
Received 10 August 2020; revised 13 November 2020; accepted 30 November 2020. Date of current version 26 January 2021.

Digital Object Identifier 10.1109/OJCAS.2020.3042743

RECON: Resource-Efficient CORDIC-Based
Neuron Architecture

GOPAL RAUT 1 (Graduate Student Member, IEEE), SHUBHAM RAI 2 (Graduate Student Member, IEEE),

SANTOSH KUMAR VISHVAKARMA 1 (Member, IEEE), AND AKASH KUMAR 2 (Senior Member, IEEE)

1Department of Electrical Engneering, Indian Institute of Technology Indore, Indore 453 552, India

2Chair for Processor Design, Center for Advancing Electronics Dresden, Technische Universität Dresden, 01169 Dresden, Germany

This article was recommended by Associate Editor Y. Li.

CORRESPONDING AUTHOR: S. K. VISHVAKARMA (e-mail: skvishvakarma@iiti.ac.in)

This work was supported by the University Grant Commission (UGC), Government of India and the HiPEAC

Collaboration Grant, European FP7 ICT Cooperation Program.

ABSTRACT Contemporary hardware implementations of artificial neural networks face the burden of

excess area requirement due to resource-intensive elements such as multiplier and non-linear activation

functions. The present work addresses this challenge by proposing a resource-efficient Co-ordinate Rotation

Digital Computer (CORDIC)-based neuron architecture (RECON) which can be configured to compute

both multiply-accumulate (MAC) and non-linear activation function (AF) operations. The CORDIC-based

architecture uses linear and trigonometric relationships to realize MAC and AF operations respectively.

The proposed design is synthesized and verified at 45nm technology using Cadence Virtuoso for all

physical parameters. Implementation of the signed fixed-point 8-bit MAC using our design, shows 60%

less area, latency, and power product (ALP) and shows improvement by 38% in area, 27% in power

dissipation, and 15% in latency with respect to the state-of-the-art MAC design. Further, Monte-Carlo

simulations for process-variations and device-mismatch are performed for both the proposed model and

the state-of-the-art to evaluate expectations of functions of randomness in dynamic power variation. The

dynamic power variation for our design shows that worst-case mean is 189.73µW which is 63% of the

state-of-the-art.

INDEX TERMS AF, CORDIC, configurable architecture, MAC, neural network.

I. INTRODUCTION

AN ARTIFICIAL neural network (ANN) has been a

game-changer in computing paradigms within the last

decade. The main advantage of an ANN over other prediction

techniques is in its capability to learn hidden relationships

in data with unequal variability [1]. Efficient VLSI archi-

tectures based on a fully connected neural network (FCNN)

have been proposed in the literature, targeting diverse appli-

cations [2]–[4]. However, FCNNs are compute-intensive and

often require high computational power [5], [6].

A typical neural network (NN) is a graph network con-

sisting of several layers, with each layer having multiple

nodes called neurons. In an NN, each neuron performs two

basic mathematical operations: sum-weighted input feature

usingMultiply-Accumulate (MAC), and non-linear Activation

Function (AF) over calculated sum as shown in Fig. 1.

The performance and accuracy of a neural network pri-

marily depend upon the bit precision of computation [3].

Specifically, in the case of the hardware implementation of

neural networks, higher precision gives higher accuracy but

often comes with high area and power overheads.

ANNs can be designed and implemented on different

platforms like CPU, GPU, FPGA, or ASIC. The drawback

of a general-purpose platform such as a CPU is the low

utilization of their resources that reflects in high power

consumption and low performance. Moreover, it fails to

exploit the underlying parallelism of a neural network. GPUs

exploit the underlying parallelism but often leads to high

power consumption. On the other end of the spectrum,

ASICs have specialized hardware structures for MAC and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

170 VOLUME 2, 2021

HTTPS://ORCID.ORG/0000-0002-1046-9457
HTTPS://ORCID.ORG/0000-0002-6522-5628
HTTPS://ORCID.ORG/0000-0003-4223-0077
HTTPS://ORCID.ORG/0000-0001-7125-1737


FIGURE 1. Fully connected artificial neural network architecture with neuron

showing MAC and activation function computation.

AF operation, and thus they achieve high resource utilization

and lower power consumption [7]. However, ASIC-based

hardware accelerators are constrained by their inability to

support different types of neural networks due to their fixed

design architecture [8]. This trade-off gets even more com-

plicated when configurable architectures are required. The

FPGAs offer configurable hardware designs but need more

chip areas with higher power consumption as compared to

ASICs [5], [9], [10].

A flexible design architecture that scales well with the size

of the neural network without compromising on accuracy,

provides a nice balance between area and functionality. An

area and power-efficient configurable architecture are desir-

able at all technology nodes [11]. Keeping this in mind,

we propose a Resource Efficient Coordinate Rotation Digital

Computer (CORDIC)-based neuron architecture (RECON)

that provides compelling application opportunities and

enables efficient yet configurable computations required in

a neural networks.

The CORDIC algorithm used in RECON employs

an iterative convergence approach and uses minimal

resources [12]. It is a desirable choice where the cost-to-

performance ratio is critical [13]. The CORDIC architecture

uses only shift-and-add operations [14] and can perform

several computing tasks such as linear, trigonometric, hyper-

bolic, and exponential functions. Hence, CORDIC-based

architecture can be tuned to calculate many transcenden-

tal algebraic functions such as multiplication, division,

hyperbolic tangent, and sigmoid functions [14].

A. MOTIVATION

In the case of hardware implementation of an ANN, increas-

ing computational complexity has an unfavorable impact on

area and performance. Moreover, an ASIC design is not

adaptable, and any configurability such as flexibility in bit

precision, or configurability in the type of activation function

FIGURE 2. The neuron architecture having multiply-accumulate unit with parallel

multiplier for jth input and n neurons in the layer followed by multiple activation

functions (path-A and path-B).

such as sigmoid, hyperbolic tangent (tanh), comes with

additional overhead. Computation with higher bit precision

(32-bit or 64 bit) is also expensive in terms of an area

and power [15]. Thus, a reduction in hardware complexity

(i.e., bit precision) and faster response without compromising

accuracy is highly desirable [16].

The conventional ASIC-based configurable architecture of

neurons with multiply-accumulate unit and multiple activa-

tion functions proposed in [17]–[19] is shown in Fig. 2.

Each MAC unit consists of several multipliers followed by

an adder tree. The output of the MAC unit is then fed to the

multiplexer which selectively feeds to a particular activation

function depending upon an application. The architecture

shown in Fig. 2 has some major drawbacks like area over-

head due to array of multipliers and use of separate hardware

path (path-A and path-B) for individual activation function.

It also leads to increased data propagation delay (due to the

MUX) and power dissipation (static power dissipation) due

to the unused hardware because only one activation function

is activated at a particular time.

To overcome the above limitations, we propose RECON

which uses CORDIC algorithm. It uses a fixed-point

signed arithmetic computation. The proposed logic has two

benefits– Firstly, it is scalable in terms of area and power

as a single block can compute both MAC and activation

function. Secondly, it allows configurable activation func-

tion (sigmoid/tanh) and hence has reduced critical path delay

and lesser power dissipation. The proposed design also max-

imizes hardware reuse as unlike conventional ASIC-based

designs which uses MUX which leaves out hardware blocks

unused.

B. CONTRIBUTIONS

In this work, we investigate design strategies and opti-

mizations for RECON which can realize both MAC and

activation function computation. The major contributions are

summarized in the following points:

• We propose a CORDIC-based design of an

unsigned/signed computational unit which can

compute both MAC and non-linear activation function.

VOLUME 2, 2021 171



RAUT et al.: RECON

• We demonstrate how CORDIC is configured within

RECON to operate in linear or hyperbolic rotation

mode to solve arithmetic (for MAC) and trigonometric

operations (for AF) respectively.

• Optimization of the proposed CORDIC-based architec-

ture in terms of area, power, and delay. We further

employ power-gating approach and evaluate it with

45nm technology node to demonstrate power-savings.

We analyze and discuss the impact of technology scal-

ing on circuit’s physical parameters like area, power

and delay.

Experimental evaluations show that RECON as a MAC

unit, has a lower area and power footprint as compared to the

contemporary state-of-the-art designs proposed in [20]–[23].

Moreover, our proposed design architecture can support

both signed and unsigned number representations. Similarly,

in an activation function configuration, RECON returns

the best area and power numbers as compared to other

designs [24], [25].

C. ORGANIZATION

The rest of this article is organized as follows. Section II

details about the related work and introduces preliminaries

required for this work. Section III introduces the CORDIC

architecture and various rotational modes required for math-

ematical operations. The proposed design and functioning of

the configurable CORDIC architecture for MAC and activa-

tion function are given in detail in Section IV. Section V

gives the experimental setup followed by simulation results

and discussion in Section VI. The concluding remarks are

given in Section VII.

II. BACKGROUND AND RELATED WORKS

In this section, we discuss related works which targeted

ASIC implementation for ANNs.

A. RELATED WORK FOR MAC UNIT

The basic multiply-accumulate (MAC) unit consists of

multiplier, adder, and accumulator blocks. The multiply-

accumulate computational unit is shown in Fig. 2. The input

and output arithmetic relation in the preceding layer of a

neural network is shown below:

alj = f
(

∑

ωl
jNa

l−1
N + blj

)

(1)

where f is the activation function (sigmoid/tanh) of compu-

tational unit k, corresponding to overall neurons in (l− 1)th

layer. To formulate this equation in matrix form, we assume

a weight matrix ωl corresponding to layer l. Elements of

weight matrix ωl are weights to the inputs of neurons from

lth layer with jth row and Nth column. The term, blj is the

bias here.

Most of the earlier work proposed a dedicated ASIC

design for the MAC unit. In [20], [26] authors designed

a MAC unit using a Vedic-multiplier and register-based

accumulator. Such kind of architecture is effective for low

precision. However, it is not scalable as increasing bit-

precision for higher accuracy, leads to a substantial increase

in the critical path and the propagation delay. In order to

carry out inference for a deep neural network, the authors

in [22], [27], [28] resort to a shift-and-add-based multipli-

cation instead of bulky multipliers for MAC computation.

Though the architecture was area and power-efficient, it suf-

fered due to low throughput. In [22], the authors proposed

calculating one multiplication using shift and addition oper-

ation. The proposed approach requires n-shift left and n− 1

addition for n-bit precision calculation. However, the design

is limited for unsigned number calculation as it uses left

shift operation.

Configurable n-bit (where n can be any value between 1

and 16) precision MAC unit was proposed using a digital

in-memory computing concept [29]. The architecture used

an XNOR-based bit-wise multiplier, a full-adder, and an

SRAM cell for computation. The circuit design was efficient

in terms of area and power but throughput was very low as it

needs n-clocks for n-bit precision. Hence, it was not efficient

for high-precision architecture. The Wallace Tree multiplier

based MAC design was analyzed in terms of area, delay,

and power in [21]. The proposed architecture was designed

using only AND and OR basic gates. However, it leads to

an increase in the critical path and high area utilization. The

double MAC design proposed in [17], [30], implements two

multiplication in a single clock cycle but suffers due to high

resource utilization.

B. RELATED WORK FOR ACTIVATION FUNCTION

The hyperbolic tangent (tanh) and sigmoid are generally the

most used non-linear activation functions in hardware imple-

mentations. Activation functions like sigmoid or tanh provide

a smooth transition between excitation and inhibition, which

improves the neural response [31], [32].

Various ASIC implementations of non-linear activation

functions proposed in [18], [33]–[35], employ a combina-

tional logic-based design approach consisting of memory

elements, MUX/DeMUX-trees and logic gates. All these

combinational logic-based design uses quantization states

to realize activation functions. The quantization states for a

particular bit precision are stored in memory elements and

then selected using MUX tree. For example, in case of 8-

bit precision, the number of quantization states is 28 = 256

which are stored in memory elements. These designs ben-

efit with high throughput but are not very practical for

higher bit precisions as the area increases exponentially. The

authors in [33] extended the combinational logic design-

based approach to realize configurable AF. The configurable

AF is implemented using additional hardware resources such

as multiplier and sign converters to realize both sigmoid and

tanh activation functions.

Instead of using memory elements, authors in [36] used

power series to compute non-linear activation functions.

While the design was able to cope up with area over-

heads with bit precisions, it suffered due to large delay

172 VOLUME 2, 2021



that led to low performance. One of the first works to

investigate CORDIC architecture for activation function

implementation was [14]. The CORDIC-based implementa-

tion provides resources-efficient and configurable activation

function computation. Hence, configurable activation func-

tions are realized using CORDIC design in [15], [24], [37].

The various activation function area realized using CORDIC

are given by the following equations:

f1(z) = sigmoid(z) =
1

1 + e−z
=

1 + tanh(z/2)

2
(2a)

f2(z) = tanh(z) =
ez − e−z

ez + e−z
(2b)

= 1 − 2 sigmoid(−2z) = 2 sigmoid(2z) − 1 (2c)

The authors in [25] proposed direct computation of a sin-

gle sigmoid activation function with CORDIC architecture.

For negative values, they used 2′s complement arithmetic

computation which requires an extra computation step that

leads to area and performance overhead. Similarly, the

authors used an additional multiplication step to the under-

lying architecture for calculating tanh function [24]. The

scaling of inputs by two implies a double rotation technique

in polar coordinates. However, it requires an extra multiplier

and a subtractor for tanh calculations. It scales the sigmoid

input by two for tanh activation function realization using

equations (2a) and (2b). These extra steps increase the delay

and area of the overall design.

Another approach using a near-threshold CORDIC design

technique for low-power applications was proposed in [38].

The authors designed an internal sub-block logarithmic

shifter and adder of the CORDIC core using dynamic logic.

However, this work was not targeted towards a semi-custom

ASICs in general.

To address these limitations for both MAC and activa-

tion function, the proposed design, RECON uses a single

CORDIC architecture with a power gating technique for the

realization of an individual neuron.

III. CORDIC ALGORITHM

The COordinate Rotation DIgital Computer (CORDIC) algo-

rithm realizes various mathematical functions by rotating a

vector coodinates. The underlying principle allows solving

the trigonometric relationships involved in plane coordinate

rotation and conversion from rectangular to polar coordi-

nates [39]. The CORDIC architecture is configured to operate

in three rotation modes – circular, linear, or hyperbolic

rotation. In this connection, a unified algorithm for lin-

ear and hyperbolic CORDIC is an extension of the basic

CORDIC algorithm for a circular trajectory as explained

in [40], [41]. It is a convergence method for evaluating

linear, hyperbolic, (and other) functions using simple logic

blocks—Multiplexer, shifters, adders, memory-based (ROM)

pre-calculated constants. The propagation delay of a con-

ventional CORDIC is the sum of the delay of a multiplexer,

adder/subtractor, barrel-shifter, and feedback resistor which

involves one CORDIC unit for each micro-rotation. The

TABLE 1. Used adder and subtractor functional similarity in CORDIC design

architecture.

CORDIC uses a pseudo rotation calculation which is a scaled

version of real rotation. The real circular rotation co-ordinate

calculation equations are

X(i+1) = Xi· cos αi − Yi· sinαi

Y(i+1) = Yi· cos αi + Xi· sinαi

Z(i+1) = Zi − αi (3)

Here, (Xi, Yi) is a set of coordinate components representing

an ith state. In terms of polar coordinates, an angle α is used

where the new coordinates (Xi+1, Yi+1) can be easily reached.

The above equations describe a real rotation of the plane

vector vi to vi+1 at each iteration. In these equations, sin αi
and cos αi are replaced with sinhαi and coshαi respectively

for hyperbolic circular rotation. The CORDIC algorithm uses

pseudo rotation for function calculation. Taking cos αi (or

coshαi in case of hyperbolic rotation mode) (i.e., the Ki)

term as common in Eq. (3) and scaling the equations in

Eq. (3) by Ki (scaling factor = 1/Ki), CORDIC equations

for all mode of trajectories are then formulated as:

X(i+1) = Xi − Yi· tanαi

Y(i+1) = Yi + Xi· tanαi

Z(i+1) = Zi − αi (4)

where αi = 2−i or tan−1(2−i) or tanh−1(2−i) depending

whether CORDIC operates in linear, circular or hyperbolic

mode respectively. αi is the rotation angle in radians for

the each iteration. The scaling factor 1/Ki is unique for an

individual mode of operation.

In this connection, adder/subtractor block is designed for

output calculation using the equations shown in Table 1.

The Eq. (4) then converges to the following equations:

Xi+1 = Xi − m· di·Yi· 2−i (5a)

Yi+1 = Yi + di·Xi· 2−i (5b)

Zi+1 = Zi − di·Ei (5c)

Here mode m ∈ {1, 0,−1} indicates a circular, linear, and

hyperbolic coordinate system, respectively. Ei is the memory

constant at each ith iteration which is equal to 2−i, tan−1(2−i)

and tanh−1(2−i) for linear, circular and hyperbolic rotation

mode respectively.

In general, the CORDIC algorithm needs n iterations for n

significant digits of the fractional part. For higher precision,

higher rate of shifting is required which demands more clock

cycles for maintaining the computation accuracy. The opti-

mized CORDIC architecture for all modes of operation is

shown in Fig. 3. Fig. 3 shows three separate flows for calcu-

lation of Xn, Yn and Zn. Shift registers are used to right-shift

VOLUME 2, 2021 173



RAUT et al.: RECON

FIGURE 3. Signed 8-bit precision architecture for the basic CORDIC-based design.

Xn and Yn. The sign bit of Zi determines the direction signal

di. The functionality of the add/sub-block used in CORDIC

architecture depends on the di direction. The direction signal

is important as it helps to converge the computation itera-

tively. The di represents the rotation direction for ith iteration

such that the output at Z converges to 0.

IV. RECON ARCHITECTURE

Design of neural network accelerators requires calculations

that involve multiplication, accumulation and trigonomet-

ric function such as tanh, sigmoid etc. The proposed

CORDIC-based design enables such computation by using

pre-computed constants with shift-and-add operation for fast

computation and minimum resources utilization. As com-

pared to a conventional architecture which has dedicated

blocks for MAC and activation function calculation, RECON

focuses on re-utilization of logic architecture (via iteration)

for both MAC as well as activation function calculation.

The architecture uses linear and hyperbolic rotation mode

for multiply-accumulation and non-linear activation function

calculation respectively. RECON can further support both

signed and unsigned computations. The optimized CORDIC

architecture with power gating technique is shown in Fig. 4.

The proposed architecture and its operation are described in

the following subsections.

A. MULTIPLY-ACCUMULATE COMPUTATION USING

RECON

The multiply-accumulation computation technique used in

this work depends on the shift-and-add multiplication

approach. It has two principal features. Firstly, arithmetic

right-shift is used instead of the left shift operation. This

technique allows RECON to support both signed and

unsigned numbers. Secondly, for mathematical computations

(such as addition and multiplication) for an n-bit precision,

the iterative convergence using the CORDIC algorithm

returns the same accuracy as one gets using conventional

combinational logic.

FIGURE 4. The efficient recursive sign 8-bit precision RECON architecture

configured by select and ctr line for MAC and AF computation.

In the present work, we focus on fixed-point number

representation for multiply-accumulate computation, as the

floating-point representation (IEEE-754 notation) in MAC

has a higher complexity and power consumption [16].

Moreover, the choice of bit-precision in case of weight/bias

constants is one of the important considerations as it directly

impacts the area and power of the hardware implementa-

tion. In order to reach an acceptable precision that gives a

good trade-off between area and accuracy, we have trained

the neural network (as shown in Appendix A) for different

precision. We got the best accuracy-area trade-off for 8-bit

precision among the possible combinations.

We have used a 9-bit format that reserve 1 bit for the sign,

3 bits for the integer part, and 5 bits for the fractional part.

Fixed 〈8, 5〉 represents an 8-bit fixed-point number of which

five rightmost bits are fractional. The 8-bit signed fixed-point

representation with binary point is shown in Fig. 5 (a). The

most significant bits (MSB) [7:5] are assigned for the integer

part and hence the maximum multiplication output range of

−7.968 to +7.968 is achieved using this representation.

The MAC operation is realized using RECON as shown in

Fig. 4. In linear mode, the mode variable, m is considered

as 0 and Ei is considered as 2−i. The equation (5) then

translates the general output as shown below

Xi+1 = Xi (6a)

Yi+1 = Yi + di·Xi· 2−i (6b)

Zi+1 = Zi − di· 2−i (6c)

Here, Yi+1 computes the multiply-accumulate operation

when Z0 → 0. The computation is valid as long as the binary

point is allowed to float. We have considered fixed 〈8, 5〉

representation hence binary point is floated for 5 iterations.

This calculation assumes that both Xi (input) and Zi (weight)

are fractions within the range of {−1,+1}. After 5 iterations,

Eq. (6) translates as follows:

xn = x0 & zn ∼= 0 whereas,

yn = y0 + x0 ∗ z0 (7)

174 VOLUME 2, 2021



FIGURE 5. Data representation with binary point and arithmetic calculation.

where x0, y0 z0 represent the input, bias value and corre-

sponding weight respectively. This is also shown in Fig. 4.

This implementation is similar to the standard shift and add

multiplication.

From Eq. (7), the CORDIC algorithm for multiplication

x0 × z0 is derived using a series representation for weights

shown below:

xj = xjN ∗ ωN = xjN ∗

j
∑

i=1

ai ∗ 2−i

=

j
∑

i=1

xjN ∗ ai ∗ 2−i =

j
∑

i=1

ai ∗ xjN ∗ 2−i (8)

The equation states that xj is composed of a shifted version

of input x0 with respect to weight z0. This implementation

is based on the standard shift and add multiplication. The

unknown coefficient ai may be found by driving ω to zero

one bit at a time. If the ith bit of input ωN is non-zero, xi
is first right-shifted by i bits and added to the current value

of yj. When ω has been driven to zero all bits have been

examined and xj contains the signed product of input vector

and weight.

The calculation as shown in Eq. (8) is carried out using

RECON in linear mode. The sign bit of Z is used to calculate

the value of di. The computation has to perform till Z0 → 0

for exact calculation that demands high bit precision com-

putation for approaching zero [42]. The inputs and output

of each iteration of a MAC operation is shown in Table 2.

Calculation for one of the iteration is shown in Fig. 5 (b). A

single MAC operation, thus takes 5 iterations to compute.1

The output at Yi+1[8 : 0] is the MAC output after 5 itera-

tions which is then used for activation function calculation.

The exact calculation using Eq. (7), returns a value of Yn as

1. Since the binary point is allowed to float for five iteration of right
shift, we stop calculating for the value for Y after 5 iterations.

TABLE 2. Iteration-level calculation shown for MAC computation using CORDIC in

linear mode for fixed 〈8, 5〉 representation.

0.81054 as shown in Table 2. Since we are using quantiza-

tion for 8 bits precision, the value returned after 5 iterations

is 0.78125. We can see that the value returned is just 3%

less than the exact(64-bit floating-point calculation) results.

In order to have an additional saving in static power

dissipation, the add/sub and the shift register blocks are

power-gated as they are not required for the MAC calculation

(shown in Fig. 4).

B. ACTIVATION FUNCTION COMPUTATION USING

RECON

Section II-B describe the general specific equation (Eq. (2))

based on mode selection which can calculate many func-

tions. The generalized unified CORDIC rotation matrix for

all modes of operation including the hyperbolic trajectory of

operation as an extension of Eq. (5) is given as:
[

X(i+1)

Y(i+1)

]

= Ki

[

1 −m · di · 2−i

di · 2−i 1

][

X(i)

Y(i)

]

As this section focuses on the hyperbolic rotation mode

CORDIC architecture, the CORDIC coordinate equations for

hyperbolic calculation are given as:

Xn = Ki· (X coshZ + Y sinhZ) (9a)

Yn = Ki· (Y coshZ + X sinhZ) (9b)

Zn = Input at Z0 −→ 0 (9c)

The generated MAC output after 5 iterations at Yout is

considered as the input for activation function at Zin through

feedback and it is controlled by ctr pin shown in Fig. 4. In

order to evaluate the sinh(Z) and cosh(Z) shown in Eq. (9),

we choose m = −1 and Ki = 0.8281 as the scaling factors

in pseudo rotation which is compensated by applying (i)

1/Ki = 1.2075 at X0[8 : 0], (ii) Y0[8 : 0] = 0 and (iii)

MAC output as input at Z0[8 : 0]. Most significant bits

(MSBs), Y[8] and Z[8] are used for generating ‘di’ signal.

The direction, di is chosen in the range ∈ {−1, 1} based

on the sign of the previous output, i.e., current input in the

each iteration. The signal ‘di’ is fed to the adder/subtractor

block which decides whether addition or subtraction has to

be done. The hyperbolic calculation as shown in Eq. (9),

hence, transforms as shown below:

Xi+1 = Xi + di·Yi· 2−i (10a)

Yi+1 = Yi + di·Xi· 2−i (10b)

VOLUME 2, 2021 175



RAUT et al.: RECON

TABLE 3. Iteration-level calculation shown for activation function using CORDIC in

hyperbolic mode.

Zi+1 = Zi − di· tanh
−i

(

2−i
)

(10c)

The CORDIC module is used in hyperbolic rotation mode

for realizing sinh and cosh functions using Eq. (10). We take

an example calculation for sinh(30) and cosh(30) as shown

in Table 3. The final output of the MAC operation shown in

Table 2, is taken as input for the activation function calcu-

lation. The final desired outputs for hyperbolic calculations

(sinh(Z) and cosh(Z)) are calculated in another 5 clock cycles

(as shown grayed out in Table 3). After 5 iterations, Y is

again reset at the 6th clock cycle for next evaluation. This

gives Xn and Yn as cosh and sinh functions respectively of

the previous evaluation. The sinh and cosh functions are fur-

ther used to calculate tanh or sigmoid function as activation

function calculation. Zn gives the output of activation func-

tion applied to the MAC output of the succeeding neuron

which is the final resultant.

The generated trigonometric hyperbolic functions are used

for producing exponential function as required from Eq. (2)

are shown in Eq. (11a). The 8-bit CORDIC output is applied

to the adder for producing exponential output as shown in

Fig. 6. The realization of the tanh function in the proposed

architecture can be represented in terms of sigmoid function

as shown in the below equations.

ez = sinh(z) + cosh(z) (11a)

f1(z) = tanh(z) =
sinh(z)

cosh(z)
=
ez − e−z

ez + e−z
(11b)

f2(z) = sigmoid(z) =
1

1 + e−z
=

ez

1 + ez
(11c)

The proposed work further explores the relationship

between tanh and sigmoid functions using Eq. (11b). The

configuration between sigmoid or tanh activation function is

based on the select_af line. The tanh function is realized

using the Eq. (11b). When select_af = 1, the CORDIC output

is directly transferred to the divider through the MUX to gen-

erate tanh function. The subtraction and the shift operation

are the two basic operations that are used within the divider

circuit [43] for calculating tanh. Additionally, in the proposed

architecture, the execution of tanh function does not require

the additional adder block as compared to [24]. However, this

unused block can dissipate static power. Addressing this issue

and considering the trade-off between leakage current and the

speed of operation, Power Gating (PG) technique is used to

FIGURE 6. Block-level architecture for RECON. The red dotted line shows blocks

required for MAC computation. The blue and green dotted lines represent the blocks

used for tanh and sigmoid function computation.

minimize the leakage power and to improve the performance.

We have implemented adders with the PG technique used

in the proposed architecture as shown in Fig. 6.

The sigmoid function is realized using the Eq. (11c) when

select_af = 0. For calculation of sigmoid, additional adders

and dividers are used as given in Eq. (11c). The select_af

= 0 is used to activate the adder logic block for sigmoid

calculation. In comparison to [37], which used an additional

step for calculating 2’s complement for calculating nega-

tive exponents, our sigmoid function does not need negative

exponents as shown in Eq. (11c). This gives an additional

saving in terms of area and delay.

The output from the MAC unit is then applied as feedback

along with the initialization of the predefined parameters.

The overall design allows reconfiguration, and hence the user

can configure the activation function depending upon appli-

cation requirement. This is the key difference between the

previous approaches and the proposed architecture, leading

to significant performance enhancement.

C. RECON FOR NEURON COMPUTATION

Fig. 6 shows the complete RECON architecture. Three parti-

tions can be seen depending upon the configuration. The red

encircle represents the CORDIC unit which is used in linear

mode for MAC computation. The blue and green encircle

represent the blocks required for tanh and sigmoid func-

tion respectively. It can be noticed that only in the case of

sigmoid function calculation, all blocks are needed. While,

RECON provides a configurable design to implement both

MAC and activation function, the proposed design compo-

nents can also be used independently depending upon the

user requirement.

The overall flow for a neuron is shown in Fig. 7. In

this CORDIC-based architecture, the select signal is set to

0 to compute the multiply-accumulate operation. The power

gated blocks (Add/Sub and shift register) connected with the

select signal, is isolated from the power supply for saving

static power dissipation. When the value of select is 0, m is

set to 0 so that the CORDIC operates in linear mode. The

value of the MAC operation is calculated after the five clock

cycle as explained before. This is represented by the count

variable in Fig. 7. The output after the MAC computation

176 VOLUME 2, 2021



FIGURE 7. Complete flow for RECON architecture to iteratively compute MAC and

activation function.

is then fed as a feedback to the same architecture for ini-

tialization to compute the activation function. The generated

MAC output at Yn is the input for activation function at Z0.

Here, select_af signal is initialized to the type of activation

function to be used. The architecture employs a configurable

activation function based on the application requirement. The

output of the activation function is calculated in next five

clock, i.e., count=10. At count=10, the complete compu-

tation of a single MAC followed by activation function is

done. At count=10, the count register is reset and the final

output of a neuron is the input for the next layer neuron. The

complete iterative computation for the neuron architecture is

shown in Appendix B.

V. EXPERIMENT

A. EXPERIMENTAL SETUP

To evaluate the proposed design architecture, the neuron unit

having a multiply-accumulate unit and configurable activa-

tion function are represented in HDL using Verilog hardware

description language. The RTL for our RECON architec-

ture is synthesized and results are produced by Design

Compiler-Synopsys [44]. The netlist file is extracted from

Encounter-Cadence and the generated .cdl is used for RTL

digital design extraction into CMOS design using the v2lvs-

Mentor Graphics [45]. The extracted design is simulated

in Cadence-Virtuoso [46] for performance-parameter valida-

tion at different process corners, temperature, and mismatch.

Following experiments are done to validate our proposed

design:

1) The first experiment shows the results for the FPGA

prototyping of the proposed design.

2) In the second experiment, we evaluate the effect of

power gating technique. We use a logic gate with wide-

gate sized transistors so that the performance is not

TABLE 4. Hardware implementation result for RECON.

FIGURE 8. (a) Power gating technique applied for the adder block. The select signal

is used to isolate the circuits from power supply. (b) Inverter Circuit ON current and

delay variations with respect to technology scaling.

compromised. The coarse-grain technique is used in

the design for better efficiency, less circuit complexity,

and moderate switching time.

3) In order to evaluate the impact of process variation

and mismatch (which increases significantly in 65nm

and lower CMOS technology), in the third experiment,

the circuit is simulated at all PVT variations.

4) In the fourth experiment, the proposed design is com-

pared with the state-of-the-art for both MAC and AF

configuration at technology nodes of 45nm.

5) In the last experiment, we carry out Monte-Carlo simu-

lation to model the probability of different outcomes of

dynamic power. It helps to calculate random variations

in dynamic power dissipation due to device-mismatch

in the characteristics of identically designed devices,

occurring during the manufacturing of ICs.

VI. RESULTS AND DISCUSSION

A. HARDWARE IMPLEMENTATION

In order to validate the proposed design, it is implemented

on FPGA ZyboXC7z010-board. We implement a three layer

4:4:2 fully connected artificial neural network using 8-bit

precision (i.e., 8-bit weight, bias, input). The single neu-

ron consists of a MAC followed by sigmoid AF design

using the proposed CORDIC based architecture. The post

implementation hardware resources utilization is given in

Table 4.

B. GATE SIZING

At lower technology nodes, static power dissipation is the

biggest concern. In order to implement power-gating tech-

nique, appropriate gate-sizing is an important step. For

CMOS-based inverter circuit with coarse-grain power gating

VOLUME 2, 2021 177



RAUT et al.: RECON

FIGURE 9. Performance parameter variation due to process, voltage and

temperature (PVT) variation effects on proposed 8-bit precision integrated

architecture @45nm technology node (a) the different process corner and temperature

at power supply = 0.62V (b) for TT corner with power supply variation.

technique, the ON current and delay variations with respect

to technology scaling is shown in Fig. 8 (b). We determine

the power gate size for a larger slew rate with a lower

response time and the same is used for our RECON circuit

simulations. The add/sub, shift register logic blocks used in

Fig. 4 Is designed using the same power getting technique.

These logic blocks are isolated when they are not in use in a

specific computation task such as multiply-accumulation or

tanh calculation. We save 30% static power dissipation with

minimal area overhead compared to non power-gated archi-

tecture. Based on simulation results and merit, the power

gate size should be around 3× large as compared to its

standard size to maintain similar performance.

C. OPERATING VOLTAGE

Circuit design with a lower power supply is beneficial as it

minimizes power dissipation. These savings are due to scal-

ing in the technology model that has an impact on physical

parameters such as mobility (µ0) and saturation velocity

(Vsat). However, it comes with an increased propagation

delay. Equation 12 shows the relation between the power

supply and the propagation delay in the CMOS circuit.

Td =
CL·Vdd

(Vdd − Vt)
α (12)

The CMOS logic based circuit design is extracted using

cadence virtuoso and post-layout circuit simulation of the

proposed design is carried out for current and voltage vari-

ation at different process corners and supply variation. The

leakage power increases with the increasing supply volt-

age, and it exceeds the dynamic power for supply greater

than 0.7V at 45nm technology. The parameters calculated at

three different process corners FF, TT and SS are shown in

Fig. 9(a). It observed that the static power is more than

the dynamic power in the fast-fast (FF) process corner

with temperature 85◦C. The circuit simulated at different

supply voltages with typical-typical (TT) process corner

and observed variations in simulation results are shown in

Fig. 9(b). It seems from the figure that an operating voltage

of around 0.62 returns the lowest value for leakage current

and dynamic power.

TABLE 5. Comparison for the proposed design and the state-of-the-art for MAC

computation @45nm TT process corner for 8-bit precision.

TABLE 6. Comparison for the proposed design and the state-of-the-art

CORDIC-based design for sigmoid activation computation @45nm TT process corner

for 8-bit precision.

D. RECON IN MAC CONFIGURATION

We compare our RECON architecture in MAC configura-

tion with the state-of-the-art designs [20]–[22]. For RECON,

the area of the corresponding module performing the MAC

is shown in Fig. 6. For the sake of comparison, we have

implemented the designs proposed in [20]–[22] with 8-bit

precision at 45nm since they were proposed at different tech-

nology node. The post-synthesis performance parameters are

populated in Table 5.

It can be observed from the Table 5 that our proposed

design has the least area as compared to other proposed

designs [20]–[22]. While the design in [22] shows the least

static and dynamic power, it requires more number of clock

cycles along with a larger delay to compute the results

as compared to our proposed design. Hence, our proposed

design shows a lower power-delay-product (PDP) as com-

pared to the design proposed in [22]. To evaluate the overall

hardware overheads, we adopt a figure of merit, which is

characterized by area, latency, and power product (ALP =

area × latency × power) and is 60% less as compared to

the architecture proposed in state-of-the-art [22].

An important point to note here is that while other designs

focused primarily on unsigned values, our proposed design

architecture can support both signed and unsigned numbers.

It is particularly relevant considering hardware implementa-

tions for neural architecture, as it has a direct impact on the

accuracy.

E. RECON IN AF CONFIGURATION

Just as we have evaluated RECON in MAC configuration, we

compare our design in sigmoid AF configuration with other

works proposed in [24], [25] which employed CORDIC-

based architecture for AF computation at both 45nm. Results

and comparison of proposed architecture with and with-

out power gating and state-of-the-art are shown in Table 6.

178 VOLUME 2, 2021



TABLE 7. Sigmoid activation function using proposed design and combinational logic-based design [18] at 180nm and 45nm TT process corner.

While, it is to be noted that power gating technique is not

applicable for sigmoid AF calculation, the overheads of using

power gating technique are applicable, as shown in Table 6.

It can be observed that our design achieves better numbers

for area, power, and delay as compared to other CORDIC

based designs [24], [25].

In order to carry out evaluation for our proposed design

for AF computation, we also compare it with combinational

logic design based AF computation as proposed in [18]. We

synthesise both the designs at two technology nodes of 45nm

and 180nm at different precisions to have a fair comparison.

The reason we are choosing the sigmoid AF configura-

tion because it uses all the components in our proposed

architecture as shown by green encircle in Fig. 6.

The combinational logic design-based AF proposed in [18]

uses the concept of quantization states to implement non-

linear activation functions. Realization of quantization states

is done through memory elements and selection using MUX

tree and combinational logic gates. The number of quantiza-

tion states depends upon the bit precision used. Hence, for

8-bit precision, the number of quantization states is equal to

28 = 256. The selection then further requires 8:1 multiplexer

tree.

The results of our comparison are shown in Table 7. It

can be seen that at low precision, i.e., 8-bit, design proposed

in [18] fairs better as compared to RECON in terms of area

and power. However, we can observe an exponential increase

at higher bit precisions. Moving from 8-bit to 12-bit results

in 10× increase in area and power for the design proposed

in [18]. The reasons can be ascertained to the fact that for

12-bit precision, number of quantization states is equal to

212 = 4096 which leads to an exponential increase in the

memory elements required. Apart from memory elements,

a bigger 16:1 muliplexer tree is also required which further

leads to additional overheads. Similarly, for 16-bit precision,

the number of memory elements required increases to 216 =

65536 with the same 16:1 multiplexer tree. Hence, the area

increase from 12-bit to 16-bit is just 5×.

It concludes that CORDIC based architecture is an

admirable choice for higher precision neural network design

architecture. The results shown in Table 7 demonstrate that

for the CORDIC-based architecture, the progression in phys-

ical parameters such as area and power with respect to the

increment in bit precision guarantees much better scaling

as compared to [18]. However, the number ofclk edges

FIGURE 10. 1000 Monte Carlo simulation with process variation and mismatch for

mean dynamic power variation of signed 8-bit sigmoid activation function.

required is more in our proposed design as compared to

the combinational design. This is obvious considering the

same CORDIC block is used iteratively for calculating MAC

and activation function in different modes. Hence, CORDIC

based design is favorable for applications where the energy

and area requirements are less. Hence, the proposed design

offers an excellent choice for IoT applications.

F. PROCESS VARIATION AND MISMATCH

At lower technology nodes, process variation and mismatch

is also an important issue in addition to power dissipation,

stability, and reliability. We have simulated the circuit at

45nm technology node. The Monte-Carlo simulation for

dynamic power variation due to process and mismatch is car-

ried out for 1000 samples for the proposed architecture (with

select=0 & select_af=0) and the state-of-the-art as shown

in Fig. 10. The mean dynamic power and standard devia-

tion of the proposed architecture are 189.30µW and 58.2µW

respectively. The mean dynamic power of the proposed work

is 90% compared to architecture proposed by [15] (shown

in green color) and 63% as proposed by [24] (shown in

red color). The standard deviation for power variation in

the case of RECON is 58.2µW which is less compared

to 66.15µW [15] (shown in green color) and 78µW [24]

(shown in red color) respectively. It shows that the proposed

architecture is more reliable in terms of power variation due

to process and mismatch.

VII. CONCLUSION

In this work, we have proposed a resource-efficient and

configurable CORDIC-based design, RECON for a neuron

VOLUME 2, 2021 179



RAUT et al.: RECON

TABLE 8. Accuracy comparison of different DNN architecture at different fixed point

bit-precision computation for MNIST and CIFAR-10 data-set.

FIGURE 11. Waveform for complete neuron architecture computation with each

iteration.

architecture. The CORDIC-based design allows configura-

tion and the same block can compute both MAC and multiple

activation functions. Additionally, our proposed design can

also compute both signed and unsigned computations. The

proposed architecture is area and power efficient as compared

to the state-of-the-art designs for both MAC and activation

function computation. Using extensive evaluation, we show

that our proposed design gives better returns at higher bit

precision as compared to other designs.

APPENDIX A

In order to finalize the number of digits after the deci-

mal point in fixed-point number representation, we carry

out experiments using different artificial neural networks.

Accuracy comparison at different bit-precision is shown in

Table 8. It can be seen that their is a very low (≤2%) loss of

accuracy between usage of 8-bit and 32-bit fixed-point com-

putation. This leads to reduction in memory consumption by

factor of 4. Hence, Hence, we have taken 8-bit fixed-point

with 〈8, 5〉 representation in computation with fractional for

RECON.

APPENDIX B

In order to show the iterative computation the complete neu-

ron architecture, complete waveform is shown in Fig. 11.

Here, we have selected the input (Xi), weight (Zi), bias (Yi)

for the MAC computation and Tanh function as an activation

function.

ACKNOWLEDGMENT

The authors would like to thank the Special Manpower

Development Program Chip to System Design, Department

of Electronics and Information Technology (DeitY) under

the Ministry of Communication and Information Technology,

Government of India for providing necessary research

facilities.

REFERENCES

[1] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neu-
ral nets as a method for quantitative structure–activity relationships,”
J. Chem. Inf. Model., vol. 55, no. 2, pp. 263–274, 2015.

[2] Du, Ke-Lin, and M. N. S. Swamy, “Neural network circuits and par-
allel implementations,” in Neural Networks and Statistical Learning.
London, U.K.: Springer, 2019, pp. 829–851.

[3] Y. Umuroglu et al., “FINN: A framework for fast, scalable bina-
rized neural network inference,” in Proc. ACM/SIGDA Int. Symp. Field
Program. Gate Arrays, 2017, pp. 65–74.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available:
arXiv:1409.1556.

[5] R. Pottathuparambil and R. Sass,“An FPGA-based neural network for
computer vision applications,” in Proc. Workshop Comput. Vis. Low
Power Reconfig. Architect. (FPL), Crete, Greece, 2011, pp. 1–7.

[6] J. Gama, R. Sebastião, and P. P. Rodrigues, “Issues in evaluation of
stream learning algorithms,” in Proc. 15th ACM SIGKDD Int. Conf.
Knowl. Disc. Data Min., 2009, pp. 329–338.

[7] E. Nurvitadhi et al., “Accelerating binarized neural networks:
Comparison of FPGA, CPU, GPU, and ASIC,” in Proc. IEEE Int.
Conf. Field Program. Technol. (FPT), 2016, pp. 77–84.

[8] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26,
no. 2, pp. 203–215, Feb. 2007.

[9] F. Kastner, B. Janßen, F. Kautz, M. Hübner, and G. Corradi,
“Hardware/software codesign for convolutional neural networks
exploiting dynamic partial reconfiguration on PYNQ,” in Proc. IEEE
IPDPSW, 2018, pp. 154–161.

[10] E. Wu, X. Zhang, D. Berman, I. Cho, and J. Thendean, “Compute-
efficient neural-network acceleration,” in Proc. ACM/SIGDA Int. Symp.
Field Program. Gate Arrays, 2019, pp. 191–200.

[11] A. Arthurs, J. Roark, and J. Di, “Ultra-low voltage digital circuit
design: A comparative study,” in Proc. IEEE Faible Tension Faible
Consommation, 2012, pp. 1–4.

[12] P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna “50
years of CORDIC: Algorithms, architectures, and applications,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 1893–1907,
Sep. 2009.

[13] L. Vachhani, K. Sridharan, and P. K. Meher, “Efficient CORDIC
algorithms and architectures for low area and high throughput imple-
mentation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 1,
pp. 61–65, Jan. 2009.

[14] M. Qian, “Application of cordic algorithm to neural networks VLSI
design,” in Proc. Multiconf. Comput. Eng. Syst. Appl., vol. 1, 2006,
pp. 504–508.

[15] M. Ercegovac, D. Kirovski, and M. Potkonjak, “Low-power behavioral
synthesis optimization using multiple precision arithmetic,” in Proc.
IEEE Design Autom. Conf., 1999, pp. 568–573.

[16] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep
convolutional neural networks for object recognition,” in Proc. IEEE
ICASSP, 2015, pp. 1131–1135.

[17] A. S. Abraham and S. Anand, “An ASIC design of an optimized
multiplication using twin precision,” in Proc. IEEE ICICCS, 2017,
pp. 455–461.

[18] S. J. V. Rani and P. Kanagasabapathy, “Multilayer perceptron neural
network architecture using VHDL with combinational logic sigmoid
function,” in Proc. IEEE Int. Conf. Signal Process. Commun. Netw.,
2007, pp. 404–409.

[19] B. Karlik and A. V. Olgac, “Performance analysis of various activation
functions in generalized mlp architectures of neural networks,” Int. J.
Artif. Intell. Expert Syst., vol. 1, no. 4, pp. 111–122, 2011.

[20] A. S. K. Vamsi and S. Ramesh, “An efficient design of 16 bit MAC
unit using vedic mathematics,” in Proc. IEEE Int. Conf. Commun.
Signal Process. (ICCSP), 2019, pp. 319–322.

[21] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. custom CMOS
and the impact on processor microarchitecture,” in Proc. 19th ISFPGA,
2011, pp. 5–14.

[22] G. B. Joseph and R. Devanathan, “Algorithms for multiplierless
multiple constant multiplication in online arithmetic,” Circuits Syst.
Signal Process., vol. 37, no. 11, pp. 5127–5142, 2018.

180 VOLUME 2, 2021



[23] G. Raut, V. Bhartiy, G. Rajput, S. Khan, A. Beohar, and
S. K. Vishvakarma, “Efficient low-precision cordic algorithm for hard-
ware implementation of artificial neural network,” in Proc. Int. Symp.
VLSI Design Test, 2019, pp. 321–333.

[24] V. Tiwari and N. Khare, “Hardware implementation of neural network
with sigmoidal activation functions using CORDIC,” Microprocess.
Microsyst., vol. 39, no. 6, pp. 373–381, 2015.

[25] M. Alçın, İ. Pehlivan, and İ. Koyuncu, “Hardware design and imple-
mentation of a novel ANN-based CHAOTIC generator in FPGA,”
Optik, vol. 127, no. 13, pp. 5500–5505, 2016.

[26] M. Yuvaraj, B. J. Kailath, and N. Bhaskhar, “Design of optimized
MAC unit using integrated VEDIC multiplier,” in Proc. Int. Conf.
Microelectron. Devices Circuits Syst. (ICMDCS), 2017, pp. 1–6.

[27] W. Xu, Z. Zhang, X. You, and C. Zhang, “Efficient deep convolutional
neural networks accelerator without multiplication and retraining,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2018,
pp. 1100–1104.

[28] D. A. Gudovskiy and L. Rigazio, “ShiftCNN: Generalized low-
precision architecture for inference of convolutional neural networks,”
2017. [Online]. Available: arXiv:1706.02393.

[29] H. Kim, Q. Chen, T. Yoo, T. T.-H. Kim, and B. Kim, “A 1–16b
precision reconfigurable digital in-memory computing macro featuring
column-MAC architecture and bit-serial computation,” in Proc. IEEE
45th Eur. Solid-State Circuits Conf. (ESSCIRC), 2019, pp. 345–348.

[30] D. Nguyen, D. Kim, and J. Lee, “Double MAC: Doubling the
performance of convolutional neural networks on modern FPGAs,”
in Proc. Design Autom. Test Europe Conf. Exhibit. (DATE), 2017,
pp. 890–893.

[31] J. Kadmon and H. Sompolinsky, “Transition to chaos in random
neuronal networks,” Phys. Rev. X, vol. 5, no. 4, 2015, Art. no. 041030.

[32] M. Wedlake and H. L. Kwok, “A CORDIC implementation of a digital
artificial neuron,” in Proc. IEEE Pac. Rim Conf. Commun. Comput.
Signal Process. (PACRIM), vol. 2, 1997, pp. 798–801.

[33] C.-H. Chang, H.-Y. Kao, and S.-H. Huang, “Hardware implementation
for multiple activation functions,” in Proc. IEEE Int. Conf. Consum.
Electron. Taiwan (ICCE-TW), 2019, pp. 1–2.

[34] S. Gomar, M. Mirhassani, and M. Ahmadi, “Precise digital implemen-
tations of hyperbolic TANH and sigmoid function,” in Proc. IEEE 50th
Asilomar Conf. Signals Syst. Comput., 2016, pp. 1586–1589.

[35] B. Zamanlooy and M. Mirhassani, “Efficient VLSI implementation
of neural networks with hyperbolic tangent activation function,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 1, pp. 39–48,
Jan. 2014.

[36] S. Aggarwal, P. K. Meher, and K. Khare, “Scale-free hyperbolic
CORDIC processor and its application to waveform generation,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 2, pp. 314–326,
Feb. 2013.

[37] C. B. Bidhul, N. Hampannavar, S. Joseph, P. Jayakrishnan, and
S. Kumaravel, “Comparison of architectures of a coarse-grain
reconfigurable multiply-accumulate unit,” in Proc. IEEE Int. Conf.
Green Comput. Commun. Conservation Energy (ICGCE), 2013,
pp. 225–230.

[38] P.-Y. Chou et al., “Near-threshold cordic design with dynamic circuitry
for long-standby IoT applications,” in Proc. 31st IEEE Int. Syst. Chip
Conf. (SOCC), 2018, pp. 250–253.

[39] J. Volder, “The CORDIC computing technique,” presented at the the
Western Joint Comput. Conf., Mar. 1959, pp. 257–261.

[40] T. Lang and E. Antelo, “CORDIC-based computation of ARCCOS
and ARCSIN,” in Proc. IEEE Int. Conf. Appl. Specific Syst. Architect.
Process., 1997, pp. 132–143.

[41] Y. Luo, Y. Wang, Y. Ha, Z. Wang, S. Chen, and H. Pan, “Generalized
hyperbolic CORDIC and its logarithmic and exponential computation
with arbitrary fixed base,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 9, pp. 2156–2169, Sep. 2019.

[42] T.-Y. Sung and H.-C. Hsin, “Fixed-point error analysis of
CORDIC arithmetic for special-purpose signal processors,” IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., vol. 90, no. 9,
pp. 2006–2013, 2007.

[43] N. Sorokin, “Implementation of high-speed fixed-point dividers on
FPGA,” J. Comput. Sci. Technol., vol. 6, no. 1, pp. 8–11, 2006.

[44] Synopsys. [Online]. Available: https://www.synopsys.com
/implementation-and-signoff/rtl-synthesis-test/design-compiler-
graphical.html

[45] Communities Mentor. [Online]. Available: https://communities.mentor.
com/docs/doc-3114

[46] Cadence. [Online]. Available: https://www.cadence.com/en_us/home
/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-schematic-ed
itor.html

GOPAL RAUT (Graduate Student Member, IEEE)
received the B.Engg. degree in electronic engi-
neering and the M.Tech. degree in VLSI design
from the G. H. Raisoni College of Engineering
Nagpur, India, in 2015. He is currently pursuing
the Ph.D. degree with the Electrical Engineering
Department, Indian Institute of Technology Indore,
where he is currently with the Nanoscale
Devices, VLSI Circuit and System Lab, Electrical
Engineering Department. His research focus is
compute-efficient and configurable VLSI circuit

design for IoT applications.

SHUBHAM RAI (Graduate Student Member, IEEE)
received the B.Engg. degree in electrical and elec-
tronic engineering and the M.Sc. degree in physics
from the Birla Institute of Technology and Science
Pilani, India, in 2011. He is currently pursu-
ing the Ph.D. degree with Technische Universität,
Dresden, Germany. His research focus is on cir-
cuit design for reconfigurable nanotechnologies
and their logical applications.

SANTOSH KUMAR VISHVAKARMA (Member,
IEEE) received the Ph.D. degree from the Indian
Institute of Technology Roorkee, India, in 2010.
He is currently an Associate Professor with
the Department of Electrical Engineering, Indian
Institute of Technology Indore, India, where he is
leading the Nanoscale Devices and VLSI Circuit
and System Design Lab. From 2009 to 2010,
he was with the University Graduate Center,
Kjeller, Norway, as a Postdoctoral Fellow under
the European Union Project “COMON.” His cur-

rent research interests include nanoscale devices, reliable SRAM memory
designs, and configurable circuits design for IoT applications.

AKASH KUMAR (Senior Member, IEEE) received
the joint Ph.D. degree in electrical engineer-
ing in embedded systems from the Eindhoven
University of Technology, Eindhoven, and the
National University of Singapore, Singapore, in
2009. He is currently a Professor with Technische
Universität Dresden, Germany, where he is direct-
ing the Chair for Processor Design. From 2009
to 2015, he was with the National University of
Singapore. His current research interests include
design, analysis, and resource management of

low-power and fault-tolerant embedded multiprocessor systems.

VOLUME 2, 2021 181


