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Abstract

The study of open quantum systems often relies on approximate master equations derived under the
assumptions of weak coupling to the environment. However when the system is made of several
interacting subsystems such a derivation is in many cases very hard. An alternative method, employed
especially in the modeling of transport in mesoscopic systems, consists in using local master equations
(LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been
shown that this approach however generates inconsistencies with the laws of thermodynamics. In this
paper we demonstrate that using a microscopic model of LMEs based on repeated collisions all
thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global
detailed balance related to the work cost of maintaining the collisions. We provide examples based on
a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different
temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator,
with properties that are fully consistent with basic thermodynamics.

1. Introduction

The description and manipulation of energy transfer at the quantum scale is a problem of fundamental and
technological importance, receiving increasing attention in recent years. On one side, the study of energy
transport through mesoscopic or atomic systems has found applications in disparate systems: from solid state
devices [1, 2] to light harvesting complexes [3—6]; from ultra-cold atomic systems [7—9] to trapped ions [10-12].
On the other side, coherent manipulation of energy is at the core of quantum thermodynamics, whose aims
include the understanding of the emergence of thermodynamic laws from quantum mechanics [13-21] and the
design of thermal machines made with quantum devices [22—41].

The starting point for addressing these phenomena is the theory of open quantum systems [42—45]. In this
framework, the reduced dynamics of the state of the system under scrutiny, when in contact with an
environment, is cast in the form of a master equation after a series of approximations. Under this category fall
very common models studied in the literature, such as the spin-boson or the Caldeira—Leggett models [46—48].

The situation becomes more involved when the system S is made up of several interacting subsystems S, ..., S,,
and each subsystem interacts with alocal environment E;, possibly held at different temperatures T; (see figure 1(a)).
This type of scenario is the basis for the description of transport properties in quantum systems. Microscopic
derivations in this case usually lead to global master equations (GMEs), in which the environment introduces jump
operators that allow for incoherent excitation transfers between the different subsystems [49—53]. However, these
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(a) (b)

- environment E;
& environment E;

A environment E>

Figure 1. We consider in this paper a system S composed of several sub-systems Sy, ..., Sy (in the figure N = 2). Each subsystem ; is
connected to alocal environment E; prepared in a different temperature T;. (a) The standard bosonic heat bath model: the
environment is assumed to consist of an ensemble of independent quantum harmonic oscillators with different frequencies in thermal
equilibrium and coupled permanently to the system. (b) In this paper we focus instead on the framework of the repeated interactions
method: the environment E; is divided into a series of ancillas (in this case represented by individual bosonic modes with identical
frequencies) which interact with S; sequentially. This type of method leads to local master equations (LMEs), irrespective of the
internal interactions between S;and S;.

environment £>

derivations are in general quite involved since they require knowledge of the full set of eigenvalues and eigenvectors of
the system’s Hamiltonian, something which quickly becomes prohibitive when the number of subsystems increases.
Moreover, depending on the approximations employed, one may also arrive at equations which do not generate
completely positive maps (the so-called Redfield equations [50]), or equations which contain unphysical heat
currents [54]. For these reasons, microscopic derivations of master equations for systems connected to multiple
environments still continues, nowadays, to be a topic of great interest.

An alternative, more heuristic, approach consists in deriving a master equation for the individual
subsystems, neglecting the interaction with the remaining subsystems. The resulting master equation will then
contain only local jump operators describing exchanges between the environment E; and its corresponding
subsystem S;. Such equations, which we shall henceforth refer to as LMEs (also frequently called boundary-
driven master equations), are typically accurate when the dissipation rates are larger than the interaction
between subsystems. Due to their computational simplicity, they have been extensively employed over the last
two decades in the study of transport in non-equilibrium quantum systems [55-73].

It turns out, however, that the nonlocal terms neglected in the LME may still lead to non-thermal steady-
states [74] and play a significant role if the heat exchanges are small, even for weakly interacting parts. As a
consequence, it has been found that LMEs may lead to apparent thermodynamic inconsistencies, as pointed out
recently by Levy and Kosloff [75]. They have shown that the LME for two coupled quantum harmonic oscillators
(QHO) may predict currents from a cold to a hot thermal reservoir, or the existence of currents even in the
absence of a temperature gradient. Moreover, both may occur even in the limit of weakly coupled oscillators.
The origin of these effects, as shown in [75], lies in the fact that the heat fluxes become of the same order of
magnitude as the neglected nonlocal terms They thus suggest to use the GME to fix such thermodynamic
anomalies. These findings generated a considerable stream of investigations on the comparison between global
and LMEs [49, 52, 53, 61, 76—-82] as well as clever possible alternatives [83, 84].

Recent results indicate, however, that it is possible to construct a consistent thermodynamic framework for
LMEs, resolving these seeming contradictions. First and foremost, it is important to mention that, unlike
Redfield equations, LMEs are in Lindblad form and therefore generate completely positive trace preserving
(CPTP) maps. Second, LMEs, being CPTP maps, can be microscopically derived in a controlled way using the
idea of repeated interactions (collisional models) [55, 58, 85-90]. In this approach, each environment is divided
into an ensemble of identically prepared auxiliary systems, called units, which interact sequentially with an
individual subsystem for a short time 7 (see figure 1(b)). In the limit 7 — 0 this leads to a LME, irrespective of the
internal system interactions. Thirdly, Barra recently showed that since the interaction between the auxiliary
units and the system is time dependent, there is an inherent external work required for generating the dissipative
evolution described by the LME [88]. Hence, it is possible to put forth a consistent thermodynamic framework
for the repeated interactions scheme, including definitions of heat, work and entropy production [88, 89].

The goal of this paper is to advance further on this reconciliation between LMEs and thermodynamics. Using
the techniques of eigenoperators, we show that while LMEs satisfy local detailed balance, in general global
detailed balance is broken. Moreover, we find that there is a fundamental work cost associated with this breaking
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of global detailed balance. By taking this exact work cost into account, we then show that LMEs become fully
reconciled with thermodynamics. Quite surprisingly, the discrete nature of the repeated interactions method
allows us to establish a direct mapping between non-equilibrium steady-states and limit-cycles of quantum heat
engines. Hence, we find that the anomalous situation in which heat flows from cold to hot baths corresponds
simply to a refrigerator, requiring positive injection of work to operate.

As our main application, we focus on the case of a system of two coupled QHO, which has been the subject of
considerable interest due to potential applications in trapped ions [10, 11], opto-mechanical systems [8, 91] and
ultra-cold atoms [8, 9]. Several interesting features of this model are studied in detail. First we show how to
engineer the system to behave as a refrigerator, a heat engine or an accelerator. We study the efficiency and/or
coefficient of performance (COP) for this model and show that they reach the optimal value of the Otto cycle in
the case where the oscillators interact without counter-rotating terms in the Hamiltonian: including counter-
rotating terms only degrades the operation of the system. We also discuss how to reconcile these results with a
theorem by Martinez and Paz [92], which states that no autonomous refrigeration is possible with equilibrium
harmonic oscillators linearly coupled.

Let us mention that, given a physical system, the actual choice of whether to describe it using an LME or a GME
approach depends ultimately on the system itself. Here we stress that the LME approach per se does not give rise to
thermodynamic inconsistencies, provided the mechanism for its emergence is fully taken into account.

In order to clearly present the motivation behind our study and the main features of our approach, we begin
in section 2 with the simplest example of a LME, consisting of two coupled QHOs. We first review the seeming
thermodynamic inconsistencies that may stem from this model and then go on to show how the results obtained
using the method of repeated interactions can be used to completely remove them. Then, in section 3 we carry
out our main theoretical development, showing how the eigenoperator technique may be used to directly access
thermodynamic quantities and describe the possible breaking of global detailed balance. Finally, in section 4 we
return to the oscillator model and show how the full machinery of our approach may be employed to study the
interplay between different types of interactions between the two oscillators. Finally, in section 5 we summarize
our results and conclude. Our paper also contains three appendices with various details of the derivations of our
main results. In appendix A we review the technique of Lyapunov equations for dealing with Gaussian
continuous variable systems. In appendix B we provide additional mathematical details on the developments of
section 3. In appendix C we compute the entropy production showing that it is always positive.

2. Steady-state of two harmonic oscillators subject to a LME

In order to motivate our study and provide an intuitive summary of our main results, we begin by discussing the
model studied by Levy and Kosloff [75], consisting of two coupled harmonic oscillators, S; and S,, each coupled
to its own local heat bath via a LME (see figure 1(a)). The Hamiltonian is taken to be

HS:I-II+H2+HI) (1)
where
1 .
Hy= S} + wix]) = wiala +1/2), @
and
H; = 6(011-612 + ala;)- )

Here a; are the annihilation operators of each harmonic oscillator and (x;, p,) the corresponding position and
momentum (A = kg = 1). Both oscillators are assumed to have unit mass, but different frequencies w;. The
interaction (3) is taken to be of the typical tight-binding form, which conserves the number of quanta in the case
of equal frequencies, w; = w,. More general interactions will be discussed in section 4.

The system is also subject to two baths E; and E,, which we assume can be modeled by LMEs acting only on
S1and S,. Hence, we take the system to evolve according to the Lindblad master equation

d
f = —i[Hs, ps] + Di(pg) + Da(pg)s 4)
where
Di(ps) = y(n; + 1) L[aj, p) + yniLla], p). (5)

Here ~yis the dissipation rate, n; is the average excitation number for the Bose—Einstein distribution

1
efwi — 1’

6)

n; =
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with inverse temperature 3; = (T;)"!and
S 1 .
LA, p] = ApAT — E{AIA’ P} (7)

is the dissipator in Lindblad form. Henceforth, we always assume that T} < T, (see figure 1(a)). Below, it will
also be useful to keep in mind that #; is a monotonically increasing function of T;/w;.

2.1. Predictions for the steady-state

Due to the form of the Hamiltonian and the jump operators, the steady-state of the master equation (4) will be
Gaussian and can therefore be easily found using the standard Lyapunov equation technique. A review of this
method is given for completeness in appendix A. Here we only focus on the main results, which can be
summarized by the following expectation values:

2
(af ) = m + %(”2 — m), 8)

§ 2
(afas) = m — %( ~ ), ©)
(aa) = é(wl — Wy + i) — m), (10)

where A2 = 42 + 4€? + (w; — wy)?. Using equation (2) we then find that the energy of oscillator 1 will be

2w, €2
A2

where (Hp)y, = wi(n + 1/2)is the energy the oscillator would have if it were in thermal equilibrium with its

corresponding bath. An equivalent expression can be obtained for the second oscillator replacing 1 « 2.
Similarly, the heat flux from the first oscillator to the second will be

(Hi) = (H)n +

(ny — m), €3))

2
Q-2 = —i([Hs, Hi]) = —iwie (a] a, — ma)) = %(ﬂz — m), (12)
which is consistent with the expression obtained in [75].

The relevant point to highlight from these results is that the sign of the €*-terms in equations (11) and (12)
will depend on the relative magnitudes of n; and #, and not of T} and T5. This simple fact, when combined with
the definition of #;in equation (6), introduces several properties which, at first sight, seem to violate the second
law of thermodynamics. First, it implies that oscillator 1 can be cooled to a temperature smaller than the
temperature T of the coldest reservoir, in the sense that it could reach a state with lower energy than that of the
thermal state it would reach if it were in contact only with the coldest reservoir. Second, one may obtain a non-
zero heat current even if both baths are at the same temperature, T} = T,. And third, if T}, < T, but we happen
to satisfy

m>mn — E > E 5 (13)
w1 wr
then there will be a current flowing from the cold to the hot bath (Q,_,, < 0).

As pointed out in [75], these results seem to violate the second law of thermodynamics, a fact which the
authors attribute to the inadequacy of LMEs to describe transport processes. The result of the cooling of the first
oscillator below the temperature of the coldest environment also seems to suggest that this master equation
could be used to design Gaussian (quadratic) absorption refrigerators, which would contradict a general
theorem proved by Martinez and Paz [92].

2.2.Resolving the thermodynamic inconsistencies

Using equation (4) one finds that the total rate of change of the system Hamiltonian (1) is given by

d(Hs)
dt

=v(m — (af @) + v(m, — (aj @)
— yelaja, + aja). (14)

However, this change in energy cannot be associated only with heat flowing to the reservoirs [88]. Instead, there
is an associated work cost which, as we show below, is related to the breaking of global detailed balance. Quoting
the results that will be derived in section 3, we now discuss how one can remove all the inconsistencies by
including this work cost.
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Table 1. The three modes of operation of the steady-state of the two oscillators, always assuming E; is the cold reservoir (T; < T3).In this
paper positive heat or work always means energy entering the system. So Q; > 0 means energy entered S through E;and W,y > 0 means
work was performed on the system by an external agent.

Mode of operation Q Q, W Operation regime
Refrigerator Q>0 Q<0 W>0 wy < w,Ty/T,
Consumes work to make heat flow from cold to hot.

Engine Q<0 Q>0 W<0 wl/Th,<w <w

Uses hot bath to produce useful work, dumping the remainder in the cold bath.

Accelerator (oven) Q<0 Q>0 W>0 Wy > ws
Consumes work to heat the cold reservoir more than it would with spontaneous
thermal conduction.

In particular, we find that the correct splitting of equation (14) is of the form

% = Q1+ Qy + Wexes (15)
where
Qi = t[Di(po) Hil = ywi(ni — (a]ai)), (16)
is the heat rate flowing from each reservoir to the system (see equation (41) for the general expression) and
Wexe = tr{[Di(ps) + Da(po)lHi} = —7e (af'a + aja), (17)

is the required work rate (see equation (43) for the general expression). From equations (8)—(10) we then find
that in the steady-state

. 2~ve?
Q= XZ wi(m — m), (18)
. 2~ve?
Q2= ~=5-walm — m), (19)
. 2~ve?
Moo = ~ =5 = @) — ). (20)

These are very important results, which we shall now discuss in depth. But before doing so, some consistency
checks are in order. First, W tends to zero as ¢ — 0, in which case global detailed balance is recovered. Second,
the work required is proportional to ye’. As discussed in [52], the LME can be shown to be correct for small
interactions € up to the same order (see comment in section 2.4 in that paper). Third, in the steady-state
d(Hs) /dt = 0sothatweshould have

W = —Q1 — Qa, 2D

as can indeed be easily verified.

We now show that, once this work cost is correctly attributed, the two-oscillator system at steady-state functions
precisely as a heat engine, with two reservoirs and a work source. Indeed, we find from equations (18)—(20) that the
system can be tuned to function as a refrigerator, a thermal engine or an accelerator (oven). The description of each
mode of operation and what they mean in terms of Q;, Q, and W is presented in table 1. We also show in figure 2 a
plot of these 3 quantities illustrating the typical operation regimes.

We begin with the case of a refrigerator, Q, > 0. According to equation (18), this requires n; > n, which is
tantamount to the condition (13). But we now see that when this condition is satisfied, one also has W, > 0.
Thus, for the two oscillators to act as a refrigerator, they must absorb work from an external agent. Hence, we see
that there are no violations of the second law. Instead, by taking into account this work cost, one recovers a fully
consistent thermodynamic description. The COP of the refrigerator is the ratio of the heat extracted from the
cold environment divided by the work invested:

cop=- __«“ (22)

Wext Wy — W

which coincides with the COP of the Otto cycle. As will become clear in section 3, this connection between a
steady-state and the limit-cycle of a heat engine, can actually be traced back to the basic idea of the repeated
interactions method, which models the steady-state as a sequence of (extremely short) strokes, each having an
associated work rate and heat rate. Notwithstanding, we should also mention that an Otto COP is a special
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Figure 2. The three regimes of operation in table 1, for the steady-state of two harmonic oscillators. (a)—(c) Q;, Q, and W,

equations (18)—(20), as a function of w; /w5. (d) Q; / W, which follows precisely the Otto value w; /(w, — w). (e) Wy /Q, which also
follows the Otto value w; /w, — 1. All curves are plotted for ye2/A* = w,, assuming T; /T, = 1/2. The vertical lines represent

wi/wy = T1/Trandw; = ws.

consequence of this type of interaction. As will be shown in section 4, the introduction of counter-rotating terms
only reduces the COP below the Otto value.
Increasing wy in the interval

T
Ln < wy < wy, (23)

2

we find that the two-oscillator system in its steady-state functions as a thermal machine, extracting heat from the
hotbath, producing work and dumping heat in the cold bath. In this regime the machine’s efficiency will be:

= M —1-“ (24)
Q; w>

which is again the Otto efﬁciency for a thermal machine. Finally, for w, < w; we necessarily haven; < n,and
therefore Q; < 0, Q; > 0and Wy > 0. Thus the device transports heat from the hot to the cold environment
and at the same time transforms work into heat which is damped in the cold bath: |Q;| = W, + Q, > Q,.
Hence, it functions as an accelerator (i.e. an oven) [93], heating the cold reservoir faster than it would with
spontaneous thermal conduction.

Notice that at the special value w; /w, = T,/ T, the system operates as a thermal machine with the Carnot
efficiency and zero power.

We conclude this section by emphasizing that within the repeated interactions framework one is able to
resolve all of the seeming thermodynamic inconsistencies of LMEs. The zeroth law does not apply since the
system is externally driven. The first law is satisfied, as we accounted for the energy balance of the whole system
plus environment, including the required work cost. The second law is satisfied, as refrigeration is not
spontaneous, but accompanied by external work. And finally, the LMEs do not violate the theorem by Martinez
and Paz [92], which states that no autonomous refrigeration is possible with equilibrium harmonic oscillators.
In fact, in our framework, there is also work associated with the environment—system interaction so the machine
is not autonomous.

We now move on to the mathematical development of LMEs using eigenoperators and the repeated
interactions.

3. The method of repeated interactions

We now turn to the microscopic derivation of LMEs using the method of repeated interactions [55, 58, 85-90,
94—102], which will form the basis for our thermodynamic description. The basic idea behind the method of
repeated interactions is to model the environment as a set of units, each prepared in a thermal state. At time
t = 0the system Sis allowed to interact for a certain time 7 with one such unit, which we generically refer to as E.
After this time the unit is discarded and a fresh new one is introduced, again in the same initial state. The process
is then repeated sequentially. For 7 — 0 this method generates a continuous time description which can be
modeled by a Lindblad master equation that is, in general, local. We emphasize that a larger class of non-
Markovian master equations including the GME can be engineered in a similar way [87] and realized
experimentally as proposed in [103].

We consider here this method implemented in the general scenario of figure 1(b) and derive the results of the
previous section as particular cases. Our system S is therefore assumed to be composed of N subsystems Sy, ..., Sns
where each S; interacts with its own environment E;. The Hamiltonian of the system is taken to be

6
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N
Hs = Z Hs, + Hr, (25)
i=1
where Hg, is the Hamiltonian of subsystem S; and Hysummarizes all interactions between subsystems. Moreover,
the total Hamiltonian comprising the system, the environments and all interactions, is taken as

N N
How = Hs + 3 Hy, + ==V, (26)
i=1 T i=1
where Hg, is the Hamiltonian of environment E; and V;is the interaction between S;and E;. We also follow the
customary approach of scaling the V; by the interaction time 7, which is convenient, although not necessary, for
taking the continuous time limit [58, 88, 89]. Following the usual repeated interactions approach, the reduced
density matrix of the system ps(#) will then evolve according to the map

ps((n + 1)71) = trg{e ™ot po(nT) pp eI}, (27)
where
N o fHE,
PE = gm) (28)

is the thermal state of the environments.
Expanding equation (27) in a power series in 7 one then finds, up to first order, the LME

dps : >
? = *I[HS) ps] + ZDi(PS): (29)
i=1
where Hgis given in (25) and
1
Di(Ps) = _EtrE,-[‘/b [‘/1) PSPE,]] (30)

The interesting aspect of this approach is that the structure of the dissipative terms are completely independent
on the choice of Hg. Or, more specifically, on the interaction terms Hj. This is a consequence of the short
interaction times between the system and environment which do not allow for the information of each E; to
scramble towards different S;[104, 105].

3.1. Local versus global detailed balance

Up to now the discussion makes no reference to the structure of the system—environment interactions V;. A
particularly interesting situation, which is in practice the most widely studied case, is when the V; satisfy local
detailed balance with respect to each subsystem, but do not necessarily satisfy global detailed balance due the
system—system interactions H;. To make this argument more precise we introduce the idea of eigenoperators.

By using the method of eigenoperators, we can cast the conditions of detailed balance in terms solely of the
algebra of operators. This therefore allows us to introduce the notion of local versus global detailed balance, as
referring to the local or global Hamiltonian of the system. We note that here this terminology is being used in a
slightly different context as, for instance, [88]. There the term is employed in the standard sense of ‘detailed
balance’ [106].

Let H be an arbitrary Hamiltonian. An operator A is called an eigenoperator of H if it satisfies [H, A] = —wA,
for some w > 0 (usually referred to as a Bohr, or transition, frequency). Due to this algebra, A and A" function as
lowering and raising operators for the H, causing transitions between energy levels E and E’ separated by an
energy w.

Returning to our problem, we shall assume that the V; have the form

V= Zgi,k(L:kAi,k + Li,kAzk% (31
k
where g;  are constants, while L; , and A; ; are eigenoperators of Hg,and Hp, respectively. That is:
[Hs, Lixl = —wikLik (32)
[He, Aik] = —wikAik (33)

where, for each S;, {w; x } represents the set of transition frequencies of the Hamiltonian Hg,. The rationale
behind these expressions is the following. For each subsystem S;, the set of Bohr frequencies {w; x} can be viewed
as the set of transitions which are activated in that subsystem, due to the contact with its local bath. For instance,
in the case of a harmonic oscillator, a dissipator such as (5) is characterized by an eigenoperator a, which only
induces transitions between neighboring levels. Hence, the only Bohr frequency would be w (the natural
frequency of the oscillator). Similarly, a system—environment interaction containing a* would induce transitions
with Bohr frequencies 2w.
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In an interaction such as (31), however, there is also the additional assumption that whenever there is a
transition of +w; ; in the system, the corresponding transition in E; occurs with energy —w; , Hence, it follows
that

[Hs, + Hg, Vil = 0, (34)

meaning that all the energy that leaves system S; enters bath E;. This equation, together with the assumption that
the bath is thermal, implies local detailed balance.

However, a similar relation does not hold for the total system Hamiltonian Hg, due to the interaction H;
between subsystems. The reason is that, in general, L; ; are not eigenoperators of H. Hence

[Hs + Hg, V] = [H, V] = 0, (35)

where Hy = SN | Hz and V = Y1 | V.. This means that even though detailed balance may hold locally, it is
violated globally. As will be shown below, taking into account this fact is essential for providing a consistent
thermodynamic description of LMEs.

Substituting equation (31) in equation (30) one may obtain a more explicit formula for the LME dissipators.
To do so one notices that since the environments are in equilibrium, it follows that (A; ;A; ;) = 0and

(AAiq) o 64 Hence, equation (30) reduces to
Di(ps) = 3 i L1Lijo ps] + ik LIk psl, (36)
k

where L[A, p]isthe Lindblad dissipator defined in equation (7), whereas

Yik = gfk (AixA Zk) >

Wi = &y (Al Aik)- (37)
Since the A; ; are eigenoperators of the bath which is in equilibrium at inverse temperature 3;, it follows that

+
Yik

Vik

= e fiwik, (38)
which is another manifestation of local detailed balance.

3.2. Example: two harmonic oscillators

To show how these results may be applied, we consider again the two harmonic oscillators a; and a, treated in
section 2. We assume that the environmental units E; and E, are themselves harmonic oscillators with operators
b, and b,®, and we take the total Hamiltonian to be

Hoo=Hs+ > {wib{b; + g(a/b; + bfan}, (39)
i=1,2

where Hyis given in equation (1). Since the frequency w; of S; and E, are the same, the operators a; and b, are
eigenoperators of H; = wya; a; and H, = W b, b;. Hence, local detailed balance, equation (34), is satisfied.
However, a, is not an eigenoperator of Hg due to the interaction term H; = ¢ (al"' a+ aq azT ) (equation (3)) so
that global detailed balance is in general broken.

Applying equation (36) with L; ; = a;and A, = b;we then immediately find the master equation (4) with
the transition rates 'yfk given by

Vi =g¥bb) =mi, 7 =g bib]) = v(n; + 1), (40)

which are the coefficients in equation (5).

3.3. Thermodynamics of the repeated interactions method

We now turn to a description of the thermodynamics of the repeated interactions method. Since the global

S + Einteraction is unitary, we may study the changes in the energy of the system and environment individually
for a given stroke. The heat 6Q; exchanged between the system and environment i in one stroke must then be
simply (Hg.)o — (Hg,),. Dividing by 7 and taking the limit 7 — 0 will give the heat current Q; to environment E;.
The explicit calculation is postponed to appendix B. As a result, we find the surprisingly simple formula:

Qi = Z wi,k{'sz<Li,kLiTk> - ’YZk(LZkLi,kH- (41)
k

For example, in the case of the two harmonic oscillators, equation (41) gives precisely the heat rate formula (16)
that was used in section 2.

Note that it is possible to arrive at the same results by assuming the environmental units to be qubits.

8
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In addition to the heat rates, however, there will in general also be a work contribution. The simplest way of
seeing this is to note that for each interaction stroke one must turn the system—environment coupling on and off,
so that the total Hamiltonian (26) must actually be time dependent. Since the global S — E system is isolated, the
work in an individual stroke between times n7and (1 + 1)7 may be unambiguously defined as

(n+1)7
Woe = f < % > dr. (42)

Again, dividing by 7 and taking the limit 7 — 0yields the work rate W,,;. As shown in appendix B, carrying out
this computation yields

Wext = % zk: (VL F) — ML} + cco (43)
1,

where F;; = [Hp, L;x] and c.c. stands for complex conjugate. Hence, we see that the work rate is related precisely

to the non-commutativity of the jump operators L; ; with the system—system interaction Hj. If global detailed

balance, equation (35), is recovered, then the work cost is identically zero. Otherwise, whenever global detailed

balance is broken, there will be an associated work cost. As an example, in the case of the two QHOs, [H,

a;] = —eay, so thata direct application of equation (43) leads to expression (17).

From a practical point of view, equations (41) and (43) are our main results, as they offer general expressions
that may be applied over a broad range of situations. These results generalize Barra’s findings [88] to arbitrary
bath and system’s structure. In appendix C, we calculate the entropy production showing that it is indeed always
positive in agreement with the second law. We now return to the problem of coupled harmonic oscillators and
show how they can be applied to the study of more complex situations.

4. Quantum harmonic oscillators

We consider once again the problem studied in section 2, but we now make the following generalizations. First,
we assume to have a one-dimensional chain of N, instead of 2, oscillators, with the first and last coupled to local
baths. Second, we consider a more general type of interaction between them, so that we take the system
Hamiltonian to be

N N-1
Hs =Y waja; + > {e(afai, + afa) + nalal, | + aipa)}. (44)
i=1 i=1
Whenn = 0 we recover the excitation-conserving tight-binding model. Conversely, 7 = € corresponds to a
position—position coupling x;x;, 1. The total system evolves according to the master equation
dos _ .
? - _I[HS) Ps] + Dl(ps) + DN(Ps)’ (45)
where D;(ps) is given in Eq (5).
Using equation (41) we find that the heat rate to the first and last environments will be

Qi = ywi(n; — (a]a;)), i=1,N. (46)

The work rate, on the other hand, is found using equation (43) and reads
w =215 (a)ay + ma; + ajan_| + anal; )
2
+ ?(alaz + ma; + ayay-_1 + anan-_1). (47)
If N = 2andn = 0 this reduces to equation (17).

4.1. Degradation of the engine’s operation due to counter-rotating terms

As afirst application, we return to the case of N = 2 oscillators but generalize the results of section 2 to include
the counter-rotating terms 7). We then show that, interpreting our steady-state as a heat engine, as in figure 2, the
presence of this term only degrades the machine’s operation. We once again use the Lyapunov equation
technique of appendix A. Although the steady-state may be trivially found numerically, it turns out that the
analytical expression for the covariance matrix becomes extremely cumbersome when 7 = 0. For the purpose
of illustration, we therefore present here results that are valid when the bath coupling yis much larger than all
other energy scales in the problem. In this case we find the following simple expressions for the heat rates (46)
and the work rate (47):
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Figure 3. Similar to figure 2, but examining the influence of the counter-rotating term 7in the Hamiltonian (44). The solid curves are
the same as figure 2. The dashed curves correspond to equations (48)—(50) for ) = 0.3w, (dashed) and 7 = 0.6w, (dotted-dashed).
The curves were plotted for €2/ = w,,assuming T;/T, = 1/2. The vertical lines correspond tow, /w, = T;/T,and w; = w,.
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Figure 4. Similar to figure 2, but for a chain of N = 2, 5 and 20 oscillators (solid, dashed and dotted-dashed, respectively) following a
linear frequency profile (equation (51)). The parameters were y = 2wy, € = 0.25wn, 7 = 0and T1 /T, = 1/2.

O = %[62(:11 — ) — 1P+ + D, (48)
s 2wy, 2
Q= *T €“(m — m) +n°(m + my + 1)], (49)

. 2
Wext = *;[52(711 — m)(w) — wy)+

— n*(wr + w)(m + ny + D). (50)

If n = 0 we recover equations (18)—(20), provided we also approximate A ~ +.

The influence of 7 in these thermodynamic quantities is shown in figure 3, which compares the results with
those of figure 2 corresponding to 7 = 0. As can be seen, the region in which the machine operates as a
refrigerator or an engine is severely reduced by the presence of 5. Moreover, as can be easily verified from
equations (48)—(50), in the case = € of a position—position coupling all of these operation regimes become
inaccessible. This type of behavior has already been observed experimentally in the case of opto-mechanical
systems, in which the interplay between 1 and € can be tuned by appropriately choosing the pump’s sideband.
And indeed, what is observed, is that since the 7 interaction tends to entangle the two oscillators (since it leads to
an evolution described by a two-mode squeezing operator), it has the general tendency of heating them up
[91, 107, 108], which is precisely what is observed in figure 3.

4.2. Analysis for a chain of N oscillators

We next carry on a numerical analysis for the case of a chain of N oscillators, assuming for simplicity thatn = 0.
The steady-state in this case is obtained by solving the Lyapunov equation numerically (appendix A). A set of
results is presented in figure 4 for the case of a linear function profile

o (N—dDw + (0 — Dwy
' N-1 '

(5D

As can be seen, in general the thermodynamic quantities depend on the system size. However, the ratios
between heat and work are independent of size and only depend on the frequencies w; and wy of the initial and
final oscillators. This can be proven rigorously after writing the continuity equation for the number of
excitations of each oscillator using techniques similar to those employed in [57, 58]:

d<“1T a)

m = —i¢ <a1Ta2 - a1a2T> + v(m — (afral)), (52)
d(aa;
% = —ie <a;rai+1 — aiaLQ, i=2,...,N—-1 (53)
t

10
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d{ala L ] )
% =ie(a), ,an — any_iaf) + v(ny — (alan)). (54)
Hence, at steady-state we have:
Y — (a) @) = —y(ny — (afan)) (55)

and replacing this in the expressions for the heat flows (46) we obtain:

Q1 = ywi(m — (aa)) = —~LQy. (56)
WN

Finally, using the first law of thermodynamics: Wi + Q1 + Qn = 0 we obtain:

Q@ ey @ 57)
Wet wn — wi QN wN

We remark that these ratios coincide with those of Otto thermal machines and refrigerators operating with a
single harmonic oscillator driven between frequencies w; and wy. Moreover, the universal ratios (57) would hold
if we replace the linear chain with a harmonic lattice of arbitrary geometry or replace the QHO with coupled
qubits for which a continuity equation equivalent to equations (52)—(54).

5. Summary and Conclusions

In this paper we have systematically analyzed the external work required for LMEs based on the repeated
interaction model. Specifically, we have provided explicit expressions, equations (41) and (43), for the relevant
thermodynamics quantities as a function of the reservoir jump operators for a generic master equation in
Lindblad form (with time independent rates). We have found that, at steady-state, this external work is directly
related to the breaking of global detailed balance stemming from the internal system—system interactions. Our
analysis is general and can be applied to any array of interacting d-level systems.

For the purpose of illustration, we have chosen to provide a detailed analysis of a chain of harmonic
oscillators described by LMEs, a problem which has attracted considerable attention from the quantum
thermodynamics and open quantum systems communities. We find that the heat transport through the chain is
dramatically affected by the boundary driving and can even be inverted, leading to a flow of heat from the cold to
the hot bath. However, this does not violate any thermodynamic law as this regime requires introducing positive
work into the system, the latter effectively realizing a quantum refrigerator.

Our findings therefore provide clear evidence that in order to be consistent with thermodynamics, one must
take into consideration the microscopic model associated with a particular dynamical equation. Moreover, for a
given process, complete positivity ensures that a quantum microscopic model can always be found. Hence, by
taking into account all sources of energy exchange, we prove that the thermodynamic laws will always be
satisfied.
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Appendix A. The Lyapunov equation

We discuss here how to compute the steady-state of Gaussian preserving master equations. For concreteness, we
focus on the problem discussed in section 2, more specifically equation (4). The extension to multiple oscillators
(section 4) is straightforward. Since the master equation is Gaussian preserving, the steady-state must necessarily
be Gaussian. Hence, it is completely determined by the second moments of the oscillators’ positions and
momenta, arranged for convenience in the vector:

YT = (a0, pys %5 Py)- (AD
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We introduce the drift matrix containing the couplings and decay constants:

/21 0 A
—wi —y/2 —p 0

K= , A2
0 A —y/2 1 (42)
- 0 —wi —v/2
where:
A= 2¢ uw=2eJuow (A3)
- > - 1w?2
NI %)
and the system’s covariance matrix V with entries:
.. 1 . .
VG j) = 5( Y@, Y()N}) (A4)

the average being done on the state of the system. By calculating the equation of motion for all the elements of the
covariance matrix, we obtain the following Lyapunov equation for the covariance matrix:

V =KV + VKT + D, (A5)

where

>

Do diag[wznl +1) w@m + 1)

2w, 2
Y2n 4+ 1) yw.(2ny + 1)
2wy, 2 '

The steady-state is then determined by the algebraic equation
KV+ VKl +D=0. (A6)

In absence of coupling between the first and second oscillator, € = 0, the stationary state of each oscillator is
thermal at its respective temperature:

21’11+1

0 0 0
2&}1
0 (2m '; Dwy 0 0
V= . (A7)
0 0 2712 +1 0
2(4)2
0 0 0 (2m, '; Dw,

When ¢ = 0, one finds instead the following expression for the entries of V (recall that V;; = V),):

1 (4e€?(my — m)
Vii=—| ————2 + 2 + 1}, A8
11 2(4)1( A2 ! ( )
1 (4€*(m — m)
Voo = EMI(T + 2m + 1|, (A9)
1 46 (1’11 - nZ)
Vi — +2m 4 1 A10
33 2w2( AZ ) ( )
1 (4e*(m —
Vi = — 2( (Az + 2np + 1) (A11)
Vi e(m — m)(w — wz)’ (A12)
Jworw, N2
W, = Jenclm —m) (A13)
Jworw, N?
Vs = 2r€lm — m) (A14)
Jorw; N
Vo = e(m — nZ)(w;z_ wy) Jwiw; ; (A15)

12
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Viz = Vs = 0, (Al6)

which are tantamount to equations (8)—(9).

Appendix B. Details of the repeated interactions derivation

In this section we provide additional details on how to establish the thermodynamic quantities within the
method of repeated interactions. A single interaction stroke between system and environment is described by
the unitary map

! _ L—iTH, iTH,
psgl =e tot PsPE € ot

where Hy,, is given in equation (26) (with V; — V; //T, as discussed in the main text). Hence, the evolution of
any observable O (from either the system or from the environments) due to this interaction is given by

<O>/ — <eiTHlo( OefiTHm(>) (Bl)

where the unprimed average in the right-hand side is computed with respect to the initial state before the
evolution. Using this idea we find that the change in the energy of the system Hgand of each environment H, is
up to order 7

N

AH; = f§Z<[Vi, [V, Hsl]), (B2)
i=1

AHg, = —§<[v,», [V, Hg]). (B3)

Carrying out the computations, using equation (31), we find
T
AHs=— > g AT AL (LixlHs, L] + [Li HsILip)
ik

+ (AikA) (LT Hs, Lix] + [L HslLig)}
AHg, = =7y g wit (AT AL) (Lidl ) — (A ) (L Liw)-
k

Here the averages over the environment operators are always computed with respect to the same state p,
whereas the average over system operators are computed over the instantaneous state ps(%).

Thus, identifying the transition rates 'yiik in equation (37), we may then divide both sides by Tand take the
limit7 — 0, which yields ,

d(H. 1
Hy _1 S (iLiklHs, L] + [Lig HsIL])
dt 2% ’ ’
+ YirLi [Hs, Lig] + [L, Hs1Lix) ). (B4)
Moreover, with respect to the change in energy of the environments, we define the heat rates as Q;, = —AH £/T

which then yields precisely equation (41).
The heat rate may now be found in two ways. First, using equation (25) and noting that

[Hs, Lix] = —wirLix + [Hp Ligl, (B5)

we see that d (Hs) /df can be split into two terms, one of which is precisely °; Q;. Hence, the remainder must be
attributed to the work that has to be performed, which yields precisely equation (43).

Instead, another way of defining the work rate is by noting that since one must decouple the system from the
environments at each stroke, the total Hamiltonian is actually time dependent. That is, if we focus on just a single
interaction stroke, then instead of equation (26), the Hamiltonian for this interaction is more appropriately
defined as

M) &
Hy = Hs + H + 22 57, (86)
NT i3
where A(?) has the value 1 when t € [nT, (n + 1)7] and zero otherwise. Since the global S + E interaction is
unitary, work can be unambiguously defined as in equation (42). Carrying out the integration one then finds
N l
V) — (Vi
6W227< ) = (V) , (B7)
i1 T
where, once again, the primed expectation value refers to the state after the interaction. Using once again
equation (B1) for evaluating this expectation value, we then find

13
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N N
6W = 23 [V [V Hs + Hgl) = AHs + 3 AHp, (B8)

i=1 i=1

. . . N o d(H :
Hence, taking again the limit 7 — 0, one identifies the work rateas W = % - >, Q.

Appendix C. Entropy production in LMEs

In this appendix we discuss how to express the second law of thermodynamics within the repeated interactions
scheme. Since the interaction strokes only last for a small time 7, one may neglect any potential bath—bath
correlations that may appear when a system is interacting with multiple environments. Hence, following [89],
we can define the entropy production in a single stroke as

= I(S: E), +S(pp(DlpM > 0, (C1)
where
N
I(S: E) = ASs + ASg ~ ASs + Z ASE,,‘, (C2)

i=1
is the mutual information developed between the system and all the environments, with ASgbeing the change in

the entropy of the system and ASg, the change in the von Neumann entropy of environment E;. The second term
in equation (C1), on the other hand

S(p(Dlpg )NZS(PEI(T)HPE, (C3)
i=1
is the quantum relative entropy between the final and initial states of each environment (here S(p||o)
= tr(pInp — pIno)). The positivity of ¥ then follows immediately from the positivity of the mutual
information and the quantum relative entropy.
Using equation (B8) one may then readily show that equation (C1) may be written as

N
¥ =ASs— Y Bi6Q. (C4)

i=1

Dividing by 7 and taking the limit 7 — 0 we may then obtain the usual expression for the entropy production rate

dSS sz
i C
;P Zl Bi— (C5)

with the last term representing the entropy flux rates to each environment.
In the particular case where there is a single environment, or when all environments have the same
temperature, we may use the first law to write this as

dw  dF
() @9

where Fs = (Hs) — TSgis the free energy of the system. Thus, in this case we recover another well known
expression for the entropy production rate.
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