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Abstract

The study of open quantum systems often relies on approximatemaster equations derived under the
assumptions of weak coupling to the environment. Howeverwhen the system ismade of several
interacting subsystems such a derivation is inmany cases very hard. An alternativemethod, employed
especially in themodeling of transport inmesoscopic systems, consists in using localmaster equations
(LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been
shown that this approach however generates inconsistencies with the laws of thermodynamics. In this
paper we demonstrate that using amicroscopicmodel of LMEs based on repeated collisions all
thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global
detailed balance related to thework cost ofmaintaining the collisions.We provide examples based on
a chain of quantumharmonic oscillators whose ends are connected to thermal reservoirs at different
temperatures.We prove that this systembehaves precisely as a quantumheat engine or refrigerator,
with properties that are fully consistent with basic thermodynamics.

1. Introduction

The description andmanipulation of energy transfer at the quantum scale is a problemof fundamental and
technological importance, receiving increasing attention in recent years. On one side, the study of energy
transport throughmesoscopic or atomic systems has found applications in disparate systems: from solid state

devices [1, 2] to light harvesting complexes [3–6]; fromultra-cold atomic systems [7–9] to trapped ions [10–12].
On the other side, coherentmanipulation of energy is at the core of quantum thermodynamics, whose aims
include the understanding of the emergence of thermodynamic laws fromquantummechanics [13–21] and the
design of thermalmachinesmadewith quantumdevices [22–41].

The starting point for addressing these phenomena is the theory of open quantum systems [42–45]. In this
framework, the reduced dynamics of the state of the systemunder scrutiny, when in contact with an
environment, is cast in the formof amaster equation after a series of approximations. Under this category fall

very commonmodels studied in the literature, such as the spin-boson or theCaldeira–Leggettmodels [46–48].
The situationbecomesmore involvedwhen the system S ismadeupof several interacting subsystems S1,K, Sn

and each subsystem interactswith a local environmentEi, possibly held at different temperaturesTi (seefigure 1(a)).

This type of scenario is the basis for thedescriptionof transport properties in quantumsystems.Microscopic
derivations in this case usually lead to globalmaster equations (GMEs), inwhich the environment introduces jump
operators that allow for incoherent excitation transfers between thedifferent subsystems [49–53].However, these
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derivations are in general quite involved since they require knowledgeof the full set of eigenvalues and eigenvectors of
the system’sHamiltonian, somethingwhichquickly becomesprohibitivewhen thenumber of subsystems increases.
Moreover, dependingon the approximations employed, onemay also arrive at equationswhichdonot generate
completely positivemaps (the so-calledRedfield equations [50]), or equationswhich containunphysical heat
currents [54]. For these reasons,microscopic derivations ofmaster equations for systems connected tomultiple
environments still continues, nowadays, to be a topic of great interest.

An alternative,more heuristic, approach consists in deriving amaster equation for the individual
subsystems, neglecting the interactionwith the remaining subsystems. The resultingmaster equationwill then
contain only local jumpoperators describing exchanges between the environment Ei and its corresponding
subsystem Si. Such equations, whichwe shall henceforth refer to as LMEs (also frequently called boundary-
drivenmaster equations), are typically accurate when the dissipation rates are larger than the interaction
between subsystems. Due to their computational simplicity, they have been extensively employed over the last
two decades in the study of transport in non-equilibriumquantum systems [55–73].

It turns out, however, that the nonlocal terms neglected in the LMEmay still lead to non-thermal steady-
states [74] and play a significant role if the heat exchanges are small, even forweakly interacting parts. As a
consequence, it has been found that LMEsmay lead to apparent thermodynamic inconsistencies, as pointed out
recently by Levy andKosloff [75]. They have shown that the LME for two coupled quantumharmonic oscillators
(QHO)may predict currents from a cold to a hot thermal reservoir, or the existence of currents even in the
absence of a temperature gradient.Moreover, bothmay occur even in the limit of weakly coupled oscillators.
The origin of these effects, as shown in [75], lies in the fact that the heatfluxes become of the same order of
magnitude as the neglected nonlocal termsThey thus suggest to use theGME tofix such thermodynamic
anomalies. Thesefindings generated a considerable streamof investigations on the comparison between global
and LMEs [49, 52, 53, 61, 76–82] aswell as clever possible alternatives [83, 84].

Recent results indicate, however, that it is possible to construct a consistent thermodynamic framework for
LMEs, resolving these seeming contradictions. First and foremost, it is important tomention that, unlike
Redfield equations, LMEs are in Lindblad form and therefore generate completely positive trace preserving
(CPTP)maps. Second, LMEs, beingCPTPmaps, can bemicroscopically derived in a controlledway using the
idea of repeated interactions (collisionalmodels) [55, 58, 85–90]. In this approach, each environment is divided
into an ensemble of identically prepared auxiliary systems, called units, which interact sequentially with an
individual subsystem for a short time τ (see figure 1(b)). In the limit τ→0 this leads to a LME, irrespective of the
internal system interactions. Thirdly, Barra recently showed that since the interaction between the auxiliary
units and the system is time dependent, there is an inherent external work required for generating the dissipative
evolution described by the LME [88]. Hence, it is possible to put forth a consistent thermodynamic framework
for the repeated interactions scheme, including definitions of heat, work and entropy production [88, 89].

The goal of this paper is to advance further on this reconciliation between LMEs and thermodynamics. Using
the techniques of eigenoperators, we show thatwhile LMEs satisfy local detailed balance, in general global
detailed balance is broken.Moreover, we find that there is a fundamental work cost associatedwith this breaking

Figure 1.Weconsider in this paper a system S composed of several sub-systems S1,K, SN (in thefigureN=2). Each subsystem Si is
connected to a local environment Ei prepared in a different temperatureTi. (a)The standard bosonic heat bathmodel: the
environment is assumed to consist of an ensemble of independent quantumharmonic oscillators with different frequencies in thermal
equilibrium and coupled permanently to the system. (b) In this paperwe focus instead on the framework of the repeated interactions
method: the environment Ei is divided into a series of ancillas (in this case represented by individual bosonicmodes with identical
frequencies)which interact with Si sequentially. This type ofmethod leads to localmaster equations (LMEs), irrespective of the
internal interactions between Si and Sj.

2

New J. Phys. 20 (2018) 113024 GDeChiara et al



of global detailed balance. By taking this exact work cost into account, we then show that LMEs become fully
reconciledwith thermodynamics. Quite surprisingly, the discrete nature of the repeated interactionsmethod
allows us to establish a directmapping between non-equilibrium steady-states and limit-cycles of quantumheat
engines.Hence, wefind that the anomalous situation inwhich heatflows from cold to hot baths corresponds
simply to a refrigerator, requiring positive injection of work to operate.

As ourmain application, we focus on the case of a systemof two coupledQHO,which has been the subject of
considerable interest due to potential applications in trapped ions [10, 11], opto-mechanical systems [8, 91] and
ultra-cold atoms [8, 9]. Several interesting features of thismodel are studied in detail. First we showhow to
engineer the system to behave as a refrigerator, a heat engine or an accelerator.We study the efficiency and/or
coefficient of performance (COP) for thismodel and show that they reach the optimal value of theOtto cycle in
the casewhere the oscillators interact without counter-rotating terms in theHamiltonian: including counter-
rotating terms only degrades the operation of the system.We also discuss how to reconcile these results with a
theorembyMartinez and Paz [92], which states that no autonomous refrigeration is possible with equilibrium
harmonic oscillators linearly coupled.

Let usmention that, given aphysical system, the actual choice ofwhether todescribe it using anLMEor aGME
approachdependsultimately on the system itself.Herewe stress that theLMEapproachper sedoesnot give rise to
thermodynamic inconsistencies, provided themechanism for its emergence is fully taken into account.

In order to clearly present themotivation behind our study and themain features of our approach, we begin
in section 2with the simplest example of a LME, consisting of two coupledQHOs.Wefirst review the seeming
thermodynamic inconsistencies thatmay stem from thismodel and then go on to showhow the results obtained
using themethod of repeated interactions can be used to completely remove them. Then, in section 3we carry
out ourmain theoretical development, showing how the eigenoperator techniquemay be used to directly access
thermodynamic quantities and describe the possible breaking of global detailed balance. Finally, in section 4we
return to the oscillatormodel and showhow the fullmachinery of our approachmay be employed to study the
interplay between different types of interactions between the two oscillators. Finally, in section 5we summarize
our results and conclude. Our paper also contains three appendices with various details of the derivations of our
main results. In appendix Awe review the technique of Lyapunov equations for dealingwithGaussian
continuous variable systems. In appendix Bwe provide additionalmathematical details on the developments of
section 3. In appendix Cwe compute the entropy production showing that it is always positive.

2. Steady-state of two harmonic oscillators subject to a LME

In order tomotivate our study and provide an intuitive summary of ourmain results, we begin by discussing the
model studied by Levy andKosloff [75], consisting of two coupled harmonic oscillators, S1 and S2, each coupled
to its own local heat bath via a LME (seefigure 1(a)). TheHamiltonian is taken to be

= + + ( )H H H H , 1S I1 2

where

w w= + = +( ) ( ) ( )†H p x a a
1

2
1 2 , 2i i i i i i i

2 2 2

and

= +( ) ( )† †H a a a a . 3I 1 2 1 2

Here ai are the annihilation operators of each harmonic oscillator and ( )x p,i i the corresponding position and
momentum (ÿ=kB=1). Both oscillators are assumed to have unitmass, but different frequenciesωi. The
interaction(3) is taken to be of the typical tight-binding form,which conserves the number of quanta in the case
of equal frequencies,ω1=ω2.More general interactions will be discussed in section 4.

The system is also subject to two baths E1 and E2, whichwe assume can bemodeled by LMEs acting only on
S1 and S2. Hence, we take the system to evolve according to the Lindbladmaster equation

r
r r r= - + +[ ] ( ) ( ) ( )

t
H D D

d

d
i , , 4S

S S S S1 2

where

 r g r g r= + +( ) ( ) [ ] [ ] ( )†D n a n a1 , , . 5i S i i i i

Here γ is the dissipation rate, ni is the average excitation number for the Bose–Einstein distribution

=
-b w

( )n
1

e 1
, 6i

i i
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with inverse temperature b = -( )Ti i
1 and

 r r r= -[ ] { } ( )† †A A A A A,
1

2
, , 7

is the dissipator in Lindblad form.Henceforth, we always assume thatT1<T2 (see figure 1(a)). Below, it will
also be useful to keep inmind that ni is amonotonically increasing function ofTi/ωi.

2.1. Predictions for the steady-state

Due to the formof theHamiltonian and the jumpoperators, the steady-state of themaster equation (4)will be
Gaussian and can therefore be easily found using the standard Lyapunov equation technique. A review of this
method is given for completeness in appendix A.Herewe only focus on themain results, which can be
summarized by the following expectation values:


á ñ = +

D
-( ) ( )†a a n n n

2
, 81 1 1

2

2 2 1


á ñ = -

D
-( ) ( )†a a n n n

2
, 92 2 2

2

2 2 1


w w gá ñ =

D
- + -( )( ) ( )†a a n ni , 102 1 2 1 2 1 2

where g w wD = + + -( )42 2 2
1 2

2. Using equation (2)we thenfind that the energy of oscillator 1will be

w
á ñ = á ñ +

D
-( ) ( )H H n n

2
, 111 1 th

1
2

2 2 1

where wá ñ = +( )H n 1 21 th 1 1 is the energy the oscillatorwould have if it were in thermal equilibriumwith its
corresponding bath. An equivalent expression can be obtained for the second oscillator replacing «1 2.
Similarly, the heatflux from thefirst oscillator to the secondwill be

 
w

g w
= - á ñ = - á - ñ =

D
-˙ [ ] ( ) ( )† †Q H H a a a a n ni , i

2
, 12S1 2 1 1 1 2 1 2

2
1

2 2 1

which is consistent with the expression obtained in [75].
The relevant point to highlight from these results is that the sign of the ò2-terms in equations (11) and (12)

will depend on the relativemagnitudes of n1 and n2 and not ofT1 andT2. This simple fact, when combinedwith
the definition of ni in equation (6), introduces several properties which, atfirst sight, seem to violate the second
law of thermodynamics. First, it implies that oscillator 1 can be cooled to a temperature smaller than the
temperatureT1 of the coldest reservoir, in the sense that it could reach a state with lower energy than that of the
thermal state it would reach if it were in contact only with the coldest reservoir. Second, onemay obtain a non-
zero heat current even if both baths are at the same temperature,T1=T2. And third, ifT1<T2 butwe happen
to satisfy

w w
> « > ( )n n

T T
, 131 2

1

1

2

2

then therewill be a currentflowing from the cold to the hot bath ( <Q̇ 01 2 ).
As pointed out in [75], these results seem to violate the second law of thermodynamics, a fact which the

authors attribute to the inadequacy of LMEs to describe transport processes. The result of the cooling of thefirst
oscillator below the temperature of the coldest environment also seems to suggest that thismaster equation
could be used to designGaussian (quadratic) absorption refrigerators, whichwould contradict a general
theoremproved byMartinez and Paz [92].

2.2. Resolving the thermodynamic inconsistencies

Using equation (4) onefinds that the total rate of change of the systemHamiltonian(1) is given by



g g

g

á ñ
= - á ñ + - á ñ

- á + ñ

( ) ( )

( )

† †

† †

H

t
n a a n a a

a a a a

d

d

. 14

S
1 1 1 2 2 2

1 2 2 1

However, this change in energy cannot be associated onlywith heat flowing to the reservoirs [88]. Instead, there
is an associatedwork cost which, as we show below, is related to the breaking of global detailed balance.Quoting
the results that will be derived in section 3, we nowdiscuss how one can remove all the inconsistencies by
including this work cost.
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In particular, wefind that the correct splitting of equation (14) is of the form

á ñ
= + +˙ ˙ ˙ ( )

H

t
Q Q W

d

d
, 15

S
1 2 ext

where

r gw= = - á ñ˙ [ ( ) ] ( ) ( )†Q D H n a atr , 16i i S i i i i i

is the heat rate flowing from each reservoir to the system (see equation (41) for the general expression) and

r r g= + = - á + ñ˙ {[ ( ) ( )] } ( )† †W D D H a a a atr , 17S S Iext 1 2 1 2 2 1

is the requiredwork rate (see equation (43) for the general expression). From equations (8)–(10)we thenfind
that in the steady-state

g
w=

D
-˙ ( ) ( )Q n n

2
, 181

2

2 1 1 2

g
w= -

D
-˙ ( ) ( )Q n n

2
, 192

2

2 2 1 2

g
w w= -

D
- -˙ ( )( ) ( )W n n

2
. 20ext

2

2 1 2 1 2

These are very important results, whichwe shall nowdiscuss in depth. But before doing so, some consistency
checks are in order. First, Ẇext tends to zero as ò→0, inwhich case global detailed balance is recovered. Second,
thework required is proportional to γò2. As discussed in [52], the LME can be shown to be correct for small
interactions ò up to the same order (see comment in section 2.4 in that paper). Third, in the steady-state
á ñ =H td d 0S so that we should have

= - -˙ ˙ ˙ ( )W Q Q , 21ext 1 2

as can indeed be easily verified.
Wenowshow that, once thiswork cost is correctly attributed, the two-oscillator systemat steady-state functions

precisely as a heat engine,with two reservoirs and awork source. Indeed,wefind fromequations (18)–(20) that the
systemcanbe tuned to function as a refrigerator, a thermal engine or an accelerator (oven). The descriptionof each
modeof operation andwhat theymean in termsof Q̇1, Q̇2 and Ẇ is presented in table 1.Wealso show infigure 2 a
plot of these 3 quantities illustrating the typical operation regimes.

We beginwith the case of a refrigerator, >Q̇ 01 . According to equation (18), this requires n1>n2which is
tantamount to the condition(13). But we now see that when this condition is satisfied, one also has >Ẇ 0ext .
Thus, for the two oscillators to act as a refrigerator, theymust absorbwork from an external agent. Hence, we see
that there are no violations of the second law. Instead, by taking into account this work cost, one recovers a fully
consistent thermodynamic description. TheCOPof the refrigerator is the ratio of the heat extracted from the
cold environment divided by thework invested:

w
w w

= =
-

˙

˙
( )

Q

W
COP 221

ext

1

2 1

which coincideswith theCOPof theOtto cycle. Aswill become clear in section 3, this connection between a
steady-state and the limit-cycle of a heat engine, can actually be traced back to the basic idea of the repeated
interactionsmethod, whichmodels the steady-state as a sequence of (extremely short) strokes, each having an
associatedwork rate and heat rate. Notwithstanding, we should alsomention that anOttoCOP is a special

Table 1.The threemodes of operation of the steady-state of the two oscillators, always assuming E1 is the cold reservoir (T1<T2). In this
paper positive heat or work alwaysmeans energy entering the system. So >Q̇ 0i means energy entered S through Ei and >Ẇ 0ext means
workwas performed on the system by an external agent.

Mode of operation Q̇1 Q̇2 Ẇ Operation regime

Refrigerator >Q̇ 01 <Q̇ 02 >Ẇ 0 ω1<ω2T1/T2

Consumeswork tomake heatflow from cold to hot.

Engine <Q̇ 01 >Q̇ 02 <Ẇ 0 ω2T1/T2<ω1<ω2

Uses hot bath to produce useful work, dumping the remainder in the cold bath.

Accelerator (oven) <Q̇ 01 >Q̇ 02 >Ẇ 0 ω1>ω2

Consumeswork to heat the cold reservoirmore than it wouldwith spontaneous

thermal conduction.
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consequence of this type of interaction. Aswill be shown in section 4, the introduction of counter-rotating terms
only reduces theCOPbelow theOtto value.

Increasingω1 in the interval

w w w< < ( )
T

T
, 231

2
2 1 2

wefind that the two-oscillator system in its steady-state functions as a thermalmachine, extracting heat from the
hot bath, producing work and dumping heat in the cold bath. In this regime themachineʼs efficiencywill be:

h
w
w

= = -
∣ ˙ ∣

˙
( )

W

Q
1 24ext

2

1

2

which is again theOtto efficiency for a thermalmachine. Finally, forω2<ω1wenecessarily have n1<n2 and
therefore <Q̇ 01 , >Q̇ 02 and >Ẇ 0ext . Thus the device transports heat from the hot to the cold environment
and at the same time transformswork into heat which is damped in the cold bath: = + >∣ ˙ ∣ ˙ ˙ ˙Q W Q Q1 ext 2 2.
Hence, it functions as an accelerator (i.e. an oven) [93], heating the cold reservoir faster than it wouldwith
spontaneous thermal conduction.

Notice that at the special valueω1/ω2=T1/T2, the systemoperates as a thermalmachinewith theCarnot
efficiency and zero power.

We conclude this section by emphasizing thatwithin the repeated interactions framework one is able to
resolve all of the seeming thermodynamic inconsistencies of LMEs. The zeroth law does not apply since the
system is externally driven. Thefirst law is satisfied, as we accounted for the energy balance of thewhole system
plus environment, including the requiredwork cost. The second law is satisfied, as refrigeration is not
spontaneous, but accompanied by external work. Andfinally, the LMEs do not violate the theorembyMartinez
and Paz [92], which states that no autonomous refrigeration is possible with equilibriumharmonic oscillators.
In fact, in our framework, there is alsowork associatedwith the environment–system interaction so themachine
is not autonomous.

We nowmove on to themathematical development of LMEs using eigenoperators and the repeated
interactions.

3. Themethod of repeated interactions

Wenow turn to themicroscopic derivation of LMEs using themethod of repeated interactions [55, 58, 85–90,
94–102], whichwill form the basis for our thermodynamic description. The basic idea behind themethod of
repeated interactions is tomodel the environment as a set of units, each prepared in a thermal state. At time
t=0 the system S is allowed to interact for a certain time τwith one such unit, whichwe generically refer to asE.
After this time the unit is discarded and a fresh new one is introduced, again in the same initial state. The process
is then repeated sequentially. For τ→0 thismethod generates a continuous time descriptionwhich can be
modeled by a Lindbladmaster equation that is, in general, local.We emphasize that a larger class of non-
Markovianmaster equations including theGME can be engineered in a similar way [87] and realized
experimentally as proposed in [103].

We consider here thismethod implemented in the general scenario offigure 1(b) and derive the results of the
previous section as particular cases.Our system S is therefore assumed to be composed ofN subsystems S1,K, SN,
where each Si interactswith its own environmentEi. TheHamiltonian of the system is taken to be

Figure 2.The three regimes of operation in table 1, for the steady-state of twoharmonic oscillators. (a)–(c) Q̇1, Q̇2 and Ẇext,
equations (18)–(20), as a function ofω1/ω2. (d) ˙ ˙Q W1 ext, which follows precisely theOtto valueω1/(ω2−ω1). (e) ˙ ˙W Qext 2 which also
follows theOtto valueω1/ω2−1. All curves are plotted for γò

2/Δ2=ω2, assumingT1/T2=1/2. The vertical lines represent
ω1/ω2=T1/T2 andω1=ω2.
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å= +
=

( )H H H , 25S

i

N

S I

1
i

where HSi
is theHamiltonian of subsystem Si andHI summarizes all interactions between subsystems.Moreover,

the totalHamiltonian comprising the system, the environments and all interactions, is taken as

å åt= + +
= =

( )H H H V
1

, 26S

i

N

E

i

N

itot

1 1
i

where HEi
is theHamiltonian of environment Ei andVi is the interaction between Si andEi.We also follow the

customary approach of scaling theVi by the interaction time τ, which is convenient, although not necessary, for
taking the continuous time limit [58, 88, 89]. Following the usual repeated interactions approach, the reduced
densitymatrix of the system ρS(t)will then evolve according to themap

r t r t r+ = t t-(( ) ) { ( ) } ( )n n1 tr e e , 27S E
H

S E
Hi itot tot

where

r =
b

b
=

-

-
⨂ ( )

e

tre
, 28E

i

N H

H
1

i Ei

i Ei

is the thermal state of the environments.
Expanding equation (27) in a power series in τ one thenfinds, up tofirst order, the LME

å
r

r r= - +
=

[ ] ( ) ( )
t

H D
d

d
i , , 29S

S S
i

N

i S
1

whereHS is given in(25) and

r r r= -( ) [ [ ]] ( )D V V
1

2
tr , , . 30i S E i i S Ei i

The interesting aspect of this approach is that the structure of the dissipative terms are completely independent
on the choice ofHS. Or,more specifically, on the interaction termsHI. This is a consequence of the short
interaction times between the system and environment which do not allow for the information of each Ei to
scramble towards different Sj [104, 105].

3.1. Local versus global detailed balance

Up to now the discussionmakes no reference to the structure of the system–environment interactionsVi. A
particularly interesting situation, which is in practice themost widely studied case, is when theVi satisfy local
detailed balancewith respect to each subsystem, but do not necessarily satisfy global detailed balance due the
system–system interactionsHI. Tomake this argumentmore precise we introduce the idea of eigenoperators.

By using themethod of eigenoperators, we can cast the conditions of detailed balance in terms solely of the
algebra of operators. This therefore allows us to introduce the notion of local versus global detailed balance, as
referring to the local or globalHamiltonian of the system.We note that here this terminology is being used in a
slightly different context as, for instance, [88]. There the term is employed in the standard sense of ‘detailed
balance’ [106].

LetH be an arbitraryHamiltonian. An operatorA is called an eigenoperator ofH if it satisfies [H,A]=−ωA,
for someω>0 (usually referred to as a Bohr, or transition, frequency). Due to this algebra,A andA† function as
lowering and raising operators for theH, causing transitions between energy levels E and E′ separated by an
energyω.

Returning to our problem,we shall assume that theVihave the form

å= +( ) ( )† †V g L A L A , 31i

k
i k i k i k i k i k, , , , ,

where gi,k are constants, while Li,k andAi,k are eigenoperators of HSi
and HEi

, respectively. That is:

w= -[ ] ( )H L L, , 32S i k i k i k, , ,i

w= -[ ] ( )H A A, , 33E i k i k i k, , ,i

where, for each Si, {ωi,k} represents the set of transition frequencies of theHamiltonian HSi
. The rationale

behind these expressions is the following. For each subsystem Si, the set of Bohr frequencies {ωi,k} can be viewed
as the set of transitionswhich are activated in that subsystem, due to the contact with its local bath. For instance,
in the case of a harmonic oscillator, a dissipator such as(5) is characterized by an eigenoperator a, which only
induces transitions between neighboring levels. Hence, the only Bohr frequencywould beω (the natural
frequency of the oscillator). Similarly, a system–environment interaction containing a2would induce transitions
with Bohr frequencies 2ω.
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In an interaction such as(31), however, there is also the additional assumption that whenever there is a
transition of+ωi,k in the system, the corresponding transition inEi occurs with energy−ωi,kHence, it follows
that

+ =[ ] ( )H H V, 0, 34S E ii i

meaning that all the energy that leaves system Si enters bathEi. This equation, togetherwith the assumption that
the bath is thermal, implies local detailed balance.

However, a similar relation does not hold for the total systemHamiltonianHS, due to the interactionHI

between subsystems. The reason is that, in general, Li,k are not eigenoperators ofHI. Hence

+ = ¹[ ] [ ] ( )H H V H V, , 0, 35S E I

where = å =H HE i
N

E1 i
and = å =V Vi

N
i1 . Thismeans that even though detailed balancemay hold locally, it is

violated globally. Aswill be shownbelow, taking into account this fact is essential for providing a consistent
thermodynamic description of LMEs.

Substituting equation (31) in equation (30) onemay obtain amore explicit formula for the LMEdissipators.
To do so one notices that since the environments are in equilibrium, it follows that á ñ =A A 0i k i q, , and

dá ñ µ†A Ai k i q k q, , , . Hence, equation (30) reduces to

 år g r g r= +- +( ) [ ] [ ] ( )†D L L, , , 36i S
k

i k i k S i k i k S, , , ,

where  r[ ]A, is the Lindblad dissipator defined in equation (7), whereas

g

g

= á ñ

= á ñ

-

+ ( )

†

†

g A A

g A A

,

. 37

i k i k i k i k

i k i k i k i k

, ,
2

, ,

, ,
2

, ,

Since theAi,k are eigenoperators of the bathwhich is in equilibrium at inverse temperatureβi, it follows that

g
g

= b w
+

-
- ( )e , 38

i k

i k

,

,

i i k,

which is anothermanifestation of local detailed balance.

3.2. Example: two harmonic oscillators

To showhow these resultsmay be applied, we consider again the two harmonic oscillators a1 and a2 treated in
section 2.We assume that the environmental units E1 andE2 are themselves harmonic oscillators with operators
b1 and b2

8, andwe take the totalHamiltonian to be

å w= + + +
=

{ ( )} ( )† † †H H b b g a b b a , 39S

i

i i i i i i itot

1,2

whereHS is given in equation (1). Since the frequencyω1 of S1 and E1 are the same, the operators a1 and b1 are
eigenoperators of w= †H a a1 1 1 1 and w= †H b bE 1 1 11

. Hence, local detailed balance, equation (34), is satisfied.
However, a1 is not an eigenoperator ofHS due to the interaction term = +( )† †H a a a aI 1 2 1 2 (equation (3)) so
that global detailed balance is in general broken.

Applying equation (36)with =L ai k i, andAi,k=biwe then immediately find themaster equation (4)with
the transition rates g

i k,
given by

g g g g= á ñ = á ñ = ++ -≔ ( ) ( )† †g b b n g b b n, 1 , 40i i i i i i i i
2 2

which are the coefficients in equation (5).

3.3. Thermodynamics of the repeated interactionsmethod

Wenow turn to a description of the thermodynamics of the repeated interactionsmethod. Since the global
S+E interaction is unitary, wemay study the changes in the energy of the system and environment individually
for a given stroke. The heat δQi exchanged between the system and environment i in one strokemust then be
simply á ñ - á ñtH HE E0i i

. Dividing by τ and taking the limit τ→0will give the heat current Q̇i to environment Ei.
The explicit calculation is postponed to appendix B. As a result, we find the surprisingly simple formula:

å w g g= á ñ - á ñ+ -˙ { } ( )† †Q L L L L . 41i

k

i k i k i k i k i k i k i k, , , , , , ,

For example, in the case of the two harmonic oscillators, equation (41) gives precisely the heat rate formula(16)
that was used in section 2.

8
Note that it is possible to arrive at the same results by assuming the environmental units to be qubits.
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In addition to the heat rates, however, therewill in general also be awork contribution. The simplest way of
seeing this is to note that for each interaction stroke onemust turn the system–environment coupling on and off,
so that the totalHamiltonian(26)must actually be time dependent. Since the global S− E system is isolated, the
work in an individual stroke between times nτ and (n+1)τmay be unambiguously defined as

òd =
¶
¶t

t+
( )

( )

W
H

t
td . 42

n

n

ext

1
tot

Again, dividing by τ and taking the limit τ→0 yields thework rate Ẇext. As shown in appendix B, carrying out
this computation yields

å g g= á ñ - á ñ +- +˙ { } ( )† †W L F F L
1

2
c.c ., 43

i k
i k i k i k i k i k i kext

,
, , , , , ,

where Fi,k=[HI, Li,k] and c.c. stands for complex conjugate. Hence, we see that thework rate is related precisely
to the non-commutativity of the jump operators Li,kwith the system–system interactionHI. If global detailed
balance, equation (35), is recovered, then thework cost is identically zero.Otherwise, whenever global detailed
balance is broken, there will be an associatedwork cost. As an example, in the case of the twoQHOs, [HI,
a1]=−òa2, so that a direct application of equation (43) leads to expression(17).

From a practical point of view, equations (41) and (43) are ourmain results, as they offer general expressions
thatmay be applied over a broad range of situations. These results generalize Barraʼsfindings [88] to arbitrary
bath and systemʼs structure. In appendix C,we calculate the entropy production showing that it is indeed always
positive in agreementwith the second law.Wenow return to the problemof coupled harmonic oscillators and
showhow they can be applied to the study ofmore complex situations.

4.Quantumharmonic oscillators

Weconsider once again the problem studied in section 2, butwe nowmake the following generalizations. First,
we assume to have a one-dimensional chain ofN, instead of 2, oscillators, with the first and last coupled to local
baths. Second, we consider amore general type of interaction between them, so that we take the system
Hamiltonian to be

å åw h= + + + +
= =

-

+ + + +{ ( ) ( )} ( )† † † † †H a a a a a a a a a a . 44S

i

N

i i i

i

N

i i i i i i i i

1 1

1

1 1 1 1

When η=0we recover the excitation-conserving tight-bindingmodel. Conversely, η=ò corresponds to a
position–position coupling xixi+1. The total system evolves according to themaster equation

r
r r r= - + +[ ] ( ) ( ) ( )

t
H D D

d

d
i , , 45S

S S S N S1

whereDi(ρS) is given in Eq (5).
Using equation (41)wefind that the heat rate to the first and last environments will be

gw= - á ñ =˙ ( ) ( )†Q n a a i N, 1, . 46i i i i i

Thework rate, on the other hand, is found using equation (43) and reads

g

gh

= á + + + ñ

+ á + + + ñ

- -

- -

˙

( )

† † † †W a a a a a a a a

a a a a a a a a

2

2
. 47

N N N N

N N N N

1 2 1 2 1 1

1 2 1 2 1 1

IfN=2 and η=0 this reduces to equation (17).

4.1.Degradation of the engineʼs operation due to counter-rotating terms

As afirst application, we return to the case ofN=2 oscillators but generalize the results of section 2 to include
the counter-rotating terms η.We then show that, interpreting our steady-state as a heat engine, as infigure 2, the
presence of this termonly degrades themachineʼs operation.We once again use the Lyapunov equation
technique of appendix A. Although the steady-statemay be trivially found numerically, it turns out that the
analytical expression for the covariancematrix becomes extremely cumbersomewhen h ¹ 0. For the purpose
of illustration, we therefore present here results that are validwhen the bath coupling γ ismuch larger than all
other energy scales in the problem. In this case wefind the following simple expressions for the heat rates(46)
and thework rate(47):

9
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w
g

h= - - + +˙ [ ( ) ( )] ( )Q n n n n
2

1 , 481
1 2

1 2
2

1 2

w
g

h= - - + + +˙ [ ( ) ( )] ( )Q n n n n
2

1 , 492
2 2

1 2
2

1 2


g

w w

h w w

=- - - +

- + + +

˙ [ ( )( )

( )( )] ( )

W n n

n n

2

1 . 50

ext
2

1 2 1 2

2
1 2 1 2

If η=0we recover equations (18)–(20), providedwe also approximateΔ;γ.
The influence of η in these thermodynamic quantities is shown infigure 3, which compares the results with

those of figure 2 corresponding to η=0. As can be seen, the region inwhich themachine operates as a
refrigerator or an engine is severely reduced by the presence of η.Moreover, as can be easily verified from
equations (48)–(50), in the case η=ò of a position–position coupling all of these operation regimes become
inaccessible. This type of behavior has already been observed experimentally in the case of opto-mechanical
systems, in which the interplay between η and ò can be tuned by appropriately choosing the pumpʼs sideband.
And indeed, what is observed, is that since the η interaction tends to entangle the two oscillators (since it leads to
an evolution described by a two-mode squeezing operator), it has the general tendency of heating themup
[91, 107, 108], which is precisely what is observed infigure 3.

4.2. Analysis for a chain of N oscillators

Wenext carry on a numerical analysis for the case of a chain ofN oscillators, assuming for simplicity that η=0.
The steady-state in this case is obtained by solving the Lyapunov equation numerically (appendix A). A set of
results is presented infigure 4 for the case of a linear function profile

w
w w

=
- + -

-
( ) ( )

( )
N i i

N

1

1
. 51i

N1

As can be seen, in general the thermodynamic quantities depend on the system size. However, the ratios
between heat andwork are independent of size and only depend on the frequenciesω1 andωN of the initial and
final oscillators. This can be proven rigorously after writing the continuity equation for the number of
excitations of each oscillator using techniques similar to those employed in [57, 58]:

 g
á ñ

= - á - ñ + - á ñ( ) ( )
†

† † †a a

t
a a a a n a a

d

d
i , 521 1

1 2 1 2 1 1 1


á ñ

= - á - ñ = ¼ -+ + ( )
†

† †a a

t
a a a a i N

d

d
i , 2, , 1 53i i

i i 1 i i 1

Figure 3. Similar to figure 2, but examining the influence of the counter-rotating term η in theHamiltonian(44). The solid curves are
the same as figure 2. The dashed curves correspond to equations (48)–(50) for η=0.3ω2 (dashed) and η=0.6ω2 (dotted-dashed).
The curves were plotted for  g w=2

2, assumingT1/T2=1/2. The vertical lines correspond toω1/ω2=T1/T2 andω1=ω2.

Figure 4. Similar to figure 2, but for a chain ofN=2, 5 and 20 oscillators (solid, dashed and dotted-dashed, respectively) following a
linear frequency profile (equation (51)). The parameters were γ=2ωN, ò=0.25ωN, η=0 andT1/T2=1/2.
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 g
á ñ

= á - ñ + - á ñ- - ( ) ( )
†

† † †a a

t
a a a a n a a

d

d
i . 54N N

N N N N N N N1 1

Hence, at steady-state we have:

g g- á ñ = - - á ñ( ) ( ) ( )† †n a a n a a 55N N N1 1 1

and replacing this in the expressions for the heatflows(46)we obtain:

gw
w
w

= - á ñ = -˙ ( ) ˙ ( )†Q n a a Q . 56
N

N1 1 1 1 1
1

Finally, using thefirst law of thermodynamics: + + =˙ ˙ ˙W Q Q 0Next 1 we obtain:

w
w w

w
w

=
-

= - +
˙

˙

˙

˙
( )

Q

W

W

Q
; 1 . 57

N N N

1

ext

1

1

ext 1

We remark that these ratios coincide with those ofOtto thermalmachines and refrigerators operating with a
single harmonic oscillator driven between frequenciesω1 andωN.Moreover, the universal ratios (57)would hold
if we replace the linear chainwith a harmonic lattice of arbitrary geometry or replace theQHOwith coupled
qubits for which a continuity equation equivalent to equations (52)–(54).

5. Summary andConclusions

In this paper we have systematically analyzed the external work required for LMEs based on the repeated
interactionmodel. Specifically, we have provided explicit expressions, equations (41) and(43), for the relevant
thermodynamics quantities as a function of the reservoir jump operators for a genericmaster equation in
Lindblad form (with time independent rates).We have found that, at steady-state, this external work is directly
related to the breaking of global detailed balance stemming from the internal system–system interactions. Our
analysis is general and can be applied to any array of interacting d-level systems.

For the purpose of illustration, we have chosen to provide a detailed analysis of a chain of harmonic
oscillators described by LMEs, a problemwhich has attracted considerable attention from the quantum
thermodynamics and open quantum systems communities.Wefind that the heat transport through the chain is
dramatically affected by the boundary driving and can even be inverted, leading to aflowof heat from the cold to
the hot bath.However, this does not violate any thermodynamic law as this regime requires introducing positive
work into the system, the latter effectively realizing a quantum refrigerator.

Our findings therefore provide clear evidence that in order to be consistent with thermodynamics, onemust
take into consideration themicroscopicmodel associatedwith a particular dynamical equation.Moreover, for a
given process, complete positivity ensures that a quantummicroscopicmodel can always be found.Hence, by
taking into account all sources of energy exchange, we prove that the thermodynamic lawswill always be
satisfied.
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AppendixA. The Lyapunov equation

Wediscuss here how to compute the steady-state of Gaussian preservingmaster equations. For concreteness, we
focus on the problemdiscussed in section 2,more specifically equation (4). The extension tomultiple oscillators
(section 4) is straightforward. Since themaster equation is Gaussian preserving, the steady-statemust necessarily
beGaussian.Hence, it is completely determined by the secondmoments of the oscillators’ positions and
momenta, arranged for convenience in the vector:

= ( ) ( )Y x p x p, , , . A1T
1 1 2 2
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We introduce the driftmatrix containing the couplings and decay constants:

g l
w g m

l g
m w g

=

-

- - -
-

- - -

⎛

⎝

⎜
⎜
⎜
⎜

⎞
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⎟
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( )K

2 1 0

2 0

0 2 1

0 2

, A21
2

2
2

where:

 l
w w

m w w= = ( )
2

, 2 A3
1 2

1 2

and the systemʼs covariancematrixVwith entries:

= á ñ( ) { ( ) ( )} ( )V i j Y i Y j,
1

2
, A4

the average being done on the state of the system. By calculating the equation ofmotion for all the elements of the
covariancematrix, we obtain the following Lyapunov equation for the covariancematrix:

= + +˙ ( )V KV VK D, A5T

where

g
w

gw

g
w

gw
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+ +
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+ +

⎡

⎣
⎢

⎤

⎦
⎥

( ) ( )

( ) ( )

D
n n

n n

diag
2 1

2
,

2 1

2
,

2 1

2
,

2 1

2
.

1

1

1 1

2

2

2 2

The steady-state is then determined by the algebraic equation

+ + = ( )KV VK D 0. A6T

In absence of coupling between the first and second oscillator, ò=0, the stationary state of each oscillator is
thermal at its respective temperature:
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When  ¹ 0, onefinds instead the following expression for the entries ofV (recall thatVij=Vji):


w

=
-

D
+ +

⎛

⎝
⎜

⎞

⎠
⎟

( )
( )V

n n
n

1

2

4
2 1 , A811

1

2
2 1

2 1


w=

-
D

+ +
⎛

⎝
⎜

⎞

⎠
⎟

( )
( )V

n n
n

1

2

4
2 1 , A922 1

2
2 1

2 1


w

=
-

D
+ +

⎛

⎝
⎜

⎞

⎠
⎟

( )
( )V

n n
n

1

2

4
2 1 , A1033

2

2
1 2

2 2


w=

-
D

+ +
⎛

⎝
⎜

⎞

⎠
⎟

( )
( )V

n n
n

1

2

4
2 1 , A1144 2

2
1 2

2 2

 w w
w w

=
- -

D
( )( )

( )V
n n

, A1213
1 2 1 2

1 2
2

gw
w w

=
-
D

( )
( )V

n n
, A1314

2 2 1

1 2
2

gw
w w

=
-
D

( )
( )V

n n
, A1423

1 1 2

1 2
2

 w w w w
=

- -
D

( )( )
( )V

n n
, A1524

1 2 1 2 1 2

2

12

New J. Phys. 20 (2018) 113024 GDeChiara et al



= = ( )V V 0, A1612 34

which are tantamount to equations (8)–(9).

Appendix B.Details of the repeated interactions derivation

In this sectionwe provide additional details on how to establish the thermodynamic quantities within the
method of repeated interactions. A single interaction stroke between system and environment is described by
the unitarymap

r r r¢ = t t-e e ,SE
H

S E
Hi itot tot

whereHtot is given in equation (26) (with tV Vi i , as discussed in themain text). Hence, the evolution of
any observable (from either the systemor from the environments) due to this interaction is given by

 á ñ¢ = á ñt t- ( )e e , B1H Hi itot tot

where the unprimed average in the right-hand side is computedwith respect to the initial state before the
evolution. Using this ideawefind that the change in the energy of the systemHS and of each environment HEi

is
up to order τ

åtD = - á ñ
=

[ [ ]] ( )H V V H
2

, , , B2S

i
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i i S

1

t
D = - á ñ[ [ ]] ( )H V V H

2
, , . B3E i i Ei i

Carrying out the computations, using equation (31), we find

å

å

t

t w

D = á ñá + ñ

+ á ñá + ñ

D =- á ñá ñ - á ñá ñ

{ [ ] [ ]

[ ] [ ] }

{ }

† † †

† † †

† † † †

H g A A L H L L H L

A A L H L L H L

H g A A L L A A L L

2
, ,

, ,

.

S

i k
i k i k i k i k S i k i k S i k
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Here the averages over the environment operators are always computedwith respect to the same state ρE,
whereas the average over systemoperators are computed over the instantaneous state ρS(t).

Thus, identifying the transition rates g
i k,
in equation (37), wemay then divide both sides by τ and take the

limit τ→0, which yields

å g

g

á ñ
= á + ñ
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, , , , ,

Moreover, with respect to the change in energy of the environments, we define the heat rates as t= -DQ̇ Hi Ei
,

which then yields precisely equation (41).
The heat ratemay nowbe found in twoways. First, using equation (25) and noting that

w= - +[ ] [ ] ( )H L L H L, , , B5S i k i k i k I i k, , , ,

we see that á ñH td dS can be split into two terms, one of which is preciselyå Q̇i i. Hence, the remaindermust be
attributed to thework that has to be performed, which yields precisely equation (43).

Instead, another way of defining thework rate is by noting that since onemust decouple the system from the
environments at each stroke, the totalHamiltonian is actually time dependent. That is, if we focus on just a single
interaction stroke, then instead of equation (26), theHamiltonian for this interaction ismore appropriately
defined as

ål
t

= + +
=

( )
( )H H H

t
V , B6S E

i

N

itot

1

whereλ(t) has the value 1when tä[nτ, (n+1)τ] and zero otherwise. Since the global S+E interaction is
unitary, work can be unambiguously defined as in equation (42). Carrying out the integration one thenfinds

åd
t

=
á ñ - á ñ¢

=

( )W
V V

, B7
i

N
i i

1

where, once again, the primed expectation value refers to the state after the interaction. Using once again
equation (B1) for evaluating this expectation value, we thenfind
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å åd
t

= á + ñ = D + D
= =

[ [ ]] ( )W V V H H H H
2

, , . B8
i

N

i i S E S

i

N

E

1 1
i i

Hence, taking again the limit τ→0, one identifies thework rate as = - å
á ñ˙ ˙W Q
H

t i i
d

d

S .

AppendixC. Entropy production in LMEs

In this appendixwe discuss how to express the second law of thermodynamics within the repeated interactions
scheme. Since the interaction strokes only last for a small time τ, onemay neglect any potential bath–bath
correlations thatmay appear when a system is interactingwithmultiple environments. Hence, following [89],
we can define the entropy production in a single stroke as

 r t rS +≔ ( ) ( ( )∣∣ ) ( )S E S: , 0, C1E E
th

where

 å= D + D D + D
=

( ) ( )S E S S S S: , C2S E S

i

N

E i

1

,

is themutual information developed between the system and all the environments, withΔSS being the change in
the entropy of the system andDSEi

the change in the vonNeumann entropy of environment Ei. The second term
in equation (C1), on the other hand

år t r r t r
=

( ( )∣∣ ) ( ( )∣∣ ) ( )S S , C3E E
i

N

E i E i
th

1
, ,

th

is the quantum relative entropy between the final and initial states of each environment (here r s( ∣∣ )S

r r r s= -( )tr ln ln ). The positivity ofΣ then follows immediately from the positivity of themutual
information and the quantum relative entropy.

Using equation (B8) onemay then readily show that equation (C1)may bewritten as

å b dS = D -
=

( )S Q . C4S

i

N

i i

1

Dividingbyτ and taking the limitτ→0wemay thenobtain theusual expression for the entropyproduction rate

å bP = -
=

( )
S

t

Q

t

d

d

d

d
, C5S

i

N

i
i

1

with the last term representing the entropyflux rates to each environment.
In the particular case where there is a single environment, or when all environments have the same

temperature, wemay use the first law towrite this as

bP = -⎜ ⎟
⎛

⎝

⎞

⎠
( )

W

t

F

t

d

d

d

d
, C6

where = á ñ -F H TSS S S is the free energy of the system. Thus, in this case we recover another well known
expression for the entropy production rate.
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