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Abstract

Background: Predicting a list of plant taxa most likely to be observed at a given geographical location and time is

useful for many scenarios in biodiversity informatics. Since efficient plant species identification is impeded mainly by

the large number of possible candidate species, providing a shortlist of likely candidates can help significantly expedite

the task. Whereas species distribution models heavily rely on geo-referenced occurrence data, such information still

remains largely unused for plant taxa identification tools.

Results: In this paper, we conduct a study on the feasibility of computing a ranked shortlist of plant taxa likely to be

encountered by an observer in the field. We use the territory of Germany as case study with a total of 7.62M records of

freely available plant presence-absence data and occurrence records for 2.7k plant taxa. We systematically study

achievable recommendation quality based on two types of source data: binary presence-absence data and individual

occurrence records. Furthermore, we study strategies for aggregating records into a taxa recommendation based on

location and date of an observation.

Conclusion: We evaluate recommendations using 28k geo-referenced and taxa-labeled plant images hosted on the

Flickr website as an independent test dataset. Relying on location information from presence-absence data alone results

in an average recall of 82%. However, we find that occurrence records are complementary to presence-absence data

and using both in combination yields considerably higher recall of 96% along with improved ranking metrics.

Ultimately, by reducing the list of candidate taxa by an average of 62%, a spatio-temporal prior can substantially

expedite the overall identification problem.

Keywords: Plant identification, Location-based, Classification, Spatio-temporal context, Recommender system,

Occurrence prediction, Plant distribution

Background

Accurate plant species identification represents the basis

for all aspects of plant related research and is an impor-

tant component of workflows in plant ecological research

[1]. Numerous activities, such as studying the biodiversity

richness of a region, monitoring populations of endan-

gered species, determining the impact of climate change

on species distribution, and weed control actions depend

on accurate identification skills. They are a necessity for

physiologists, pharmacologists, conservation biologists,

technical personnel of environmental agencies, or just fun
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for laypersons [2–4]. Expediting the task and making it

feasible for non-experts is highly desirable, especially con-

sidering the continuous loss of plant biodiversity [5] as

well as the continuous loss of plant taxonomists [6]. The

principal challenge in plant identification arises from the

vast number of potential species. Even when narrowing

the focus to the flora of a single country, thousands of

species need to be discriminated. The flora of Germany

exhibits about 3800 indigenous species [7], the British

& Irish flora comprises around 3000 [8], and the flora

of Northern America exhibits about 20,000 species of

vascular plants [9].

However, most species are not evenly distributed

throughout a larger region as they require more or less

specific combinations of biotic and abiotic factors and

resources to be present for their development. Therefore,
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plant species can be encountered within their specific

ranges. The German Biodiversity Exploratories project

[10] studied sites spanning an area of 422 km2 to 1300 km2

and found that on grassland sites 318 to 365 vascular plant

species occurred [11], while on forest sites merely 277

to 376 species were present [12]. These figures represent

less than 10% of the entire German flora. Knowing where

species occur has long been of interest, dating back to

Linné and Humboldt with mapping projects evolving in

terms of coverage and level of detail over time. A geo-

graphic rangemap represents the area throughout which a

species occurs, referred to as ‘extent of occurrence’ by the

International Union for Conservation of Nature (IUCN).

Using range maps as they appear in field guides to support

manual species identification has been state-of-the-art for

quite some time. However, species identification is chang-

ing and the usability of field guides has often been debated.

Taking a user’s current position in the field to estimate

which species could possibly be encountered nearby can

simplify identification tasks and is highly suitable given

today’s prevalence of mobile devices with self-localization

technology.

In this paper, we study whether previously recorded

occurrence information can be used to develop a recom-

mendation system to significantly reduce the number of

species for the identification task. Resulting recommenda-

tions could either be used on their own or be incorporated

into species identification services to improve accuracy

[13]. We conduct a systematic study on different data

sources and aggregation strategies to evaluate how accu-

rately taxa can be retrieved depending on location and

time of a new observation. We select the territory of

Germany as study region since its flora is particularly well

described with curated, openly available databases. In par-

ticular, we use the following two sources of data. First,

grid-based rangemaps published by the Federal Agency for

Nature Conservation via the FLORKART project. Second,

plant observations obtained from the Global Biodiversity

Information Facility (GBIF), a service aiming to mobilize

biodiversity data from museums, surveys, and other data

sources by collating locally digitized and stored data in an

online data search portal [14].

Previous research exists in two different research direc-

tions: species distribution modeling as well as automated

species and object identification.

Species distribution modeling (SDM)

SDMs are associative models relating occurrence or abun-

dance data of individual species at known locations to

information on the environmental characteristics of those

locations (modified from [15], [16]). Once trained, SDMs

can predict suitable habitats for species based on the uti-

lized environmental characteristics. While initial studies

were mainly seeking insight into causal drivers of species

distributions, recent studies focus on predicting distri-

butions across landscapes to gain ecological and evolu-

tionary insights that require extrapolation in space and

time [15].

SDMs utilize occurrence data as answer set while train-

ing the model and identifying a characteristic set of pre-

dictor variables. This enables their application in areas

that have not been intensively sampled or under hypo-

thetically changing conditions, e.g., climate change. How-

ever, using a limited set of predictor variables often

results in limited accuracy and spatial resolution. While

these restrictions are acceptable for ecological and envi-

ronmental research on larger scales, the problem we

study requires spatially fine-grained estimations. Predic-

tion results were found to strongly depend on sampling

bias [17], sampling size [18, 19], and location uncertainty

[20] decreasing the confidence in SDM results [21, 22].

Further challenges for SDMs include the improvement of

methods for modeling presence-only data, model selec-

tion and evaluation as well as proper assessment of model

uncertainty [23].

The Map of Life service uses SDM to provide certain

species range maps for confined geographical areas. Dif-

ferent data sources such as expert species range maps,

species occurrence records, and ecoregions, are aggre-

gated to describe species distributions worldwide [24].

However, the service is hardly of any use for the purpose

of species identification since for example the whole area

of Germany seems to be discretized into≈ 25 tiles and the

only retrieved plant species for this region are ten conifer

species.

The Plant-O-Matic app utilizes SDM to predict a list

of all plant species expected to occur at a user’s location

[25]. For its predictions, the approach uses a 100×100 km

discretization grid and 3.6M observations of 89k non-

cultivated plant species native in America. For rare species

(30k) with only one or two observations the geographic

range is defined as a 75, 000 km2 square area surround-

ing the occurrence locations. For 12k species with three

to four observations, the range is defined as convex hull

enveloping all occurrence points. For the remaining 45k

species with more than five occurrences, range maps were

predicted using the MaxEnt SDM [26]. MaxEnt uses 19

layers of world climate data and 19 spatial filters captur-

ing the geometry of the studied areas as predictor vari-

ables. The approach predicts rather long and non-ranked

species lists given the coarse-grained computational dis-

cretization and the sparse observation data.

Automated species and object identification

We found no study that utilizes the location of an obser-

vation to support the identification of unknown plant

specimen despite intensive research and manifold stud-

ies in this area [27]. Previous studies largely focus on
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image recognition techniques for automated plant species

identification [28], how those can be enhanced by careful

selection of image types [29] and contextual information

such as plant size [30]. However, there exists previous

work onmore general identification problems that utilizes

location data.

Berg et al. used observation time and location of images

for supporting automated bird species identification by

computing spatio-temporal prior probabilities for the bird

species’ occurrences in North America [31]. Bird-sighting

records are discretized into spatio-temporal cubes of 1′

latitude-longitude and six days. The authors compute the

prior at a given location and time as ratio of the esti-

mated density of species observations and the estimated

density of any observation at the same location and time.

The authors used 75M bird-sighting records of 500 bird

species originating from a citizen-science network. By

combining image recognition and the spatio-temporal

prior, top-5 accuracy of correctly identified bird specimen

improved by 15% relatively (≈ 10% absolutely), indicat-

ing that the use of spatio-temporal priors can significantly

support automated species identification.

Tang et al. studied the usage of location context for the

problem of image classification for 100 location-sensitive

classes such as ’Beach’, ’Disneyland’, and ’Mountain’ [32].

They constructed high-dimensional (>80k) feature vec-

tors representing contextual information about images

location. These features are computed per image location

and derived from five sources: (1) a 25×25 km grid-based

discretization of the location (20k dim); (2) normalized

pixel colors from 17×17 px patches of ten map types

referring to average vegetation, congressional district,

ecoregions, elevation, hazardous waste, land cover, pre-

cipitation, solar resource, total energy, and wind resource

(9k dim); (3) regional statistics on age, sex, race, family and

relationships, income, health insurance, education, vet-

eran status, disabilities, work status, and living conditions

(21k dim); (4) hashtag frequency on Instagram at 10 radii

(2k dim); (5) visual context as probability of 594 common

concepts appearing on social media website at 10 radii

(30k dim). Following a dimensional reduction, these con-

text features are concatenated with the visual features and

incorporated into a Convolutional Neural Network before

its softmax layer. The authors report a 19% relative gain

in mean average precision (7% absolute) and a 6% rela-

tive improvement of top-5 accuracy (4.5% absolute). Both

studies clearly suggest that analyzing location and tempo-

ral context of an identification can substantially improve

identification accuracy.

Our approach is unique in that it relies on actual obser-

vation data directly rather than inferring species distri-

bution by means of a model taking these data as input

for training. Being subject to model reliability and data

quality issues [33], SDMs are used to predict a potential

range whereas we base our estimation entirely on fac-

tual observations. Previous studies on automated species

identification have shown the benefit of using location

information for improving identification results. They did

however not investigate the accuracy of ranked taxa rec-

ommendations retrieved directly from occurrence data.

As such observation records are becoming increasingly

available via online services, providing comprehensive

sets of presence-absence as well as presence-only occur-

rence records, we argue that a systematic study is required

that evaluates how spatio-temporal context informa-

tion can be exploited to inform on-site plant species

identification.

Methods

Study region and taxa

We use the territory of Germany as evaluation area for our

study. Besides giving us the opportunity to test our esti-

mations on site, Germany is representative for countries

with well-documented species populations in range maps

and specimen collections. Moreover, active groups of pas-

sionate professionals constantly contribute observation

data [34].

In search of a complete species list, we decided to take

the widely accepted list of ferns and vascular plants of

Germany [35] collected by Wisskirchen and Haeupler [7]

as a basis. The list was revised addressing the following

two issues. First, some taxa are known to be exceptionally

difficult to distinguish from each other, their identifica-

tion relying on very special characters and often being

impossible to accomplish in the field without a reference

collection, even for experts. We subsumed 858 species

belonging to five of these critical taxa [36] under their

respective parent taxa Ranunculus auricomus, Rubus, Sor-

bus, Taraxacum, and Hieracium. Secondly, we excluded

251 hybrid species expected to cause inconsistent and

unreliable identifications. Thus, our list is composed of

2,771 plant taxa containing 2,766 taxa at species level as

well as four at genera and one at aggregate level being

treated as leaves of the taxonomic scheme in our study.

Grid-based presence-absence data

Grid-based presence-absence data stems from large-

scale efforts to systematically map geographic regions.

Being the most comprehensive data source for Germany

and providing data for its entire area, we employ the

FLORKART project. FLORKART is the result of cumula-

tive mapping involving thousands of voluntary surveyors

and literature reviews in several organizational subunits

[37]. The data is freely accessible via the information

system FloraWeb [38] run by the Federal Agency for

Nature Conservation on behalf of the German Network

for Phytodiversity (NetPhyD). In FLORKART, presence of

a species is recorded on the basis of grid tiles, originally
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representing pages of ‘Messtischblatt’ (MTB) ordnance

survey maps with a scale of 1:25,000. Each tile covers a

section of 10’ longitude ×6’ latitude, corresponding to

a surface area of approximately 118 km2 in the north to

140 km2 in the south of Germany. However, only 3.5%

of FLORKART grid tiles are of this coarse-grained res-

olution, with many of them superseded. The majority of

presence-absence information today is provided on the

scale of quarter tiles, subdividing each MTB into four

parts. In spite of the increased resolution each tile still

only carries the binary information whether a species

appears in it or not. Neither exact spatial coordinates of

individual records nor frequency of a species’ occurrence

are known.

FLORKART has proven to be of significant value for

biogeographical analyses and the quality of its data has

been validated in numerous studies, e.g., [39, 40].

FLORKART contains records at all taxonomic levels,

including subspecies and aggregates of species. For this

study, records were revised in order to map them to our

taxa list. In detail, records of child taxa, i.e., subspecies,

forms and varieties of species, were included and sub-

sumed under their respective parent taxon. In result, our

FLORKART dataset contains presence-absence data for

the 2771 vascular plant taxa in our species list. On May

3rd and 4th 2017, we acquired a total of 6.59M records for

these taxa across the 13k (quarter-)MTB tiles entirely cov-

ering Germany.We discarded records that weremarked as

’questionable’ or ’false’ (15k records). The remaining data

were collected during three time periods: before 1950,

between 1950 and 1980, and 1980 until today. In those

cases where FLORKART provides records for a coarse-

grained tile as well as for sub-quadrants within the same

tile, we always consider the newer and higher-resolution

information. This leads to a total of 6,020,296 records

in our dataset, with only 0.54% of those accounting for

coarse-grained tiles and 0.9% accounting for data from

before 1950. A median of 514 taxa occurs per grid cell,

with the 10th percentile being 257 and the 90th percentile

being 758 taxa. Figure 1 displays the spatial density of

the records mapped to the area of Germany as well as

coverage metrics of the FLORKART dataset.

Point-based occurrence records

We use the Global Biodiversity Information Facility

(GBIF) as the most prominent and comprehensive data

source for querying point-based occurrence records for

Germany. Occurrence denotes one observation record of

a certain plant and contains information on the taxo-

nomic description, geographic location, observation type,

and often also the observation time and date. The GBIF

web service aggregates occurrence records of numerous

types, from historic herbarium specimens to citizen sci-

ence projects, e.g., hobbyists sharing geo-tagged species

photos. The data differs considerably from the grid-based

records described above in that it represents presence-

only records being largely non-curated and collected

unsystematically at arbitrary locations.

a b

c

Fig. 1 Characteristics of the FLORKART dataset – a spatial density of occurrence records per grid cell across all taxa; b average distance to nearest

neighbor occurrence per taxon, average over all taxa marked by red line; c frequency distribution of occurrence records per grid cell
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We queried GBIF via the website’s occurrences search

interface, restricting records to the area of Germany and

the biological kingdom of Plantae. All queries [41] were

executed on August 23, 2017. The point-based occurrence

records of interest for our study stem from 1324 datasets

coming from 484 institutions with the largest contributor

’Naturgucker’ providing 27% of the records. We sanitized

the data and filtered out invalid geographical locations,

i.e., missing or implausible coordinates as well as entries

with abnormally poor spatial accuracy. We mapped the

taxa in our list to the GBIF taxonomic backbone using the

’species.search’ method of the GBIF API [42]. For every

taxon, the query contained the accepted scientific name as

well as synonyms, both including the author(s) describing

the taxon. Approximate string matching was applied if the

author naming was following a different convention, e.g.,

abbreviations.

In result, this process lead to a total of 1,598,550 occur-

rence records for 2,640 out of the 2771 taxa of interest

in our study. The records contain a median number of 83

observations per taxon, with a 10th percentile of 4 and a

90th percentile of 1,817 observations per taxon. 86% of

these records include plausible timestamps, e.g., they do

not use default dates like January 1st 1970, and are dis-

tributed as visualized in Fig. 2(b) and (e). While single

records date back to the year 1768 (i.e., herbarium spec-

imen), 99% of the records with plausible timestamp are

from 1950 and later.

In order to better understand how the retrieved GBIF

records are distributed across Germany, we calculated per

taxon the average distance between each observation and

its closest neighbor (see Fig. 2(c)). Lower values indi-

cate a spatial clustering of records, while higher values

show dispersion of records. For comparison, we computed

a

b

c

d

e

Fig. 2 Characteristics of the GBIF dataset – a spatial density of occurrence records per grid cell across all taxa; b record distribution per month of

observation; c average distance to nearest neighbor occurrence per taxon; d frequency distribution of occurrence records per grid cell; e record

distribution per year of observation
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the same metric for the grid-based FLORKART data (see

Fig. 1(b)). The average closest neighbor distance across all

taxa in the GBIF dataset is 21.9 km, while the correspond-

ing value is only 17.9 km for the FLORKART dataset. The

figures and metrics illustrate the irregular distribution of

records and gaps between records across the whole study

region.

We discretized record locations into a regular compu-

tational grid with each cell spanning 30” longitude ×18”

latitude. This discretization was chosen to provide a res-

olution 100 times higher than FLORKART’s quarter tiles

and results in cells of ≈ 0.33 km2 each. We study the

impact of the computational grid’s resolution in its own

subsection below. Only 20% of the grid’s cells are occu-

pied by GBIF records with a median of 4 occurrences, the

10th percentile being 1 and the 90th percentile being 56

records. The record frequency per occupied cell is heav-

ily unbalanced with 50% of all occurrence records being

concentrated in merely 0.8% of the occupied cells (cp.

Fig. 2(d)). Figure 2(a) visualizes occurrences’ spatial den-

sity on a map of Germany with a circle depicting each

record and its given accuracy and each colored pixel rep-

resenting an computational grid cell. The map shows that

even though records are sparse and irregularly distributed,

they are spread across all parts of Germany. When clas-

sifying record locations in terms of land cover [43], 23%

are on non-irrigated arable land, 16% on pastures, 15% in

broad-leaved forests, 14% in coniferous forests, and 10%

on discontinuous urban fabric.

Independent test dataset

For obtaining an independent test set of occurrence data,

we used the image hosting and social media website Flickr

[44], a platform where users can upload and share per-

sonal photographs. We selected this service specifically

because the uploaded images show what people actually

‘see’ and are interested in. We argue that this will to a

large extent correlate with plant species people are inter-

ested in identifying and recording during their daily life.

We used the Flickr API’s ’photos.search’ method to iden-

tify geotagged images labeled with the scientific name

or an accepted synonym of the 2771 taxa considered in

our study. From the images’ metadata we extracted the

timestamp and the location of acquisition. This process

resulted in 28,226 records for 1271 of the 2771 studied

taxa. The summarized statistics are displayed in Fig. 3. In

terms of geographical coverage across Germany, the test

data is very sparse. Merely 0.69% of the computational

grid cells as defined above are occupied having a median

of 1 and a maximum of 1,127 records each. The number

of records per occupied grid cell is biased, concentrated

mainly around major urban areas and points of interest,

but resembles that of GBIF (cp. Fig. 3(d) with Fig. 2(d)).

Regarding land cover, most record locations (24%) are on

discontinuous urban fabric, 19% on non-irrigated arable

land, 12% on pastures, 9% in broad-leaved forests, and 9%

in coniferous forests. Another indication of this dataset’s

highly scattered geographical locations is given by the

average nearest neighbor distances (see Fig. 3(c)) showing

that data records exist on average only every 128.2 km. For

a graphical overview of occurrences’ spatial density and

the amount of geographical coverage see Fig. 3(a).

Problem formalization and aggregation strategies

Given an observer’s location p ∈ P as geographic coor-

dinates and date of observation d, we determine the can-

didate subset Tp,d ⊆ T of all known taxa T that is most

likely to be encountered by the observer. We hypothesize

that spatial and temporal distance to registered occur-

rence records affect an observer’s chance to encounter the

same taxa at their current location in the field. Therefore,

we assign each taxon t ∈ Tp,d a score St,p,d reflecting its

chance of being encountered at p and d.

Tp,d =
{
ti ∈ T |Sti,p,d > 0

}

The result will be a list of taxa, ranked based on scores.

Hence, we denote a taxon’s rank by r and define the

resulting ranked list of candidates T̃p,d as:

T̃p,d =
{
(t, r) : t ∈ Tp,d, r ∈ N : r ∈[ 1, |Tp,d|] ,

∀ti, tj, ri, rj : (ti, ri) ∈ T̃p,d ∧ ti = tj → (tj, rj) /∈ T̃p,d

}

∀(ti, ri), (tj, rj) ∈ T̃p,d : Sti,p,di ≥ Stj ,p,dj → ri < rj .

For our test region of Germany we study the quality of

ranked candidate lists Tp,d by evaluating them based on

the test data introduced above. Test records n = 1 . . .N

are represented as a tuple containing the location pn,

the observation date dn and the labeled taxon tn. We let

Tp,d = Tn for all (pn, dn, tn) in our set of test records with

n representing the index of the test query.

Evaluation metrics

We aim to asses computed candidate subsets Tn in terms

of completeness, compactness, and efficiency of the rank-

ing and therefore introduce the following five metrics.

(1) Average recall R measures the ratio of correctly

retrieved test records in relation to all test records and is

computed as

R =
1

N

N∑

n=1

Rn, with Rn =
{
1, if tn ∈ Tn

0, if tn /∈ Tn
(1)

Average recall is not only computed for the whole

retrieved list but also for subsets thereof, assessing com-

pleteness up to specific list positions. Rk refers to the

average recall up to rank k and is computed by cutting off

the list of results after the k-th position and calculating

the average recall on the remaining sublist (cp. Eq. 1). We

report Rk for k = {20, 514} with 20 items referring to a
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a

b

c

d

e

Fig. 3 Characteristics of the Flickr test data – a spatial density of occurrence records per grid cell across all taxa; b record distribution per month of

observation; c average distance to nearest neighbor occurrence per taxon; d frequency distribution of occurrence records per grid cell; e record

distribution per year of observation

user-friendly shortlist of recommendations and 514 being

the median number of taxa present per FLORKART grid

tile, reflecting the average number of taxa occurring in a

local region.

(2) Average list length LLmeasures the average number

of retrieved candidate taxa across all N test records and is

computed as

LL =
1

N

N∑

n=1

|Tn|. (2)

(3) Average list reduction LR measures across all N test

records the number of retrieved candidate taxa in Tn in

relation to the number of all known taxa T. We intro-

duce this metric to better understand to what extent the

identification problem can be simplified by reducing the

number of potential taxa. Based on the total amount of

taxa |T | and the number of taxa retrieved with the nth test

query |Tn|, LR is computed as

LR =
|T |
N

N∑

n=1

1

|Tn|
. (3)

(4) Mean reciprocal rank MRR measures the ranking

quality of retrieved candidate lists for a set of test records.

The reciprocal rank is the multiplicative inverse of rank

rn of the correct taxon for the nth test query and MRR is

the average of reciprocal ranks for the whole test set of N

queries. A taxon’s reciprocal rank equals 0 if it is not on

the retrieved list Tn. MRR is computed as:

MRR =
1

N

N∑

n=1

1

rn
, with(tn, rn) ∈ T̃n. (4)

(5) Median rankMmeasures the rank which at least half

of selected taxa are ranked higher than and therefore pro-

vides an indication of the results’ compactness. Similar to

MRR, it aims to judge the quality of the ranking and where

in the ranked list the correct taxa appear after ranking. It

is computed as
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M=min

⎧
⎨
⎩s∈N :

s∑

r=1

N∑

n=1

∣∣(tn, r) ∩ T̃n

∣∣≥ 1

2

|T |∑

r=1

N∑

n=1

∣∣(tn, r)∩T̃n

∣∣
⎫
⎬
⎭

(5)

We define five strategies for aggregating multiple grid

tiles and records per taxon depending on their spatial and

temporal characteristics.

Retrieval from grid-based presence-absence data

In a first set of experiments, we evaluate presence-absence

data of the grid tile containing the test location p ∈ P and,

depending on a variable radius parameter, also those in its

vicinity to compute a set of candidate taxa at a given test

location. Since it is not clear how accurate and up-to-date

the available data is, we study how sampling within a cir-

cle around a test point with four increasing radii (1 km,

5 km, 10 km, and 20 km) in addition to sampling at the test

point’s true location affects the quality of retrieved candi-

date taxa Tp,d. The hypothesis being that taxa may extend

their range over time and that in cases where a test point

resides close to the border of a tile, its neighbor tile may be

as relevant as the containing tile itself. We include addi-

tional tiles if their center location p̄ ∈ P̄ falls within the

sampling radius. The subset P̄ ⊆ P contains tiles’ center

locations only.

When considering an area rather than a single point, it

may be necessary to aggregate presence records frommul-

tiple tiles. We select four distinct aggregation strategies

to study their effect on the quality of retrieved candidate

taxa Tp,d. For each taxon ti ∈ T , we compute a score

Sti,p,d based on one of these strategies and sort the list T̃p,d

accordingly. These strategies either consider the relative

frequency of a taxon’s occurrences within those grid tiles

covered by the sampling circle of radius r or a normal-

ized Euclidean distance dist(pa, pb) between the test point

and eligible tiles’ centers defined as those falling within the

sampling circle.

We let Prti,p denote the set of locations within radius r

around p at which taxon ti occurs

Prti,p =
{
pi ∈ P̄ | counts(ti, pi) > 0 ∧ dist(p, pi) ≤ r

}
.

(6)

The function counts : T × P → R yields the number

of taxon occurrences at a location p. The following four

strategies S1 . . . S4 aggregate the individual contributions

of occurrences in Prti,p in order to compute a rank for all

ti ∈ Tp,d .

S1 Relative frequency of occurrence records ranks taxa

based on how often they occur within a radius of tiles

being sampled:

Sti,p,d =
1

|Prti,p|
∑

pj∈Prti ,p

counts(ti, pj). (7)

S2 Weighted relative frequency of occurrence records

ranks taxa based on how often they occur within a

radius with their proportion of contribution being

reduced the farther away they occur from the center:

Sti,p,d =
1

|Prti,p|
∑

pj∈Prti ,p

1

1 + dist(p, pj)
counts(ti, pj).

(8)

S3 Minimum spatial distance to records’ tile centers

ranks taxa within the sampling radius based on their

closest spatial distance to the test location:

Sti,p,d = 1 −
minp∈Prti ,p

dist(p, pj)

maxp∈Prti ,p
dist(p, pj)

. (9)

S4 Average spatial distance to records’ tile centers ranks

taxa within the sampling radius based on each taxon’s

mean spatial distance to the test location:

Sti,p,d = 1 −
1

|Prti,p|

∑
pj∈Prti ,p

dist(p, pj)

maxpj∈Prti ,p
dist(p, pj)

. (10)

In order to obtain the set of taxa Tp,d, we query the grid

tiles across all taxa at a test record’s location p and within

a radius r for obtaining the taxa set Tp,d.

Retrieval from point-based taxon records

We evaluate estimation quality based on GBIF records

using the same four aggregation strategies S1 . . . S4 that

we studied for grid-based presence-absence data and

additionally introduce a strategy S5, which considers tem-

poral distance between the date of a test observation and

point-based occurrence records.

S5 Temporal distance to months with recorded

occurrences ranks taxa based on Gaussian-weighted

average monthly score centered at the current/test

record’s month:

Sti,p,d =
1

|Prti,p|
∑

pj∈Prti ,p

12∑

m=1

countsInMonth(ti, pj,m)

×
1

√
2π

e−
1
2 (m−month(d))2 .

(11)

where the function countsInMonth : T×P×N → R yields

a taxon’s chance of occurring at a particular location dur-

ing a particular month and month : date → N provides

the month of an observation date. S5 is only applicable

for the 86% point-based occurrence records with valid
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timestamp. Considering the granularity in which bloom-

ing periods are usually specified, we discretize records

observation date into either one or two out of twelve

monthly bins proportionally to observation day’s distance

to the middle of the month. We define the temporal dis-

tance between a test record’s month of year m ∈ N :

m ∈[ 1, 12] and that taxa’s occurrences as the weighted

sum of a taxon’s monthly scores having the maximal

weight centered around the current month and decreasing

both ways.

Although potentially being of high precision, GPS loca-

tions always suffer from certain spatial inaccuracies, often

provided as an additional parameter along with the loca-

tion. Over 35% of our GBIF records provide this additional

value characterizing their spatial accuracy. For this rea-

son and to mitigate the sparsity of GBIF point data, we

consider each point of a recorded observation as having

an influence on its surroundings. We treat coordinates of

an occurrence record as center of a circle having a radius

corresponding to its uncertainty with the expectation of

a taxon’s encounter being highest at the center while lin-

early decreasing concentrically. For the remaining records

without any indication of spatial accuracy we assume a

default accuracy of 500m reflecting the average accuracy

of GBIF records providing this information in our study.

Similar to the process described before, we query all point-

based records within a radius r of a test record’s location p

to sample occurrence frequencies and times for obtaining

the taxa set Tp,d.

Retrieval from combined grid- and point-based data

In a final set of experiments, we investigate estimation

quality based on merged grid-based presence-absence

data and point-based taxa occurrence records. We apply

the same five aggregation strategies S1 . . . S5 introduced

above and are interested in understanding whether the

combination of both data sources allows for a more com-

plete and precise estimation of a taxon’s distribution.

Figure 4 illustrates a possible configuration of a map

segment aggregating both data sources for one taxon.

Occurrence records with different accuracies as well as

grid-based presence data at different scales contribute to

an average value of how likely a taxon can be expected at

a user’s location and its surroundings.

Results

We assess the quality of taxa recommendations by mea-

suring how accurately observations from the set of Flickr

test data can be retrieved and report results of a series

experiments on grid-based presence-absence data, point-

based occurrence records, and a combination of both. In

addition, we elaborate on how we run the experiments

computationally efficiently. Metrics reported throughout

this section include average recall (R), average list length

(LL), average list reduction (LR), mean reciprocal rank

(MRR) and median rank (M) as defined in the previous

section.

Ranked retrieval from grid-based presence-absence data

Table 1 summarizes the results of our first set of

experiments retrieving ranked taxa lists from grid-based

presence-absence data. From top to bottom, the table

shows retrieval results at the exact location and for

the four aggregation strategies S1 . . . S4. Per strategy we

aggregate presence-absence data at four radii 1 km, 5 km,

10 km, and 20 km. The columns of the table refer to our

previously introduced evaluation metrics.

We observe a modest average recall of 82.31% when

retrieving test observations from the grid cell at the exact

position of a test record using solely presence-absence

arcmin

0 1 2

Fig. 4 Grid section for a single taxon including area and point occurrences with different extents and uncertainties, respectively. The circle shows

the sampling radius around the test position (red cross) being queried. The opacity of a tile is proportional to the taxon’s likelihood of being

encountered there
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Table 1 Results of ranked taxon retrieval solely using FLORKART grid-based presence-absence data sampled at the exact location and

aggregated for increasing radii around Flickr test observations

Radius [km] R [%] R20 [%] R514 [%] MRR [%] M LL LR

Retrieval at exact location

0 82.31 3.38 64.13 1.11 307 680 4.54

S1: Relative frequency of occurrence records

1 85.40 2.42 68.15 0.79 300 787 3.79

5 92.35 4.62 74.94 1.52 237 1115 2.59

10 94.47 4.78 74.42 1.35 234 1286 2.23

20 96.14 5.65 72.39 1.81 237 1477 1.92

S2: Weighted relative frequency of occurrence records

1 85.40 2.62 68.73 0.95 287 787 3.79

5 92.35 4.36 74.80 1.56 240 1115 2.59

10 94.47 4.74 74.70 1.55 232 1286 2.23

20 96.14 5.71 73.88 1.78 233 1477 1.92

S3: Minimum spatial distance to records’ tile centers

1 85.40 4.00 63.28 1.14 330 787 3.79

5 92.35 2.85 64.58 1.01 357 1115 2.59

10 94.47 2.13 64.25 0.80 375 1286 2.23

20 96.14 2.52 64.23 0.82 379 1477 1.92

S4: Average spatial distance to records’ tile centers

1 85.40 2.06 60.00 0.65 380 787 3.79

5 92.35 0.46 52.91 0.37 470 1115 2.59

10 94.47 0.68 46.32 0.37 520 1286 2.23

20 96.14 0.81 37.00 0.37 615 1477 1.92

data. The recall increases up to 96.14% when aggregating

data within radii of up to 20 km around a test location. R

and LR depend only on the sampling radius and remain

unaffected by the aggregation strategies S1 . . . S4.

While R is noticeably high meaning that an expected

taxon likely appears somewhere on the retrieved list, its

actual rank is rarely at the top as indicated by low MRR

values. The same result is indicated by low median ranks,

e.g., in merely half of the test cases the expected taxon

ranks higher than 234th place using S1 and a radius of

10 km. In general, a higher recall of a larger sampling

radius is achieved at the cost of an extended candidate

list increasing from 680 taxa at the exact location to 1,477

taxa at a radius of 20 km (cp. Table 1). In consequence, we

observe relatively poor ranking quality, illustrated by low

values for R20 and median ranks > 200 at all radii and

across all aggregation strategies.

In terms of MRR, the methods relying on distances

between test point and quadrant centers (S3 and S4)

yield the poorest results. This can be attributed to a

very small variety of unique distances, i.e., most taxa

attaining the same score, which results from the com-

paratively coarse-grained FLORKART grid. The problem

is less severe when relying on taxa frequency (S1 and

S2). Since every FLORKART cell only documents the

presence or absence of a particular taxon and not its

frequency, these strategies are only applicable when the

sampling radius spans multiple FLORKART cells. The

weighted aggregation S2 additionally reduces the influ-

ence of records with increasing distance from the test

location, which allows a finer gradation between center

and neighborhood and thus more diverse score values.

The effectiveness of this strategy is demonstrated by a

14.8% and 318.9% increase inMRR over S1 and S4 respec-

tively as well as an improvement of the median rank

M by 288 positions over S4 when sampling at a radius

of 10 km.

Ranked retrieval from point-based occurrence records

Table 2 summarizes the results of our second set of

experiments on retrieving ranked taxa lists from point-

based occurrence records. Overall, we observe consider-

ably lower recall values compared to the previous set of

experiments. At the exact location (r = 0 km), we achieve

an average recall of 36.36%. However, with an increasing

sampling radius this recall grows to 85.51% at r = 20 km.
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Table 2 Results of ranked taxon retrieval solely using GBIF point-based occurrence records sampled at the exact location and

aggregated for increasing radii around Flickr test observations

Radius [km] R [%] R20 [%] R514 [%] MRR [%] M LL LR

S1: Relative frequency of occurrence records

0 36.36 19.90 36.36 6.61 17 73 262.00

1 43.40 16.43 43.40 5.06 36 142 218.72

5 59.72 11.28 58.04 3.45 89 337 91.61

10 73.15 12.05 69.45 3.41 111 504 16.60

20 85.51 11.12 77.68 2.71 133 752 5.36

S2: Weighted relative frequency of occurrence records

1 43.40 18.15 43.38 5.54 30 142 218.72

5 59.72 14.31 58.54 4.30 70 337 91.61

10 73.15 13.61 70.52 4.05 89 504 16.60

20 85.51 14.98 79.73 3.77 108 752 5.36

S3: Minimum spatial distance to records’ tile centers

1 43.40 12.84 43.44 3.46 51 142 218.72

5 59.72 14.87 58.46 4.12 66 337 91.61

10 73.15 16.00 71.09 4.59 77 504 16.60

20 85.51 16.46 80.62 4.54 92 752 5.36

S4: Average spatial distance to records’ tile centers

1 43.40 14.51 43.39 4.63 55 142 218.72

5 59.72 12.91 58.50 3.99 76 337 91.61

10 73.15 10.48 70.69 2.97 110 504 16.60

20 85.51 9.68 78.83 2.83 136 752 5.36

S5: Temporal distance to months with recorded occurrences

0 36.35 23.12 36.35 7.36 13 73 261.10

1 43.39 19.81 43.39 5.81 24 141 218.97

5 59.71 12.47 58.84 3.60 77 337 91.78

10 73.15 11.21 69.95 3.08 108 503 16.67

20 85.50 7.25 77.88 1.96 168 751 5.37

We evaluated five ranking strategies for the retrieved

taxa lists based on frequency, spatial distance, and tempo-

ral distance of occurrences. At a radius of 0 km, aggrega-

tion strategies S1 and S5 evaluate the exact computational

grid cell of 0.33 km2 a test record falls into, producing

highest MRR associated with lowest recall. The remain-

ing strategies S2 . . . S4 consider spatial distance of records

and can accordingly be applied only if the sampling radius

spans multiple computational grid cells. Though yielding

the same recall at respective radii, they differ in ranking

quality as expressed byMRR andM. While S2 offers high-

est MRR up to 5 km, S3 improves for larger radii with

results for S4 falling in between. Ranking based on tem-

poral distance (S5) operates on the 86% GBIF records

with an existing and valid observation time stamp alone.

This reduced set of records explains the slightly differ-

ing figures in recall, list length, and list length reduction

compared to S1. We found that MRR and median rank

improve considerably when applying S5 making this strat-

egy a promising option. Aggregating point-based records

based on minimum spatial distance (S3) at a radius of

20 km was found to be the best performing strategy, yield-

ing R = 85.51%,MRR= 4.54%, andM = 92.

Ranked retrieval from combined grid- and point-based

data

Table 3 summarizes the results of our third set of experi-

ments retrieving ranked taxa lists from a combination of

grid-based presence-absence data and point-based occur-

rence records.

The combination of both data sources increases recall in

the computed candidate lists for all sampling radii, e.g., at

r = 20 km the individual recall of 96.14% (FLORKART) a

nd 85.51% (GBIF) increase to 97.4% on the combined data.
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Table 3 Results of ranked taxon retrieval using FLORKART presence-absence data in combination with GBIF point-based occurrence

records sampled at the exact location and aggregated for increasing radii around Flickr test observations

Radius [km] R [%] R20 [%] R514 [%] MRR [%] M LL LR

S1: Relative frequency of occurrence records

0 86.62 20.89 74.99 7.20 121 692 4.41

1 89.51 16.99 79.66 5.38 135 810 3.67

5 94.10 11.62 83.88 3.67 155 1142 2.54

10 95.98 12.19 83.03 3.55 160 1320 2.18

20 97.40 11.02 80.09 2.77 165 1525 1.86

S2: Weighted relative frequency of occurrence records

1 89.51 19.67 80.35 6.00 116 810 3.67

5 94.10 15.38 84.33 4.60 131 1142 2.54

10 95.98 15.16 84.38 4.28 127 1320 2.18

20 97.40 15.00 84.08 3.83 128 1525 1.86

S3: Minimum spatial distance to records’ tile centers

1 89.51 2.48 68.07 0.94 330 810 3.67

5 94.10 3.25 66.14 1.05 364 1142 2.54

10 95.98 1.90 65.72 0.84 378 1320 2.18

20 97.40 2.82 67.13 1.04 359 1525 1.86

S4: Average spatial distance to records’ tile centers

1 89.51 3.70 63.18 1.81 374 810 3.67

5 94.10 1.09 52.77 0.66 478 1142 2.54

10 95.98 0.76 45.51 0.43 529 1320 2.18

20 97.40 1.05 36.70 0.42 624 1525 1.86

S5: Temporal distance to months with recorded occurrences

0 36.35 23.15 36.35 7.37 13 73 261.10

1 43.39 19.86 43.39 5.76 25 141 218.97

5 59.71 12.52 58.82 3.60 77 337 91.78

10 73.15 11.06 69.95 3.04 108 503 16.67

20 85.50 7.22 77.87 1.98 167 751 5.37

S2+S5: Combined weighted relative frequency and temporal distance

0 86.62 23.98 75.78 8.85 133 692 4.41

1 89.51 22.09 79.65 7.51 119 810 3.67

5 94.10 17.92 84.49 5.69 118 1142 2.54

10 95.98 18.14 85.25 5.12 112 1320 2.18

20 97.40 17.14 85.52 4.61 115 1525 1.86

Even more beneficial is the combination in terms

of achieved ranking quality resulting in significantly

improved results. Improvements are, for example,

reflected in higher mean reciprocal rank (1.81% vs. 5.69%)

and improved median rank (237 vs. 118) (cp. Table 1, S1

at 20 km with Table 3, S2+S5 at 5 km).

In addition to evaluating the scoring methods by them-

selves, we also studied linear combinations of those and

found weighted spatial frequency with temporal scoring

(see S2+S5 in Table 3) to yield the highest impact onMRR

andM. For S2+S5, the 10th percentile rank is 521, the 90th

percentile 8 and the median rank is 118. Figure 5 shows

the distribution of ranks for the correct taxon per test

record across all individual ranking strategies (S1 . . . S5)

and the combination of spatio-temporal ranking (S2+S5)

at an aggregation radius of 5 km. The figure shows that the

correct taxon is ranked more frequently near the begin-

ning of the list for S1, S2, S5, and S2+S5 and declining

towards the end. The combination of S2+S5 shows addi-

tional benefits especially for the top ranks. S3 and S4
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Fig. 5 Relative and cumulative frequency per rank of correct taxon for recommending Flickr test records from FLORKART and GBIF datasets, using a

search radius of 5 km and six different ranking strategies. The dashed vertical lines mark the median of each distribution

suffer frommore evenly distributed frequencies over most

ranks with a visible maximum around their respective

median beyond the 350th rank.

We also wanted to assess the influence that a richer

set of point-based occurrence records could have on our

result. Therefore, we selected the three sites of the Biodi-

versity Exploratories project [10]: (a) Schorfheide-Chorin,

(b) Hainich-Dün and (c) Schwäbische Alb as test cases.

The sites span areas from 422 km2 to 1300 km2 and have

been intensively investigated for plant species occurrences

during systematic observations performed since 2006.

The data is available on GBIF. However, our Flickr test

observations proved to be very sparse for these regions

with merely 13 records in the area of (a), 113 at (b), and

15 at (c). Given the very rich set of GBIF observations,

we decided to perform a 10-fold cross-validation using

10% randomly selected GBIF occurrence records from the

three areas (Na = 76, 696; Nb = 101, 504; Nc = 104, 968)

as test set and only the remaining 90% as occurrence

records. Table 4 reports results for the best performing

aggregation method yet (S2+S5) and the combined taxa

information consisting of presence-absence data and the

90% occurrence records. Each figure in the table is an aver-

age across the ten cross-validation runs. The results show

that recall R as well as R514 are well above 99% in all three

areas. High median ranks of 33 up to 17 and a R20 of 38%

to 56% show the potential of predicting the sought-after

taxon near the very top of a recommendation list.

Considerations on computational efficiency

Apart from the influencing factors presented above, the

quality of the taxa list depends on an actual implemen-

tation. One important consideration is the resolution

of the computational grid used for binning occur-

rence records within close distance. A trade-off between

required resources in terms of time and space and poten-

tial for improving evaluation metrics has to be made.

We therefore varied the parameter of computational grid

resolution while utilizing the best performing combined

aggregation strategy S2+S5 with a sampling radius of

r = 10 km on joint FLORKART and GBIF data. Our

implementation in C++ uses OpenMP to optimize for

parallel execution where possible and was run on a state-

of-the-art 10-core, 128GB RAM workstation. Resolution,

Table 4 Results of ranked taxon retrieval in selected regions using combined using FLORKART areal data with 10-fold cross-validation

on GBIF point data

Region R [%] R20 [%] R514 [%] MRR [%] M LL LR

(a) Schorfheide-Chorin 99.95 56.39 99.86 17.42 17 943 2.95

(b) Hainich-Dün 99.72 48.16 99.59 13.08 22 1058 2.65

(c) Schwäbische Alb 99.95 38.03 99.83 10.47 33 935 2.98
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expressed in relation to the quarter MTB tiles originally

used to record presence-absence data, gradually increases

from top to bottom in Table 5. Results show R remain-

ing around 96%, while R20 and R514 increase slightly and

the median rank improves up to 28 places at finer resolu-

tions. We suspect that GBIF data is too sparse for a finer

resolution to have a more pronounced impact. The dis-

cretization also introduces rounding errors which distort

the results. Given the best tradeoff between R and M, we

settled on a 0.33 km2 tile size being of 100 times finer

granularity than FLORKART quarter tiles. This granu-

larity provides the lowest median rank of 114 and an

overall recall of 95.98%, it has been used for all other

computations in this paper.

Discussion

Grid-based presence-absence data

Noticeably, recall does not reach 100% using grid-

based FLORKART presence-absence data, but shows an

increase when sampling a larger radius around the test

location. While this may indicate that taxa extended

their range since they were observed for FLORKART,

it mainly suggests that our test data, being more rep-

resentative of observations an interested hobbyist rather

than a botanist may acquire in the field, are not accu-

rately captured by FLORKART information alone. Flickr

test records come from a multitude of users and also

consist of cultivated plants observed in urban environ-

ments, e.g., city parks and (botany) gardens. Accordingly,

the ten taxa most frequently failing correct prediction

include ornamental and garden plants, such as Narcissus

pseudonarcissus (Easter Lily),Helleborus niger (Christmas

Rose), Eranthis hyemalis (Winter Aconite), Helianthus

annuus (Common Sunflower), and Leucanthemum vul-

gare (Common Daisy) as well as cultivated and medicinal

plants, such as Brassica napus (Rapeseed), Cornus mas

(Cornelian Cherry), Eschscholzia californica (California

poppy), and Prunus cerasifera (Cherry Plum). We should

therefore seek to include taxa whose presence is not cap-

tured in wildlife presence-absence data. In addition to the

mediocre retrieval performance, we also observe a rel-

atively poor ranking quality as a direct result of using

binary data without any notion of abundance. Using solely

presence-absence data means that a rarely observed taxon

will be ranked exactly the same as another, potentially very

common one that occurs within the same grid tile.

Point-based occurrence records

GBIF point-based occurrence records are spatially sparse

and irregularly spread across the study region. Contrary to

the presence-absence data, they have not been systemati-

cally sampled. Accordingly, we observe considerably lower

average recall at the location of a test record. Using a

larger sampling radius leads to substantially higher recall.

At the largest evaluated radius of 20 km, we achieve a

recall of 86% and an average candidate list length of 752

taxa. This list length is comparable to that computed

based on the systematically sampled FLORKART data

at comparable recall, i.e., 787 at 85%. This result raises

expectations towards future use of GBIF data with its con-

tinuously increasing number of records. GBIF data offers

an insight that presence-absence data do not provide.

Multiple records of the same taxon in close proximity can

be aggregated into an observation frequency allowing us

to estimate which taxa a user would more likely try to

identify. Using this information, we observe a substantially

higher mean reciprocal rank and an improved median

rank across all evaluated aggregation strategies S1 . . . S5.

We found the minimum spatial distance S3 between a

test record and existing GBIF records to yield the best

ranking results.

Combined grid- and point-based data

Occurrence records contributed to GBIF via citizen

science projects are not limited to wildlife plant observa-

tions. Therefore, using both data sources in combination

mitigates the missing predictions of taxa that are hard

to estimate based on wildlife presence-absence data

alone. We found that combining data sources yields

the highest recall across all experiments with a max-

imum of 97.4% at a sampling radius of r = 20 km.

This result demonstrates that the different data

sources are in fact complementary. Taxa that gain the

largest absolute improvement by combining data are

Table 5 Influence of grid resolution on evaluation metrics for S2+S5 and r = 10 km

×Quarter Avg. Area Run- RAM R R20 R514 MRR M LL LR

MTB tile [ km2] time [GB] [%] [%] [%] [%]

4 131.49 1.0× 0.5 96.45 16.14 84.00 4.92 140 1,349 2.12

1 32.87 1.1× 0.7 95.79 16.60 84.91 5.36 126 1,285 2.24

1/16 2.05 4.9× 5.7 96.20 17.85 85.13 5.36 114 1,331 2.16

1/64 0.51 15.4× 21.0 95.93 18.24 85.26 5.21 116 1,327 2.17

1/100 0.33 20.5× 33.2 95.98 18.19 85.24 5.14 112 1,320 2.18

1/144 0.23 29.6× 47.0 95.97 18.22 85.23 5.04 115 1,323 2.17
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Leucanthemum vulgare, Prunus cerasifera, Narcissus

pseudonarcissus, Eranthis hyemalis,Cornus mas, Helle-

borus niger, and Brassica napus. Although the recall

improves by combining data, it still does not reach 100%,

i.e., retrieved taxa lists are still incomplete with respect to

the test observations obtained from Flickr. This is in part

due to some locations and taxa which yield exceedingly

low recall, i.e., false negatives when evaluated on the test

data. False negatives dominantly occur at urban land

cover types [43], i.e., discontinuous urban fabric (32%)

and sport and leisure facilities (13%). Taking a closer look

at the results of S2+S5 at r = 5 km, the average recall is

only 94.10% due to 345 individual taxa not being retrieved

in the missing 5.90%. Among the top 66% of these 345

taxa, are 90.7% crop and garden plants. The top three are

Brassica napus, Narcissus pseudonarcissus, and Cornus

mas. These three taxa account for 13% of the missing

recall alone.

In terms of candidate list ranking, we observed the best

results by combining spatially weighted occurrence fre-

quencies (S2) and temporal distance (S5) shown by con-

sistently highestMRR values. Improved ranking allows for

shorter candidate lists, which for instance is supported by

R514 reaching a plateau around 84.5% at r = 5 km, indicat-

ing a high chance of including the correct taxon before the

514th rank. An average list length of 1,142 at that distance

shows that one would need to consider only 41% of all

taxa of interest in Germany at a given location. Depend-

ing on the intended use case a compromise between recall

and mean reciprocal rank has to be made. For a list as

complete as possible one would consider a larger area to

be sampled whereas a greater list length reduction can be

achieved by sampling smaller regions.

An additional evaluation only at the three Biodiver-

sity Exploratory sites yielded recall close to 100% and a

remarkable 56% chance of the correct taxon being among

the top 20 positions of a retrieved list. This result is very

promising and shows how results can be improved with

more point-based observation records in the future.

Limitations

On average, our recommended list contains 1,142 taxa

using a sampling radius of 5 km and S2+S5 strategy on

combined observation data corresponding to a list reduc-

tion of 2.54. Despite being substantially reduced, the list

is still long prompting us to understand whether the

retrieved length is plausible. Studies [11, 12] recording

species richness with respect to land cover found a total

of 623 and 546 vascular plant species on grassland and

forest plots, respectively. Since we do not consider land

cover types for our study and base our estimations on

FLORKART data with amaximal resolution of 30 km2 and

a median number of 514 taxa per tile, we consider the

resulting list lengths plausible. It is a future exercise to

combine other data sources and to possibly increase res-

olution and precision of our estimations. To rule out the

possibility of our own discretization having an adverse

effect on data quality, we evaluated results across multiple

resolutions as one aspect of our study.

Although being high, recall does not reach 100% in our

experiments. One possible explanation is insufficient data

quality since our datasets originate from manual acqui-

sition processes. Revising maps with an extent such as

FLORKART is an ongoing process that can never be

expected to be complete. The range of species is highly

dynamic as a consequence of, e.g., climatic differences and

changes in land use. Some observations date back several

decades while even the more current ones originate from

mapping projects carried out in at least 47 federal project

regions. GBIF’s observation records have been collected

in an even more irregular manner, e.g., including citizen-

science projects. We were able to mitigate some prob-

lems by analyzing data quality and eliminating erroneous

records based on a set of heuristics (e.g., implausible dates

and locations).

We purposely chose Flickr observations as test data

since they reflect potential users and resemble a use

case in which a taxon recommendation system could be

applied. For instance, some test records are taken in urban

environments (cp. Fig. 3), such as city parks, botany gar-

dens and backyards. However, the data is neither curated

nor verified by experts and is therefore expected to

have errors, although verification of user-provided tags

through image classification may yield improvements.

Flickr records may be imprecise in the labeled taxa as well

as the recorded location. In extreme cases, imagesmay not

be taken at the place of the original taxon occurrence, e.g.,

images of Abies normannia could show a Christmas tree

in a living room. On the upside, this provides a chance of

seeing results evaluated under a worst-case scenario. By

conducting a cross-validation with GBIF records, we were

able to show that our underlying method can yield results

of much higher quality when operating on a richer and

more fine-grained dataset.

Conclusions

Recommending a list of plant taxa most likely to be

observed at a given geographical location and time is

useful for species identification as well as biodiversity

research. We studied achievable recommendation quality

based on two fundamental types of information, individu-

ally and in combination: binary presence-absence data and

individually collected occurrence records. Furthermore,

we aggregated data with increasing sampling radii around

test locations and according to five formally defined aggre-

gation strategies. Additionally, we investigated the influ-

ence of data discretization granularity on recommenda-

tion quality as well as on computational efficiency.
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When relying solely on presence-absence data, the cur-

rent state-of-the-art when looking for taxa that occur at

a certain location, we managed to retrieve merely 82.31%

of the test records, recommending the correct one at the

307th place in the list on average. By combining both

data sources, increasing the sampling radius, and using a

sophisticated aggregation strategy we were able to retrieve

95.98% of the test records, recommending the correct one

on average at the 112th place in the list. When focus-

ing on regions heavily sampled in terms of occurrence

records, we even retrieved more than 99% of the test

records’ taxa with the sought-after one ranking on aver-

age at the 24th place. In conclusion, we found that both

studied data sources are highly complementary for use in

a recommendation system. We demonstrated that such a

system can be highly efficient in reducing the search space

for species identification tasks with on average only 41%

of all taxa needing to be considered at a given location.We

also demonstrated that with the ongoing growth of species

occurrence records in repositories like GBIF these results

will constantly improve even further.
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