by the Rexa project at
the University of Massachusetts [13]. The public face of Rexa is a search engine
of scientific literature, like CiteSeer [4] or Google Scholar [5]. Like both of these
systems, Rexa finds literature on the Internet in the form of PDF or PostScript
documents, and uses probabilistic parsing techniques to extract metadata from
these documents, such as title, author and citation information [18]. The result
of the extraction process is a database of papers with extracted metadata, as well
as automatically extracted author and citation graphs. While most research in
the Rexa project has focused on the metadata extraction process, the metadata-
enhanced corpus is an important data source for further research in relational
learning and information retrieval.

Total paper entries 964,977
Papers with text 105,601
Total number of citations (X cites Y) 1.46 million
Total number of cited papers 675,372

Table 2. Statistics from the Rexa collection used in our experiments

The Rexa corpus continues to grow as new papers are crawled. For this re-
search, we use a snapshot of the data from the middle of 2005, as detailed in



Table 2. At this point, approximately 100,000 papers had been processed. The
processing was augmented by bibliographic information from DBLP [11]. This
information provides a canonical version of references. This additional data gives
the collection an interesting composition; it contains almost 1 million paper ref-
erences, but only about 100,000 of these papers contain full text and a references
list. However, almost 700,000 papers are cited by some paper in the collection,
so the citation information in the collection is quite rich.

In both the manual and automatic evaluations, we treated an actual research
paper as a query. In the manual evaluation, we manually check papers retrieved
for relevance. In the automatic evaluation, we match the papers retrieved with
the actual papers cited by the query paper.

5 Manual Evaluation

One possible problem with our automatic evaluation is that it is circular; our
system is attempting to improve the citing ability of authors, but we evaluate
with the papers that authors actually cite. The documents that we hope our
system will find are those that the paper author would not have considered
otherwise; but it is precisely these documents that our automatic evaluation
strategy will consider not relevant.

A full manual evaluation of retrieval accuracy was not possible, but we did
analyze a single retrieval to understand the types of papers our experimental
system returns.

The paper we consider in this publication is “Extensible Kernels are leading
OS Research Astray,” by Druschel, et al. [2]. This paper is a position paper
describing why the authors believe that extensible operating systems are an
important research tool, but that better alternatives exist for end users. The
nature of this paper’s argument means that it will necessarily cite a diverse set
of papers in systems research, and it does; it cites work on extensible kernels,
network stacks, the BSD operating system, and caching systems.

Our system manages to find one of its citations in the top 10 papers re-
trieved, another 8 in the top 100, and 5 more in the top 500. It does not return
3 of the citations. The resulting retrieval has an average precision of 0.052. By
contrast, using the text similarity feature alone finds none of the citations. These
numbers are somewhat incomplete in that they ignore the possibility that the
system found excellent citations that were simply not used by the original pa-
per’s authors. Therefore, we analyzed the top 50 papers retrieved by both our
experimental system and the baseline system. Space constraints keep us from
printing the titles of the papers retrieved, but we summarize our findings here.

Of the top 10 papers retrieved by our experimental model, four are almost
certainly not relevant. The other six are possibly relevant. The top-ranked paper
is about a modular network infrastructure that has some parallels to extensible
operating system kernels. The fourth, seventh and ninth papers are explicitly
about extensible operating systems. The sixth and tenth papers discuss process
fault isolation, which is an important component of the author’s paper.



The top 10 from the baseline system are vaguely on topic, but the quality
appears to be lower than in the experimental model results. Surprisingly, there
is no overlap between this top 10 list and the one retrieved by the experimen-
tal model. Upon evaluating these documents, we believe only three could be
considered relevant to the query.

In the top 50 papers retrieved by the experimental model, we find other
possibly good references. We see some common themes in these papers that are
shared by the query. For example, seven papers discuss specific modifications to
operating systems in order to support specific workloads, which has been a key
driving force in extensible kernel research. Five papers discuss virtualization or
ways that traditional kernel-level computations can be executed in some kind of
protected mode, which is a concept the query paper advocates.

The baseline system retrieves some of the same documents as the experi-
mental model does, but misses some of them as well. In all, we find 12 usable
documents in the baseline system results versus 18 from the experimental sys-
tem.

The findings in this section are merely qualitative, but they serve to support
our automatic experimental methodology shown in the next section.

6 Automatic Evaluation

In order to have an objective evaluation of the system, we used an automatic
evaluation. To do this, we considered a particular paper from the collection as
a query and its citations as the relevant documents. In order to have the best
possible generalization to full text collections, we chose the 1000 documents that
had the highest percentage of citations with full text as well.

We evaluate a text similarity baseline, which returns the top 100 most sim-
ilar documents to the query using the multinomial diffusion kernel mentioned
earlier. Since other models may return more than 100 documents, we also per-
form a truncated evaluation for each model, where only the top 100 documents
are considered. The numbers in the truncated column allow a fair comparison
between the text similarity baseline and the other models.

The results we show here are the result of a 10-fold cross validation experi-
ment. We trained 10 models, each using 900 query documents and a test set of
100 documents. Each document was used as a test document exactly once, and
as a training document exactly nine times. The reported results show the mean
average precision over all 10 experiments, and also the maximum and minimum
value seen.

In order to assess the usefulness of particular features, we performed exper-
iments that removed each feature from the model in isolation. We expect that
if a feature is very useful, the retrieval effectiveness of the system will drop dra-
matically when a feature is removed; if it is not useful, we expect effectiveness to
stay the same. Note that we did not re-train the model for these tests; we only
set the weight of the removed feature to zero.



Full Truncated
Mean Interval Mean Interval

Baseline Text Similarity 0.0079 0.0055 0.0103 0.0079 0.0055 0.0103
Experimental All Features 0.1016 0.0781 0.1251 0.0940 0.0727 0.1153

No Text 0.0675 0.0539 0.0811 0.0612 0.0469 0.0754
No Author 0.0983 0.0747 0.1219 0.0917 0.0701 0.1132
No Katz 0.0335 0.0256 0.0414 0.0257 0.0194 0.0320
No Cite Count 0.1005 0.0771 0.1238 0.0931 0.0718 0.1144
No Date 0.1052 0.0834 0.1269 0.0979 0.0784 0.1174
No Title 0.1016 0.0781 0.1251 0.0940 0.0727 0.1153

Table 3. Results of 10-fold cross validation experiments on a 1000 query set. Results are
reported using the mean average precision metric. Full results represent mean average
precision over the entire retrieved set, while the truncated results reflect mean average
precision computed over the first hundred retrieved documents. Confidence intervals
are based on the t distribution over all 10-folds. All experimental models significantly
outperform text similarity (Wilcoxon, p = 0.01). All experimental models with the
Katz measure significantly outperform the “No Katz” method (Wilcoxon, p = 0.01)

6.1 Results

The results of our experiments are shown in Table 3.
Our experimental results show the effectiveness of our system in various

modes against a text similarity baseline. The confidence intervals come from the
t distribution, which makes a mild normal assumption about our data which
may not be true. However, we also performed the distribution-free Wilcoxon
signed rank test (p < 0.01), which makes no such assumptions. From this, we
find that all experimental models significantly outperform the text similarity
baseline. Also, we find that the “No Katz” experimental model is significantly
outperformed by all other experimental models (p < 0.01). The truncated “No
Text” is significantly outperformed by all models with both the Katz feature
and Text (p < 0.05), although we can conclude nothing about the “No Text”
non-truncated model.

Perhaps surprisingly, text similarity on its own appears to be a poor way
to succeed in this evaluation. The citation metrics play a major role in quality
document ranking.

A second surprise is how little many of the features we used matter in the
final ranking of documents. The author, citation count, publication date and
title text features add little to nothing to the effectiveness of the system. This is
not to say that these features are not correlated with citation, but they appear
to be dominated by the full text and Katz features. Notice that the “No Title”
line of the table is identical to the “All Features” line; this is because the training
process assigned the title a weight of zero in every model we trained.

The Katz measure shows itself to be crucial to the performance of our model.
Without the Katz feature, model performance drops by over half. One way to



interpret this result is that the Katz measure, among all features we use, is the
one that is closest in capturing what actual scientists actually cite.

The “No Text” model relies entirely on author information to find related
documents. This means that the authors of the query are used to find other
documents written by those authors, and then those documents are ranked. No
documents not written by the query’s authors are considered. The performance
here suggests that authors often cite papers twice in successive publications. If
the author feature is removed, the effectiveness of this approach drops to zero
(no documents are retrieved).

7 Conclusion

We find that ranking academic documents is a difficult problem. We find that
using text similarity alone as a retrieval feature is not enough for high quality
retrieval for this task, and that many features that might seem to be useful
are not helpful in increasing retrieval performance. However, we find that using
citation information is critical for ranking documents in a way that reflects how
scientists actually cite.

Further progress in this area will require new evaluation strategies. In this
paper, we have considered only binary relevance, as is used in traditional TREC
tasks. In this task, we must contend with potentially hundreds of papers that
could be relevant, while most conference papers cite only twenty. Assessing dif-
ferent levels of relevance may be necessary to address this distinction.

We hope that this work will spark new interest in the academic literature
search problem. Unlike other tasks, the academic literature search task offers a
real world task where we might expect a user to input an extremely long query,
wait an hour for a result, or wade through hundreds of results in search of the
perfect document. In addition, these documents contain rich citation information
that can be leveraged to find the structure in the corpus. All of these attributes
let us consider approaches to the academic literature retrieval task that would
not be considered practical for a traditional ad hoc task.
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