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Abstract:  This paper is concerned with the simulation of the Partial Differential Equation
(PDE) driven evolution of a closed surface by means of an implicit representation. In most ap-
plications, the natural choice for the implicit representation is the signed distance function to the
closed surface. Osher and Sethian propose to evolve the distance function with a Hamilton-Jacobi
equation. Unfortunately the solution to this equation is not a distance function. As a consequence,
the practical application of the level set method is plagued with such questions as when do we
have to "reinitialize" the distance function? How do we "reinitialize" the distance function? Etc...
which reveal a disagreement between the theory and its implementation. This paper proposes
an alternative to the use of Hamilton-Jacobi equations which eliminates this contradiction: in our
method the implicit representation always remains a distance function by construction, and the im-
plementation does not differ from the theory anymore. This is achieved through the introduction of
a new equation. Besides its theoretical advantages, the proposed method also has several practical
advantages which we demonstrate in three applications: (i) the segmentation of the human cortex
surfaces from MRI images using two coupled surfaces [26], (ii) the construction of a hierarchy of
Euclidean skeletons of a 3D surface, (iii) the reconstruction of the surface of 3D objects through
stereo [12].
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Réconcilier les Fonctions Distance et les Surfaces de Niveaux

Résumé : Cet article concerne la résolution des Equations aux Dérivées Partielles (EDP) dé-
crivant la représentation implicite d’une surface fermée en mouvement. Dans la plupart des ap-
plications, la représentation implicite naturelle est la distance signée & la surface fermée. Osher
et Sethian proposent de soumettre cette fonction implicite & ’action d’une équation de Hamilton-
Jacobi. Malheureusement, aucune fonction distance n’est solution de cette EDP, ce qui est une
contradiction. En conséquence, la mise en oeuvre de la méthode dite des “Surfaces de Niveaux”,
pose la question du rétablissement de la fonction distance: comment le faire ? , quand le faire ?
... Toutes questions auxquelles la théorie proposée ne répond pas.

Par l’introduction d’une nouvelle EDP, cet article propose une alternative & l'utilisation des
équations de Hamilton-Jacobi qui élimine cette contradiction. Avec cette nouvelle technique, la
fonction implicite est, par construction et a chaque instant, la fonction distance & la surface évo-
luant, ce qui élimine toute question sur le rétablissement de la fonction distance. Outre ses avan-
tages théoriques, cette approche a des avantages pratiques qui sont démontrés dans le cadre de trois
applications: (i) la segmentation du cortex humain & partir de données IRM, (ii) la construction
d’une hiérarchie de squelettes euclidiens d’une famille de surfaces, (iii) la reconstruction de scénes
tridimentionnelles par stéréovision.

Mots-clés :  Contours Actifs Géodésiques, Méthode des Surfaces de Niveauz, Préservation de la
Fonction Distance, Squelettes Euclidiens, Segmentation du Cortex & partir d’IRM, Stéréovision
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4 José Gomes and Olivier Faugeras

1 Introduction and previous work

We consider a family of hypersurfaces S(p,t) in R®, where p parameterizes the surface and t is
the time, that evolve according to the following PDE:

oS
== BN 1)

with initial conditions S(t = 0) = Sy, where N is the inward unit normal vector of S, 3 is a
velocity function and Sp is some initial closed surface.

Methods of curves evolution for segmentation, tracking and registration were introduced in
computer vision by Kass, Witkin and Terzopoulos [15]. These evolutions were reformulated by
Caselles, Kimmel and Sapiro [7] and by Kichenassamy et al. [16] in the context of PDE-driven
curves and surfaces. There is an extensive literature that addresses the theoretical aspects of
these PDE’s and offers geometrical interpretations as well as results of uniqueness and existence
[13, 14, 9]. Level set methods were first introduced by Osher and Sethian in [21] in the context
of fluid mechanics and provide both a nice theoretical framework and efficient practical tools for
solving such PDE’s. In those methods, the evolution (1) is achieved by means of an implicit
representation of the surface S.

The key idea in Osher and Sethian’s approach is to introduce the function v : R® x R — R such
that

u(S,t) =0 vt (2)
By differentiation (and along with N' = _\g—zl and (1)), we obtain the Hamilton-Jacobi *
equation:
ou
— =0V 3
2 BVl 3)

with initial conditions u(-,0) = wg(.), where g is some initial function R® — R such that
uo(Sp) = 0. It has been proved that for a large class of functions v and ug, the zero level set at
time ¢ of the solution of (3) is the solution at time ¢ of (1).

Regarding the function wg, it is most often chosen to be the signed distance function to the
closed surface Sp. This particular implicit function can be characterized by the two equations:

{x € R up(z) =0} =Sp and Vug =1 (4)

Indeed, the magnitude of the gradient of ug is equal to the magnitude of the derivative of the
distance function from Sy in the direction normal to Sy, i.e., it is equal to 1.

It is known from [5] that the solution u of (3) is not the signed distance function to the solution
S of (1). This causes several problems which are analyzed in the following section.

It is also important to notice that 3 in (3) is defined in R® whereas in (1) it is defined on the
surface S. The extension of 3 from S to the whole domain R? is a crucial point for the analysis
and implementation of (3). There are mainly two ways of doing this.

(i) Most of the time this extension is natural. For example, if 3 = Hgs, the mean curvature of
S in (1), one can choose § = H,, the mean curvature of the level set of u passing though z in (3).

(ii) In some cases [24, 20, 2], this extension is not possible. Then one may assign to §(z) in
(3) the value of 3(y) in (1) where y is the closest point to x belonging to S. The problem with
this extension is that it hides an important dependence of 3 in (3) with respect to u and we show
in section 4 that in this case (3) is not a Hamilton-Jacobi equation.

The thrust of this paper is a reformulation of the level set methods introduced by Osher and
Sethian in [21] to eliminate some of the problems that are attached to it, e.g. the need to reinitialize
periodically the distance function or the need to “invent” a velocity field away from the evolving
front or zero level set. The implications of our work are both theoretical and practical.

1The difference between a Hamilton-Jacobi equation and a general first order PDE is that the unknown function
(here u) does not appear explicitly in the equation.

INRIA



Reconciling Distance Functions and Level Sets 5

2 Why Hamilton-Jacobi equation (3) does not preserve dis-
tance functions.

In this section, we suppose that 3 is extended as explained in (i). The fact that the solutions to
Hamilton-Jacobi equations of the form (3) are not distance functions has been proved formally in
[5]. A convincing geometrical interpretation of this fact is now given through two short examples.

2.1 First example

Let us consider the problem of segmenting a known object (an ellipse) in an image by minimizing
the energy of a curve [8]. Let us force the initial curve to be exactly the solution (the known
ellipse) and initialize ug to the signed distance function to this ellipse, then evolve u with the
Hamilton-Jacobi equation (3).

It is obvious that the zero level set of u (let us call Sy this ellipse) will not evolve, since it is
the solution to (1) and B(z € Sy) = 0.
Notice however that replacing 0 by € € R in (2) implies by differentiation the same equation (3),
which means that the € level set of u (let us call this S. curve) also evolves according to %—‘tg = BN.
In consequence, S(z € S) # 0 and S, evolves toward Sy in order to minimize its energy (cf. fig.

(1))

time t =10 time ¢t > 0
=0 8>0
B=0 B8>0 B So -
] Se.(0)
sy -

Figure 1: All the level sets of u (shown as single curves) move towards the ellipse Sy in order to
minimize their own energy with the effect that the distance function is not preserved.

This shows that the shock wave equation (3) requires that all the level sets of u should converge
to the ellipse Sy and therefore that |Vu| increases dangerously.

2.2 Second example

A point M with coordinate € R and energy E(z) = ”32—2 is moving along the real line in order to
minimize its energy. We force the point M to be at o # 0 at t = 0. The level set version of this

problem is to define ug on the real line as ug(x) = z — z¢ and to evolve u with the Hamilton-Jacobi

equation % = x%. The solution is u(x,t) = e’z — z9. The figure (2) shows u at 3 time instants

(0 =1ty < t1 < t3). The zero level set of u is indeed traveling to the origin O but the slope of u is

9 = ¢! and increases exponentially in time.

u(x,t)

0.5

0 Mm) Mw M

05

a0 )” I I I
-0.5 0 0.5 1 L5 X

Figure 2: The point M moves on the horizontal line in order to minimize its energy E(z) = 2

2
The function w, initially of slope 1, becomes more and more vertical.

RR n° 3666



6 José Gomes and Olivier Faugeras

The second example is a rephrasing of what happens in the normal direction to the evolving
curve in the first example. It is now obvious why driving all the level sets of u with (3) cannot
conserve distance functions and in addition leads to unbounded values of |Vu|. In practical appli-
cations, one is compelled to “reinitialize” the implicit function u to be a distance function which is
obviously a contradiction and which shows a gap between the theory and its real application.

In the next section, we convince the reader that maintaining u as a distance function (i.e. such
that |Vu| = 1) during all the time of the evolution is definitely desirable, sometimes crucial.

3 Why we should preserve the distance function.

There are at least two reasons for preserving the signed distance function to the evolving surface,
a theoretical one and a practical one.

(i) From the theoretical viewpoint, the parameterized description of S (seen as a subset of R?)
and its signed distance function u are equivalent descriptions. Indeed, given any surface S, its
signed distance function is uniquely defined. Conversely, any implicit function u satisfying |Vu| =1
is the signed distance function to a surface plus a constant (this last constant is taken equal to 0 on
the surface) [4]. Since these descriptions are equivalent, one can transpose immediately properties
of the first one into properties of the second one and vice versa. For example, u has converged if
and only if S has converged (which is not true with Hamilton-Jacobi equation (3) according
to the last section).

Moreover, one can deduce interesting intrinsic properties of S by a local knowledge of u. In
[3], it is proved that the second fundamental form of S can be computed using the derivatives of
the squared distance function. In addition, some applications in medical image analysis such as
the segmentation of the cortex using two coupled surfaces [26] assume that the distance between
the surfaces is known at any time. As a last example, the computation of the skeleton of a surface
requires the detection of the singularities of its distance function [18].

(ii) From the practical viewpoint, the numerical approximation of the derivatives of u by finite
differences requires the choice of a spatial step dz. One chooses a small dz if the slope (the gradient)
of the function is large and a larger dz if the function has small variations. Since level sets are
most often implemented on regular grids, it is more efficient to use the same step dx = 1 for each
grid point. It is obvious that this approximation is more accurate if the norm of the gradient of u
is known which is the case with distance functions since |Vu| = 1. Keeping |Vu| bounded assures
that the derivatives of u are always computable without the need to “reinitialize” wu.

We now describe a new approach that preserves the signed distance function and therefore
meets these two requirements.

4 How to preserve the signed distance function.

In this section, we suppose that ug = u(.,0) is initialized at ¢ = 0 as the signed distance function
to the initial surface Sp.

The basic idea is to change equation (3) in such a way that at each time instant u is the signed
distance function to the solution S of (1). In order to achieve this goal, we look for a function
B :R® x R — R such that ¢ = B and which satisfies the two constrains: (i) # — u(=,.) is a
distance function, (ii) the zero level set of u evolves according to (1).

We express these constrains with the system of equations:

B|u:0 = ﬂ (5)
ou

% B (6)

[Vu| = 1 (7)

where B|,—, denotes the restriction of B to the zero level set of u. By differentiating (6) and (7),
we obtain:

ou

V(—):VB and Vu -@:

ul ot ®)

ot

INRIA



Reconciling Distance Functions and Level Sets 7

using the Schwartz equality 2¥* = V (4%), we get:

Vu-VB=0 (9)

which, together with (5) and (6) determines the function B. Relation (9) states that the function
B does not vary along the characteristics of u (the characteristics of u are the integral curves of
Vu). It also means that the characteristics of u and B are orthogonal.

In order to go one step further in the resolution of the system, we must recall an important
property [4]: the characteristics of distance functions are straight lines (cf. fig. (3)).

—  u=0
u = cst
"""""""" B =cst

Figure 3: Characteristic curves of the field Vu.

This implies that B is constant along straight lines. These lines (or rays) intersect the zero
level set of u at a point where B is known according to (5).

Given any point z € R?, an equation of the characteristic of u passing through z is A — z—AVu.
Since the distance of z to the zero level is u(z) and |Vu(z)| = 1, the point y = z — «Vu is on the
zero level set of u. Notice that y is the closest point to x such that u(y) = 0. According to the last
reasoning, we have B(z) = B(y) = 8(z — wVu). Therefore, the solution to the initial system is:

ou

5t B(x — uVu) (10)
with initial condition u(.,0) = wug(.). This equation is the main result of the paper. Note that
equation (10) is not a Hamilton-Jacobi equation since u appears in the right-hand side and plays
a major role. An interpretation of (10) is the following: the zero level set of u is driven by % =0
as proposed by Osher and Sethian. The evolution of this particular surface geometrically defines
(by propagation) the evolution of all other level sets.

4.0.1 Remark:

a posteriori, one guesses that the integral version of equation (10) is the equation u(S + AN) =
A Vt,A. This can be proved by differentiation with respect to ¢t and A. It states that the surface
parallel to S at distance A from S should be the A level set of u. This is to be compared to the
constrain u(S,t) = 0 V¢t introduced by Osher and Sethian.

The uniqueness of the closest point y to x such that u(y) = 0 is only guaranteed if Vu(z) exists.
The set of points of R® where Vu is not defined is called the skeleton of S (cf. fig. (4)).

v =0
B = cst
"""""" Skeleton

— Vu

Skeleton

173 B(ar) = Bun)

B(z2) = B(y2) w=0

Figure 4: The skeleton of the zero level set is determined by the points where Vu is not defined.

RR n° 3666



8 José Gomes and Olivier Faugeras

Skeletons are very important in computer vision [6, 17, 22]. Since it turns out that they are
a byproduct of our new proposed evolution, we describe in the next section an implementation of
equation (10) in which special care is taken of the computation of the skeleton.

5 Implementation

In this section, we propose a straightforward implementation of the previous theory. w is initialized
as the signed distance function to the initial surface. We fix u at a particular instant ¢ and compute
the real field B(z,t) = f(x — wVu) on a narrow band [10, 19, 1] of S. Once B is known, u can
be updated by u(z,t + dt) = u(z,t) + B(z,t)dt. The computation of B is done in two steps
corresponding respectively to equations (5) and (9). The difficulty is that we work on a discrete
grid and this can have dramatic consequences if proper care is not taken of the sampling effects.

In order to deal with those effects, we introduce some notations. Points of R® such that none of
their coordinates is an integer will be denoted by lower case letters, e.g. z, and called real points.
Points of N®, where N is the set of integers, will be denoted by upper case letters, e.g. X, and
called voxels. We can think of x as a point falling in a cube formed by eight voxels. We note V()
this set of eight voxels.

If f is a function defined on R3, and x is a real point such that the values of f are known
at all voxels of V(z), we note f;(z) the value of the trilinear interpolation at x. In detail, if
xr = (3717.1'2,1'3> = (n1 + €1,n9 + €2,n3 + €3>, where n; € Nand 0 < ¢ < 1, then we have
by a simple linear interpolation fi(z1,z2,23) = (1 — €1)f(n1,22,23) + e1f(n1 + 1,22,23). By
applying recursively this rule to f(n1,z2,23) and f(n1 + 1,z2,23), one expresses fi(z) as a linear
combination of the samples of f at the voxels of L(z), the weights being third order polynomials
of the coordinates (€1, €2, €3).

Let A(X) be the 26-neighborhood of the voxel X. Since generically the zero level set of w is
composed of real points, we need to determine when a voxel X is adjacent to this zero level set.
Consider the function C, defined on the voxels of the grid such that C,(X) =0 if u(X) >0
and Cp(X) =1 if w(X) < 0. A voxel X is said to be adjacent to the zero level set of u if
Y € A(X), C,(Y) # Cu(X). We call Z the set of voxels adjacent to the zero level set of u. We
are now in position to describe the two steps of our computation.

5.1 First step: computation of 3 on Z

The first step is the computation of 3 on Z. These values are stored in a temporary buffer called BZ.
There are two ways to do this. If 3 is defined on R®, then one can assign B (X) = 3(X) VX € Z.
If 3 is only defined on the nodes of a mesh describing the zero level set of u, then one can assign
BZ(X) = B(v;) VX € Z, where v; is the closest node of the mesh to the voxel X. In both cases,
the final value of B(X) is not the value of BZ(X), as explained in the second step.

Notice that the definition of Z ensures that if u;(z) = 0 then L(z) C Z and in consequence
BZ () can be computed.

5.2 Second step: computation of B on the narrow band

The purpose is to propagate the values of B from Z to the whole narrow band. This is done by
B(X,t) = Bf(y,t) where u;(y) = 0 and y lies on the same characteristic of u than X. Computing
directly y = X — uVu is not robust since small errors in Vu may introduce larger errors (propor-
tional to ) in y. Instead, we follow the characteristic passing through X by unit steps (cf. fig.

(5)):

v = X
_ _Jif wi(yn) <0 then max(ui(yn), sign(ui(yn)))Viu(yn) until
Ynty1 = Yn if w(yn) >0 then min(u;(ys),sign(ui(yn)))Viu(ys)
w(yn) = 0

This marching is done for each voxel in the narrow band, even those of Z. The computation of
the march direction V,u(y,) requires the evaluation of Vu at voxels of the grid. The choice of

INRIA



Reconciling Distance Functions and Level Sets 9

| 1

Figure 5: The computation of y(A) by y(A) = A—u(A)Vu(A) is potentially subject to large errors.
For B, the characteristic line is followed by unit steps in order to avoid this error.

the numerical scheme for Vu(X) is crucial since it may introduce unrecoverable errors if X lies on
the skeleton of S. Our choice is based on the schemes used in the resolution of Hamilton-Jacobi
equations where shocks occur [25, 23]. These schemes use switch functions which turn on or off
whenever a shock is detected. We explicit here our choice. Let DFfu = u(i + 1,7, k) — u(4, , k)
and Dy u = u(i,j, k) —u(i — 1,4, k), with similar expressions for D, and D,. We form the eight
estimators D*, i = 1,... ,8 of Vu, namely:

D' = (Dfu,Dfu,Dfu)
D*u = (Dfu,Dfu,Du)
D*w = (D;u,D;u,D;u)

In our current implementation we use Vu(X) = ArgMax;(|D*u(X)|). Indeed, apart from points
on the skeleton of S where Vu is undefined, |Vu(X)| which should be equal to 1 since u is a distance
function is found to be in practice less than or equal to 1 depending on which of the operators
D' we use. Hence the direction of maximum slope at X is the direction of the closest point to X
of the zero level set of u. The fact that the skeleton can be detected by comparing the vectors
D'u,D?u,...,D3% is discussed in section 6.2.

6 Applications

We now describe three applications where our new method is shown to work significantly better
than previous ones.

6.1 Cortex segmentation using coupled surfaces.

We have implemented the segmentation of the cortical gray matter (a volumetric layer of variable
thickness (= 3mm)) from MRI volumetric data using two coupled surfaces proposed in [26] by Zeng
et al. The idea put forward in [26] is to evolve simultaneously two surfaces with equations of the
form (1). An inner surface S;, captures the boundary between the white and the gray matter and
an outer surface S,y captures the exterior boundary of the gray matter. The segmented cortical
gray matter is the volume between these two surfaces. The velocities of the two surfaces are:

Bin = f(I—ILin)+ Cluou +¢) (11)
,Bout = f(I - Iout) + C(uin - 6) (12)

where I is the local gray intensity of the MRI image, I, and I,,; are two thresholds (I;, for the
white matter and I,,; for the gray matter), € is the desired thickness and C' and f have the shape
of figure (6).

Let us interpret equation (11). The first term f(I — I;,,) forces the gray level values to be close
to L, on Sin: it is the data attachment velocity term. The second term C'(+u,y: + €) models the

RR n° 3666



10 José Gomes and Olivier Faugeras

-1 i j —1+
(5] 6d

Figure 6: Shapes of the functions f and C' in equations (11,12). §; and é4 are two fixed tolerances.

interaction between S,,¢ and S;,,: it is the coupling term. According to the shape of C, see figure
(6), if locally the two surfaces are at a distance € = 3mm, then the coupling term has no effect
(C =0) and S;,, evolves in order to satisfy its data attachment term. If the local distance between
Sin and S,u: is too small (< €) then C > 0 and S;,, slows down in order to get further from S, ;.
If the local distance between S;,, and S,.; is too large (> €) then C' < 0 and S;,, speeds up in order
to move closer t0 S,y A similar interpretation can be done for (12).

If these evolutions are implemented with the Hamilton-Jacobi equation (3), then the following
occurs: the magnitudes of the gradients of wuy,; and u;, increase with time (| Vuyy: |> 1 and
| Vuin |> 1). As a consequence, the estimation of the distance between S;, and S,y: which is
taken as u;n(x) for x on S,y and uew:(z) for  on S;y,, is overestimated. Since the coupling term
is negative in (11) and positive in (12), both S,y and S, evolve in order to become closer and
closer from each other (until the inevitable reinitialization of the distance functions is performed).
In other words, with the standard implementation of the level sets, the incorrect evaluation of the
distance functions prevents the coupling term to act correctly and, consequently, also prevents the
data attachment terms to play their roles.

On the other hand, if these evolutions are implemented with our new PDE, then a much better
interaction between the two terms is achieved since the data attachment term can fully play its
role as soon as the distance between the two surfaces is correct (cf. fig. (7)).

Figure 7: Results of the segmentation of the gray matter using different algorithms, see text.
These results are demonstrated in the figure (7) which we now comment. Each row corresponds

to a different 32 x 32 sub-slice of an MRI image. The first column shows the original data and
some regions of interest (concavities) are labeled A, B and C. The second column shows a simple
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thresholding at I;, and I,,:. The third column shows the cross-sections of S;, and S, through
the slices if the coupling terms are not taken into account. This is why these curves have the
same shape as in the second column. One observes that the segmented gray matter has not the
wanted regular thickness. In the fourth column, the coupling terms are taken into account and
the evolutions (11) and (12) are implemented with Hamilton-Jacobi equation (3). One observes
(in particular at the concavities indicated in the first column) that the distance constraint is well
satisfied but the data attachment term was neglected. This is due to the fact that with (3) the
distance between the two surfaces is overevaluated. In the fifth column, this same evolution is
implemented with the new PDE introduced in this paper (10). One can observe a much better
result at concavities. This is due to the fact that the coupling terms stop having any effect as
soon as the distance between the surfaces is correct allowing the data term to drive correctly the
surfaces according to the gray level values.
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6.2 Extraction of the skeleton of an evolving surface.

Figure 8: Computation of the skeletons of a
family of surfaces, see text.

Skeletons are widely used in computer vision to
describe global properties of objects. This repre-
sentation is useful in tasks such as object recog-
nition and registration because of its compactness
[6, 17, 22].

One of the advantages of our new level set tech-
nique is that it provides, almost for free, at each
time instant a description of the skeleton of the
evolving surface or zero level set.

We show an example of this on one of the re-
sults of the segmentation described in the previous
section. We take the outside surface of the cortex
and simplify it using mean-curvature flow, i.e. the
evolution %—f = HN where H is the mean curva-
ture. This evolution is shown in the first column of
figure 8. Since the distance function u to the zero
level set is preserved at every step, it is quite sim-
ple to extract from it the skeleton by using the fact
that it is the set of points where Vu is not defined
[6]. This is shown in the right column of figure
8. Each surface is rescaled in order to occupy the
whole image.

The skeletons are computed using the distance
function to the evolving surface as follows. We
look for the voxels where the eight estimators D*u
of Vu defined in section 5 differ a lot and threshold
the simple criterion:

5 ( Diu Du )2
~ \ID*u|" [Du

where (., .) denotes the dot product of two vec-
tors and Du = >, D'u.

This can be interpreted as a measure of the
variations of the direction of Vu (which are large
in the neighborhood of the skeleton).

The results for the left column of figure (8) are
shown in the right column of the same figure where
we clearly see how the simplification of the shape
of the cortex (left column) goes together with the
the simplification of its skeleton (right column).

Note that because it preserves the distance
function, our framework allows the use of more
sophisticated criteria for determining the skeleton
[18] based on this distance function.
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6.3 Stereo reconstruction via level sets.

In this last application, we show how our approach allows a faster convergence when solving the
problem of stereo reconstruction from n > 2 views by means of a PDE-driven surface introduced
by Faugeras and Keriven in [12]. More generally, the method described in this article offers
significant savings each time the cost of the computation of the velocity term f is high. In the
stereo application this velocity is given by:

B=¢H—-V¢ - N (13)

where H is the mean curvature of S and ¢ is a measure of the local similarity of two of the n
images of the tridimensional scene to be reconstructed. Let us qualitatively compare the cost (in
time) of implementing stereo, equation (13), to the cost of implementing mean curvature flow for
which g = H.

¢ is derived from the normalized cross-correlation of two small sub-images (say of size n =
15 x 15). The number of multiplications (the most costly operation) is 3n. Indeed, let a and b be
two vectors of length n. The calculation of their normalized cross correlation [11] mainly requires
the calculation of the three dot products (a,a), (b,b) and (a,b) (i.e., for computing this criterion
for two images of size 15 x 15, one reorders the pixels values in a vector of length n = 15 x 15, which
shows that 675 multiplications are needed in this case). Computing H requires 25 multiplications.
As a consequence, one iteration of (13) is approximatively 30 times slower than one iteration of the
mean curvature flow. This is the main reason why the convergence of the stereo algorithm (13) is
slow (about 2h30 on a Sun30 with n = 3 images and a 100® grid) and why it is important to speed
it up.

Notice however that in our approach 3 is evaluated much fewer times (Indeed, 3 is evaluated
only on Z and not on the whole narrow band). Moreover, the second step (section 5.2) of our
algorithm is independent of the specific application: this is why our method is so advantageous in
applications where the computation of 3 is very expensive.

The following table shows the considerable gain obtained in the experiment described in figure

(9)-

timings of the reconstruction on a Sun30

band half width | 2% = 8[Vu| | & = 8(z —uVu) | gain

4 8856 s 6730 s 24%
8 19748 s 10998 s 44%

7 Conclusion

We have proposed a new scheme for solving the problem of evolving through the technique of level
sets a surface S(t) satisfying a PDE such as (1). This scheme introduces a new PDE, (10),that must
be satisfied by the auxiliary function u(t) whose zero level set is the surface S(t). The prominent
feature of the new scheme is that the solution to this PDE is the distance function to S(t) at each
time instant ¢. Our approach has many theoretical and practical advantages that were discussed
and demonstrated on three applications. Since the distance function to the evolving surface is in
most applications the preferred function, we believe that the PDE that was presented here is an
interesting alternative to Hamilton-Jacobi equations which do not preserve this function.
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Figure 9: The three images on the top left were taken simultaneously from different points of view.
The image on the top right shows the initial surface (a sphere) with the three images back-projected
on it. The reconstruction was obtained by deforming this sphere according to (1) with 3 given by
(13). The remaining 15 images show the resulting reconstruction from various points of view.
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