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Reconciliation Efficiency Impact on Discrete
Modulated CV-QKD Systems Key Rates

Margarida Almeida, Daniel Pereira, Margarida Facdo, Armando N. Pinto, and Nuno A. Silva

Abstract—Continuous variable quantum key distribution (CV-
QKD) allows the distribution of symmetric keys in a secure
manner. CV-QKD systems can extract keys at its maximum
rate when using Gaussian modulation (GM). Nonetheless, GM
demands high-capacity random number sources and tends to
be very hard to approach in practice. To circumvent these
disadvantages, higher-order probabilistic-shaped discrete modu-
lation (DM) can be used. State-of-the-art works compute the key
rates of DM-CV-QKD systems considering a fixed value for the
reconciliation efficiency and do not take into account the frame
error rate (FER) of the system, thus over or under estimating
the key rates. In this work, we study the security bounds of
CV-QKD systems considering probabilistic shaped DM formats
with 256-symbols in the finite-size regime. This accounting for
the true value of the reconciliation efficiency, and the FER
of the information reconciliation step. Both conventional and
hexagonal 256-quadrature amplitude modulation (QAM) constel-
lations yield higher key rates than 256-amplitude and phase shift
keying (APSK) constellations, with 256-QAM constellations being
indistinguishable in performance with GM for high transmission
distances. Minimum signal-to-noise ratio (SNR) values were fixed
from a FER analysis through a CV-QKD simulation allowing
for key extraction considering different FER levels. Lower FER
values are associated with higher SNRs in the system and thus
lower achievable transmission distances. Nonetheless, the FER
maximizing the extraction key rate is not null. Our results show
that the extraction key rate is maximized by SNR adjustment
which should have in account both the reconciliation efficiency
and the FER.

Index Terms—Continuous variables,
quantum Kkey distribution.

discrete modulation,

I. INTRODUCTION

UANTUM key distribution (QKD) can be used to
distribute symmetric keys over optical links avoiding
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any computational assumption [1]. In the continuous variables
(CVs) realm this can be provided by using weak coherent
fields and off-the-shelf coherent detection [2], [3], [4], [5].
The use of discrete modulation (DM) alongside CV-QKD
protocols is an attractive solution due to the possibility of
using standard modulation formats, such as M-symbol (M-)
quadrature amplitude modulation (QAM) and M- amplitude
and phase shift keying (APSK) constellations. Such DM
formats can approximate the theoretically optimal performance
of Gaussian modulation (GM) [6], [7]. Nonetheless, to the best
of our knowledge, the impact of the information reconciliation
step, fundamental to retrieving symmetric keys from any
QKD implementation, on the performance of higher-order
DM-CV-QKD remains an open issue in the literature. CV-
QKD systems were initially proposed using GM to model the
quantum signal [4], [8]. GM is theoretically optimal in terms
of secret key rate [9]. Nonetheless, the security proofs assume
ideal GM, which is very difficult to achieve in practice due to
the finite extinction ratio of the electro-optic modulators [10].
Moreover, ideal GM requires high amounts of randomness,
which demands the use of extreme high-speed true random
number generators [10]. On the other hand, DM-CV-QKD
avoids these disadvantages, while keeping a simpler practical
implementation [11], [12]. Early DM-CV-QKD systems,
both theoretical and experimental, considered small-order
DM formats such as 4-phase shift keying (PSK) and 8-PSK
constellations [13]. Notwithstanding, these constellations are
far from the optimal performance of GM [6]. The use of
higher-order DM formats in CV-QKD was initially provided
by authors in [6] focusing on M-QAM constellations.
This work was latter extended in [7] considering M-APSK
constellations, having into account finite-size effects. The
performance of higher-order DM formats increases with
the number of symbols in the constellation approaching
GM’s performance [7], [6]. Experimental demonstrations of
64-, 256-, and 1024-QAM for CV-QKD were performed
in [14], [15], [16], with 1024-QAM being capable to extract
38.3 Mb/s over 9.5 km, considering finite-size effects [15].
On the other hand, 128-APSK has been experimentally
demonstrated, albeit without the consideration of the
finite-size effects [17]. Due to different considerations,
the comparison between the different modulation formats
is not straightforward. Thus, a performance comparison
between DM formats in CV-QKD is also an open issue.
Moreover, the experimental demonstrations of higher-order
DM formats for secret keys extraction were obtained
offline without the implementation of all post-processing
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steps [14], [15], [16], [17]. As such, the obtained key rates
do not account for the frame error rate (FER) in the system.
Furthermore, state-of-the-art works in DM-CV-QKD such
as [6], [7], [14], [15], [16], [17] assume a fixed value for
the reconciliation efficiency parameter, leading to an under
or over estimation of the key rates achieved by the system.
This undervaluing the effect of the information reconciliation
method and of the signal-to-noise ratio (SNR) of the system
on the reconciliation efficiency parameter.

We assess the performance of probabilistic shaped 256-
symbols DM CV-QKD systems. Considering the true value
of the reconciliation efficiency, the performance of 256-QAM
constellations closely approximates the optimum performance
of GM. On the other hand, 256-APSK constellations are fur-
ther apart from GM’s performance. We found that maximizing
the reconciliation efficiency leads to higher FER values, thus
deteriorating the extraction key rate. Moreover, minimizing
the FER does not maximize the final extraction key rate.
To maximize the final extraction key rate of the DM-CV-
QKD system, the SNR must be adjusted to allow a high
reconciliation efficiency and a low FER. For 10km, SNR
values around 0.23 were found to lead to maximum key
extraction rates.

This paper is organized as follows. In Section II we in-
troduce the model considered to compute the secret key rate,
accounting for the true value of the reconciliation efficiency.
Section III briefly describes the DM formats and distributions
considered for probabilistic shaping, alongside the DM-CV-
QKD implemented simulation. In Section IV we present re-
sults considering the true value of the reconciliation efficiency.
Finally, we study the extraction key rate of DM-CV-QKD
systems considering the FER of the system. In Section V a
brief conclusion is presented and directions for future work
are discussed.

II. SECRET KEY RATE MODEL

The secret key rate of a CV-QKD system, K, can be
computed from the difference between the mutual information
between Bob and Alice, Iga, and the Holevo bound between
Bob and Eve, xpg. Since m states from the total number
of transmitted states, N, are used to estimate the channel
transmission, 7', and excess noise, £, in the CV-QKD system,
only n = N — m states are used to extract the final binary
key. As such, in the finite-size effect regime, the secret key
rate of a CV-QKD system is given by [18]

K= % [BIsa — x5B — A (n)], (1)

where the impact of the finite-size blocks to obtain the secret
key rate is considered by the A(n) parameter and by the use
of the worst case estimators for the channel transmission, 7’
and excess noise, £ [18]. The A (n) parameter is related with
the security of privacy amplification in the finite-size regime,
being given by

2
+ - logy (1/€pa) 2

where € is a smoothing parameter, and epy is the failure
probability of the privacy amplification procedure [18]. The

limited number of exchanged states degrades Alice’s and Bob’s
knowledge on the channel transmission, 7', and excess noise,
& [19]. As such, the analysis of the finite-size effects must also
have into account the effect due to the parameter estimation
step. This is provided by considering the lower bound of
the channel transmission and the upper bound on the excess
noise with a probability of at least 1 — epg [18]. Moreover,
the CV-QKD system can, at most, extract the amount of bits
allowed by the information reconciliation process. Therefore,
the mutual information between Bob and Alice, Iz, must be
multiplied by the reconciliation efficiency parameter, 5. The
reconciliation efficiency can be defined as 8 = %, where R
is the rate of bits that can be extracted from the information
reconciliation step.

For GM, the mutual information between Bob and Alice can
be computed as in [20], [21], while for DM we use [22]. On the
other hand, for collective Gaussian attacks, the Holevo bound
between Bob and Eve, xpg, can be computed as described
by [23], through a proper definition of the Z* parameter,
required to compute ypg. For DM, the Z* parameter can
be computed following [6], through the knowledge of the
density matrix 7 that describes the average state sent by
Alice, 7 = Y, pr|ak)(ax|, where pj is the probability of
Alice sending the state |ay). Thus, the Z* parameter can be
computed numerically using

Z(T,€) = 2VTTr (Tl/QaTl/QaT) _\2TEW,  (3)

where Tr(X) is the trace of X,
W= e ((awlatarlar) — [oxlarla*) . and
a, = 71/247-1/2 For GM, the Z* parameter is well

known, being Z* = /T (Vi + 2Va) [23], [6], where Vy is
the modulation variance.

III. DM-CV-QKD SYSTEM

In this work we will study the regular and irregular 256-
APSK, conventional 256-QAM and hexagonal regular and ir-
regular 256-QAM (see Fig. 1). The regular 256-APSK contains
32 states per ring. The probabilistic shaping will consider the
binomial and the Boltzmann-Maxwell distributions functions.
For the M-APSK constellations, the ring’s probability, P, is
given by P, = 55— (%5, for the binomial distribution,
where (2) is the number of ways to choose k& elements from

2
a set of n elements, and by P, = exp (—u (%) ) /22, Pp

for the Boltzmann-Maxwell distribution, with p = 1,2, ..., Q,
where @ is the number of rings in the constellation, and v a
parameter that needs to be optimized. The probability associ-
ated to each state of the constellation is P, = P, /Mp, with
k=1,...,M, and M, being the number of points in ring p.
For the conventional M-QAM format, the binomial distribution
is defined by choosing the probability of each state to be
Pei = 5ma=n (%) (901, with k1 = —1,-1+ 2,1+
Gronl — %71 — 5,1 and Q = VM being the number
of levels in each quadrature. For the hexagonal M-QAM
formats, the binomial distribution is defined by construct-
ing a hexagonal grid, using two square grids with different
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Fig. 1. Schematic representation of the DM formats considered in this work: (a) irregular 256-APSK, (b) regular 256-APSK, (c) conventional 256-QAM,
(d) hexagonal regular 256-QAM, and (e) hexagonal irregular 256-QAM, where the color represents the probability of each symbol in the constellation. The
probabilistic shaping was obtained considering the (a,b) binomial distribution and (c,d,e) the Boltzmann-Maxwell distribution, and a mean number of photons

of 1 photon per symbol.

centers. The probability of the points nonexistent in the
hexagonal constellation are then discarded, and the prob-
abilities of the remaining points are scaled such that the
total probability is unitary. For all M-QAM constellations,
the Boltzmann-Maxwell distribution is applied by considering
Py = exp (—V (k2 + l2)) /Ek’l Py ;.

At the physical layer of the DM-CV-QKD system, Alice
prepares her sequence of states from the chosen DM format
(Fig. 1). Alice then sends her states to Bob by the quantum
channel, who measures the states. After the state’s preparation,
transmission and measurement, Alice and Bob apply post-
processing techniques to distill a common secret key. The post-
processing techniques are composed of parameter estimation,
information reconciliation and privacy amplification.

In the parameter estimation step, the lower bound of the
channel transmission and the upper bound of the excess noise,
with a probability of at least 1 — epg, are estimated from
Alice’s and Bob’s shared states [18]. Here, epr was chosen
to be 10719 From this, the secret key rate can be easily
estimated using (1), by substituting 7" and £ by their lower and
upper bound estimates. If the estimate of the secret key rate
is positive, the method follows to information reconciliation.
If not, the method is aborted.

Information reconciliation was applied by considering

multi-dimensional reconciliation of dimension 8 as described
in [24], [25], alongside the sum-product algorithm [24], [26].

Here we consider the multi-edge type (MET) low-density
parity check (LDPC) codes of code rates 0.01, 0.02, 0.05,
and 0.1 specified in Table I [27], [28]. MET-LDPC codes can
be seen as a generalization of irregular LDPC codes [28],
with performance close to the Shannon’s limit in the low
SNR regime [13], [28]. All MET-LDPC matrices used in this
work were generated considering the Progressive-Edge Growth
method [29]. At the end of the information reconciliation
step we can compute the FER value of the system. The
FER is given by the ratio between the number of uncorrected
groups and the total number of groups after the information
reconciliation step.

After information reconciliation, Alice and Bob own a
weakly secret binary sequence W. Since Eve may contain
some information on W, Alice and Bob perform privacy
amplification. This is provided through the application of the
Toeplitz extractor, using a uniformly random and non-secret
seed s [30], [31]. The Toeplitz matrix, M, is applied to the
weakly secret information vector W, returning a vector Z with
almost uniform secret randomness, by doing W-M = Z [32].
Moreover, we apply fast-Fourier transforms to the Toeplitz
extractor following the method described in [13]. The size of
the extracted key Z is given by ||[W| (8Ipa — x8s — A(n))],
where |-] denotes the floor function and |W| is WW’s length.
With this, at the end of privacy amplification one is able to
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TABLE I
MULTIVARIATE POLYNOMIAL PAIRS OF MET-LDPC CODES FOR THE
CODE RATES OF 0.1 AND 0.05 PRESENTED IN [28] AND THE CODE RATES
0.02 AND 0.01 PRESENTED IN [27].

Code Degree distribution
rate
01 v(x) = 0.0775z2220 + 0.0475z3 222 + 0.875x]
) p(x) = 0.0025z1! + 0.0225x12 + 0.30z2z] + 0.845z3x]
0.05 v(x) = 0.24@@4 + 0.03x§x§4 + 0.93x},,3 )
pu(x) = 0.01z3 + 0.01z7 + 0.41z523 + 0.52z575
0.02 v(x) = 0.02z3z5" + 0.02z3250 + 0.96x1
p(x) = 0.016x% + 0.0042F + 0.30z3z1 + 0.6623x3
0.01 v(x) = 0.01z221%% + 0.01z3212% + 0.98z]
p(x) = 0.008z% + 0.00229 + 0.3223x] + 0.6622x]

TABLE 11
CHARACTERISTICS OF THE MET-LDPC CODES CORRESPONDING TO THE
MULTIVARIATE POLYNOMIAL PAIRS PRESENTED IN TABLE 1.

Code | Threshota | Minimum SR Maximum reconcilaion
0.1 2.541 [28] 0.1549 96.26%
0.05 | 3.674 [28] 0.0741 96.97%
0.02 5.94 [27] 0.0283 98.32%
0.01 8.41 [27] 0.0141 99.01%

compute the extraction key rate, KX"2cton  ojven by

Jgexunction %(1 — FER) (BIga — xsE — A(n)).  (4)
The extraction key rate gives the rate at which the DM-
CV-QKD system extracts key bits per symbol transmitted in
the quantum channel, and should not be confused with the
secret key rate. The secret key rate does not account for the
information reconciliation step, while the extraction key rate
does. Usually, the secret key rate is considered to study the
performance of DM-CV-QKD systems, which is equivalent to
assuming that the FER in the system is null. Nonetheless, the
extraction key rate given by (4) is a better figure of merit of
the performance of CV-QKD systems.

IV. RESULTS

The reconciliation efficiency, [, is the ratio of twice the
code rate of the MET-LDPC code used for information
reconciliation to the mutual information, ie., 8 = %.
As such, smaller SNRs in the system require smaller code
rates for key extraction. Remark that each MET-LDPC code
has a minimum SNR for which key extraction is possible.
The minimum value of the SNR, SNR,,;,, can be computed
from the threshold, obtained by [27], [28] through density
evolution, by doing SNR,,,;, = 1/(threshold?). The maximum
reconciliation efficiencies are computed from the minimum
value of the SNR assuming GM, since [27], [28] obtained the
threshold parameter considering a Gaussian modulated CV-
QKD system. Table II presents these characteristics for the
MET-LDPC codes considered in this work.

For non-unity reconciliation efficiency, 3, there is a trade-
off between the mean number of photons per symbol and
the key rate value. Such trade-off was analyzed for Gaussian

-
Ol
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Fig. 2. Secret key rate given by (1) with the mean number of photons per
symbol optimized as a function of the transmission distance for conventional
256-QAM. This considering the true value of the reconciliation efficiency for
the code rates R of 0.1, 0.05, and 0.02. The code rate 0.01 has null secret key
rate for all transmission distance range. The results were obtained considering
the finite-size effect scenario, for a transmission coefficient of 0.2 dB km™1,
a detector’s efficiency of 0.6, an excess noise value of 0.01 SNU, a thermal
noise of 0.25 SNU, and a total of 10® transmitted states.

modulation in [21], [33]. Despite such analysis, in the case of
discrete modulation being out of our focus, we optimize the
mean number of photons per symbol such that the secret key
rate is maximized. This for each transmission distance, and
considering the reconciliation efficiency value associated with
the MET-LDPC code rate that was used.

In this section, we present results for the secret key rate
given by (1) and for the extraction key rate given by (4), con-
sidering numerical simulations of the DM-CV-QKD system
using MET-LDPC codes for information reconciliation with
different code rates. Moreover, we compare the results of the
secret key rate given by (1) from the simulations with the
theoretical ones. All these results consider the real value of
the reconciliation efficiency parameter. We have considered the
maximum values of reconciliation efficiency and the minimum
values of SNR presented in Table II. The theoretical results
are computed from the theoretical expressions, considering
the lower bound of the channel transmission and the upper
bound of the excess noise. For the results of the numerical
simulations, the lower bound of the channel transmission and
the upper bound of the excess noise are estimated from the
comparison of Alice’s and Bob’s states.

Fig. 2 shows the secret key rate along transmission distance
for different code rates for conventional 256-QAM using
optimized mean number of photons per symbol. The code
rate may be chosen in order to maximize the secret key rate.
From the theoretical results of the secret key rate of Fig. 2
we can see that, for the various constellations under study,
the MET-LDPC code with R = 0.05 performs better for
longer transmission distances. In opposition, the MET-LDPC
code with R = 0.1 allows higher secret key rates for shorter
transmission distances. Remark that the secret key rate for
R = 0.1 decreases faster than for R = 0.05. As such, for
higher transmission distances, choosing a smaller code rate
for the MET-LDPC code is beneficial. Nonetheless, further
decreasing the code rate may not result in the extension of
the maximum achievable transmission distance, as observed
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Fig. 3. (a) Optimum mean number of photons per symbol, and (b) secret key rate given by (1) and extraction key rate given by (4) having into account
the FER in the system, as a function of the transmission distance. This considering the true value of the reconciliation efficiency for the code rates R of 0.1
and 0.05 that maximize the secret key rate. The code rates 0.02 and 0.01 are unable to maximize the secret key rate. Moreover, for R = 0.1 at 40 km, the
simulation extracted no key (null extraction key rate) despite the positive secret key rate. The symbols correspond to results obtained from simulations while
the lines correspond to theoretical results. The results were obtained considering the finite-size effect scenario, for a transmission coefficient of 0.2 dB km—1,
a detector’s efficiency of 0.6, an excess noise value of 0.01 SNU, a thermal noise of 0.25 SNU, and a total of 108 transmitted states.

for R = 0.02. In fact, the decrease of the secret key rate due
to the decrease of the code rate may be such that the secret
key rate is null for all range of transmission distances, such as
occurs for R = 0.01. As such, the MET-LDPC codes of code
rates 0.02 and 0.01 do not maximize the secret key rate for
any transmission distance. A proper choice of the code rate of
the information reconciliation method is fundamental.

For both theoretical and numerical results, we have opti-
mized the mean number of photons per symbol in order to
maximize the secret key rate. The optimum mean number of
photons per symbol is represented in Fig. 3a for the code rates
R of 0.1, 0.05, 0.02, and 0.01 as a function of the transmission
distance. The mean number of photons per symbol that maxi-
mizes the secret key rate given by (1) is statistically the same
for all constellations considered. Fig. 3a presents a different
evolution with the transmission distance than the one observed
for the same figure of merit when fixing the reconciliation
efficiency (see for instance Fig. 10 of [7]). Maximizing the
secret key rate given by (1), when the true value of the
reconciliation efficiency is considered, leads to an increase on
the optimum mean number of photons per symbol with the
transmission distance and with the code rate. For transmission
distances above 25 km, the optimum mean number of photons
per symbol is higher than 1 photon per symbol, allowing an
easier practical implementation of the DM-CV-QKD system.

The optimization of the mean number of photons per symbol
(Fig. 3a) is such that the SNR is approximately constant and
kept close to the minimum value of SNR corresponding to
the maximum value of the reconciliation efficiency (Table II).
For the MET-LDPC code of code rate 0.1, this occurs for
SNR values close to 0.15 allowing a reconciliation efficiency
of 96.26% (Table II) for all range of transmission distance.

In Fig. 3b we present both theoretical results and numerical
results from simulations of the secret key rate given by
(1) as a function of the transmission distance considering
the true value of the reconciliation efficiency and the finite-
size effects for a total of N = 108 exchanged states. The
numerical results were obtained in the parameter estimation
step of simulations of the DM-CV-QKD system performed
for transmission distances of 40, 48, 51 and 55 km. The
secret key rate was maximized considering the mean number
of photons per symbol and the code rate R of the MET-
LDPC codes. Remark that such optimization in the simulation
of the DM-CV-QKD, as in an experimental implementation,
must assume channel’s transmission and excess noise values.
Nonetheless, the channel’s transmission can be monitored in a
practical implementation while the effect of the excess noise
on the optimum value of the mean number of photons per
symbol is small. For the various simulations we also present
the extraction key rate given by (4) considering the FER in
the system after information reconciliation.

From the results in Fig. 3b we can see that, regular 256-
APSK performs better than irregular 256-APSK in terms of
the secret key rate given by (1), but both are still far from the
performance of GM (Fig. 3b). All three 256-QAM modulation
formats are almost overlapped in terms of secret key rate
with GM, thus approximately achieving optimal performance
(Fig. 3b). Despite the difference between the different 256-
QAM constellations being minimal, concerning the theoretical
results, the hexagonal irregular one is the modulation format
achieving the highest performance, being followed by the
hexagonal regular and then by the conventional one. Remark
that this may not be the case for the numerical results, since
the secret and extraction key rates are estimated from the
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Fig. 4. FER as a function of the SNR for simulations of the DM-CV-
QKD system using a MET-LDPC code with code rate 0.1 for information
reconciliation. The fitted curve was fitted to all results obtained through the
simulation. The shaded regions represent the SNR region for which the FER
is smaller or equal than 0.1, 0.5, 0.8, and 0.95. The results were obtained for
a transmission distance of 40 km, an attenuation of 0.2 dB km—1, a detector’s
efficiency of 0.6, an excess noise value of 0.01 SNU, a thermal noise of
0.25 SNU, and a total of N = 10° states.

simulation, which may result in deviations from simulation to
simulation. As an example, in the particular simulations here
presented, for 55 km, conventional 256-QAM extracted more
data than hexagonal irregular 256-QAM. Similarly, irregular
256-APSK achieved higher extraction key rate than the regular
counterpart for 48 km, for the same code rate R.

Optimizing the mean number of photons to adjust the SNR
to the code rate, allowing (3 close to 1, was beneficial to
maximize the secret key rate but, due to the FER associated
to the system’s SNR, it was not optimal for the extraction
key rate. Fig. 4 presents the FER as a function of the SNR
considering a MET-LDPC code of code rate 0.1. A 40 km
distance was considered and the SNR was allowed to vary due
to the variation of the mean number of photons per symbol.
The FER is unitary for SNR values tending to zero and null for
higher values of SNR. For the MET-LDPC code with R = 0.1,
the FER is unitary, thus not allowing key extraction, for SNR
values smaller than 0.17. The minimal SNR for which error
correction is possible is expected to decrease with the decrease
of the code rate.

With this, the SNR of the system that maximizes the secret
key rate when using the MET-LDPC code of code rate 0.1 is
below the value allowing error correction (Fig. 4), resulting
in an unitary FER value, thus not allowing key extraction.
As such, for the simulations conducted for 40 km, a null
extraction key rate given by (4) was obtained, despite the
relatively high secret key rate value given by (1) (Fig. 3b).
When considering the MET-LDPC code with R = 0.05, key
extraction was possible since the FER was not unitary for
the minimum SNR corresponding to the maximum value of
the reconciliation efficiency. Even so, in this case the FER
was close to unitary, thus resulting in a high reduction of the
amount of extracted bits in the system given by (4), in relation
to the secret key rate given by (1) (Fig. 3b). No simulations
were conducted for transmission distances below 40 km, since
the system was expected to extract no key for the code rates

here considered, as long as minimum SNRs are used.

The study of the FER as a function of the SNR for the
various MET-LDPC codes allowed the definition of minimum
values of SNR for different FER levels, as done in Fig. 4 for
the code rate 0.1. In Fig. 5a we present results for the secret
key rate given by (1) and of the extraction key rate given by (4)
for different transmission distances considering different FER
levels, by fixing different minimum values of SNR. Fig. 5a also
contains theoretical results for the secret key rate in the system.
This considering regular and irregular 256-APSK with a
binomial distribution, and conventional and hexagonal regular
and irregular 256-QAM with Boltzmann-Maxwell distribution,
concerning the true value of the reconciliation efficiency, and
accounting for the finite-size effects.

To decrease the expected FER level in the system, the SNR
must increase. This results in a decrease of the maximum
achievable transmission distance considering the secret key
rate given by 1 (Fig. 5a). From the simulations conducted
for several transmission distances and the various 256-states
constellations, we observe the decrease of the FER with the
increase of the minimum SNR values fixed in the simulation
of the system. The obtained FER values deviate from the
expected values (Fig. 5a). Remark that far less exchanged
states were used to model the FER as a function of the
SNR than for the simulations of the DM-CV-QKD system.
To model the FER as a function of the SNR only N = 106
states were considered due to time constraints, while for the
simulations of the system a total of N = 10® of exchanged
states was considered to achieve positive secret key rates
while accounting for finite-size effects. Nonetheless, for the
same transmission distance the differences in the FER between
constellations are minimal.

By increasing the SNR in the system, the FER decreases,
and the extraction key rate given by (4) approximates the
value of the estimated secret key rate given by (1) (Fig. 5).
Remark that, since a smaller range of transmission distance
is considered through the increase of the SNR, the secret key
rate is maximized only using the MET-LDPC code of code
rate 0.1. It is also of interest to notice that, increasing the
minimum SNRs of the system, irregular 256-APSK achieves
higher performances than regular 256-APSK. Moreover, the
increase of the SNR in the system also results in a decrease
of the reconciliation efficiency. From the FER level of 0.95
to the level of 0.1, resulting in a mean FER of 0.842 and
0.036, respectively, for 10 km, the reconciliation efficiency
decreases from 0.75 to 0.59. For the minimum value of SNR,
the reconciliation efficiency was expected to be close to 0.96.
Nonetheless, such decrease of the reconciliation efficiency is
compensated with the decrease of the FER in the system,
which results in higher extraction key rates.

Despite the decrease of the FER value, for higher minimum
SNR values allowed in the system, resulting in an approxi-
mation of the extraction key rate given by (4) to the secret
key rate given by (1), the secret key rate of the system also
decreases. As such, a point is reached for which the increase
of the SNR is no longer attractive (See the results of the
simulation undertaken for 10 km of Fig. 5). By increasing the
SNR of the system from 0.20 to 0.21 for the MET-LDPC code
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Fig. 5. (a) Secret and extraction key rates and (b) FER obtained from the complete simulation of the DM-CV-QKD system, for regular and irregular 256-APSK
with binomial distribution for probabilistic shaping, and conventional and hexagonal regular and irregular 256-QAM with Boltzmann-Maxwell distribution for
probabilistic shaping for different transmission distances concerning the true value of the reconciliation efficiency, and accounting for the finite-size effects.
(a) also presents theoretical secret key rate results. This for the SNRs associated to the different FER levels of, from top to bottom: 0.95, 0.8, 0.5, and 0.1.

of code rate 0.1, associated to the FER levels of 0.95 and 0.8,
respectively (Fig. 5), one observes an increase of the extraction
key rate given by (4) despite the decrease on the secret key
rate given by (1). For the hexagonal irregular 256-QAM, this
increase is of 0.004 bits per symbol. By increasing once again
the minimum SNR from 0.21 to 0.23, associated to the FER
levels of 0.8 and 0.5, respectively (Fig. 5), an increase is again
observed. For the hexagonal irregular 256-QAM, the extraction
key rate increases from 0.009 to 0.016 bits per symbol due to
the increase of the system’s SNR. However, further increasing
the SNR value to 0.26 to reach the FER level of 0.1 (Fig. 5),
smaller extraction key rates are obtained. In this case, for

the hexagonal irregular 256-QAM, the extraction key rate
decreases to 0.008 bits per symbol. Perfect error correction,
i.e., a null FER, is not advantageous to maximize the extraction
key rate given by (4) due to the effect of the true value of the
reconciliation efficiency on the secret key rate. To maximize
the extraction key rate of a CV-QKD system, one must not
restrict the analysis to the maximization of the secret key
rate according to the mean number of photons per symbol
for a specific transmission distance. One must also consider
the expected FER value and the effect of the reconciliation
efficiency on the secret key rate to properly acknowledge
the extraction key rate given by (4). As future work, higher
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code rates should be considered, since this may allow for
even higher key rates for small transmission distances. Such
is specially interesting for metropolitan communication lines.
Moreover, other information reconciliation methods could be
studied and compared with multidimensional reconciliation
when considering DM CV-QKD, in particular methods com-
bining different codes rates or with varying code rates.

V. CONCLUSION

We studied the secret key rate of various 256-symbols
DM formats with different probabilistic shaping, considering
the true value of the reconciliation efficiency. The highest
achievable transmission distances were obtained for M-QAM
constellations considering the Boltzmann-Maxwell distribution
and for M-APSK considering the binomial distribution. M-
QAM constellations, namely conventional and regular and
irregular hexagonal M-QAM, achieve higher performance
than M-APSK constellations, namely regular and irregular
M-APSK. The 256-QAM constellations are almost indistin-
guishable from the performance of GM. When considering
the true value of the reconciliation efficiency, different MET-
LDPC code rates maximize the secret key rate for different
transmission distance ranges. The code rate maximizing the
secret key rate and the reconciliation efficiency decreases
with the transmission distance. Nonetheless, this is associated
to small values of SNR, resulting in higher FER values,
not allowing for key extraction. Thus, higher SNR values
must be considered, even if resulting in the decrease of the
reconciliation efficiency. The higher the SNR, the smaller
the FERs, and the closer the extraction key rate, at the
end of the privacy amplification step, is to the secret key
rate estimated in the parameter estimation step. Nonetheless,
the minimization or even nullification of the FER does not
maximize the extraction key rate. The maximization of the
extraction key rate is achieved using high reconciliation ef-
ficiency, but also low FER, which requires a compromise
on the SNR value. More possibilities of code rates for the
MET-LDPC codes can be considered depending on the target
distance, which may be less vulnerable to high FER values. As
future work, we intend to study not only higher code rates in
multidimensional reconciliation, but also different information
reconciliation methods, alongside DM CV-QKD systems. The
use of adaptable reconciliation methods might also be of
interest to achieve higher transmission distances. Remark that
different reconciliation methods require different parameters to
be optimized for the maximization of the extraction key rate.
Besides that, eavesdropper attacks in addiction to the collective
ones presented in this work should also be considered.
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