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Reconciling grain growth and shear-coupled grain
boundary migration
Spencer L. Thomas1, Kongtao Chen1, Jian Han1, Prashant K. Purohit2 & David J. Srolovitz 1,2

Conventional models for grain growth are based on the assumption that grain boundary (GB)

velocity is proportional to GB mean curvature. We demonstrate via a series of molecular

dynamics (MD) simulations that such a model is inadequate and that many physical phe-

nomena occur during grain boundary migration for which this simple model is silent. We

present a series of MD simulations designed to unravel GB migration phenomena and set it in

a GB migration context that accounts for competing migration mechanisms, elasticity,

temperature, and grain boundary crystallography. The resultant formulation is quantitative

and validated through a series of atomistic simulations. The implications of this model for

microstructural evolution is described. We show that consideration of GB migration

mechanisms invites considerable complexity even under ideal conditions. However, that

complexity also grants these systems enormous flexibility, and that flexibility is key to the

decades-long success of conventional grain growth theories.
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T
he conventional theory of capillarity-driven grain growth is
simply grain boundary (GB) curvature flow1, in which each
GB segment migrates toward its center of mean curvature

with a velocity

v ¼ Mγκ; ð1Þ

whereM is a temperature-dependent mobility, γ is the GB energy,
and κ is the GB mean curvature. In the general case, the prefactor
of the curvature depends on the five macroscopic properties that
describe GB bicrystallography. However, even such generalized
curvature flow grain growth models fail to explain many common
observations from grain growth experiments and simulations,
such as stress-assisted grain growth2–5, grain rotation4, 6, 7, GB
sliding2, 8, 9, and abnormal grain growth10, 11.

Previously, variations in GB mobility has been proposed as a
potential driver of abnormal grain growth12 and grain rotation13,
14. Solutes/impurities provide a drag on GB migration15 and may
even stabilize nanocrystalline microstructures either by kinetic
pinning16 or thermodynamic stabilization17, and may influence
abnormal grain growth16, 18. However, it is our conjecture that
many deviations from conventional curvature-driven boundary
migration may be attributed to the intrinsic mechanisms by
which GBs migrate.

Observations that shear stress can drive GB migration—an
effect not addressed by conventional GB migration models—
originated over a half-century ago19, 20. Conversely, in such
shear-coupled migration21, GB migration can induce the trans-
lation of one grain with respect to the other. Reversing the sign of
shear reverses the direction of migration and vice-versa. Shear-
coupled GB migration is generally characterized by the
temperature-dependent ratio of the grain translation rate _B and
the GB migration rate _H

β ¼
_B

_H
: ð2Þ

Observations of shear-coupling in high-angle GBs have been
reported in experiments22–24, ab initio calculations25–27 and
atomistic simulations28–31. Shear-coupling was identified as a
general GB property32 related to the dislocation content of GBs33,
34. While it may seem intuitively obvious for low-angle tilt GBs
consisting of arrays of glissile edge dislocations, shear-coupled
migration is less obvious for high-angle GBs. Cahn et al.35

showed that total dislocation content of the GB36–38 can be used
to predict shear-coupling even for high-angle GBs, where

individual dislocations are not easily resolved. Recent theoretical
predictions39–42 and transmission electron microscopy (TEM)
observations43 connected shear-coupling directly to a dis-
connection mechanism of GB migration44. A disconnection is a
line defect that lies within a GB and is characterized by a Burgers
vector and step-height, the allowed values of which depend on the
macroscopic geometric parameters describing the GB (grain
misorientation and GB plane inclination). The shear-coupling
parameter β is related to the Burgers vector and step-height
associated with the disconnections.

While most of the modeling and theory literature focuses on
the behavior of individual, flat grain boundaries, the motion of
GBs within a polycrystal is inevitably constrained by other grains
and GB junctions. It is in such polycrystalline systems (where GB
migration matters) that many unconventional effects are
observed in experiment and simulation. For example, grain
rotation6, 7, 45 may be related to the misorientation-dependence
of GB energy13, 14, 46 or grain coalescence47–50, but it may also be
a natural consequence of shear-coupling32. Twinning, commonly
observed in many close-packed materials, is a deformation
mechanism that is often observed to occur during grain growth.
Such deformation and annealing twinning may share a common
mechanism if grain growth is accompanied by stress generation
associated with shear-coupling. Finally, we note that the appli-
cation of stress has been shown to accelerate grain growth2. This
too is not described by curvature flow models, but may also be
rationalized in terms of shear-coupling.

Here, we examine the effect that constraints present in all
polycrystalline materials have on shear-coupled GB migration,
and develop a predictive understanding of the interaction
between shear-coupling and grain growth that reconciles the
many unconventional grain growth phenomena outlined above.
This new understanding carries deeper implications to grain
growth theory; the disconnection model suggests that stress
generation, grain rotation, defect formation, and abnormal grain
growth should all be general features of grain growth, but it also
introduces a degree of flexibility that facilitates more conventional
grain growth behavior.

Results
Atomistic simulation of grain growth. We first perform a series
of MD simulations of grain growth in nanocrystalline Ni to
identify essential features of microstructure evolution, see Fig. 1.
Significant grain growth occurs during the 2.5 ns simulation; the

a b

Fig. 1 MD polycrystalline grain growth. Cross-section of a three-dimensional MD grain growth simulation cell. a Initial relaxation (see Methods). b The

same cross-section following a 2.5 ns anneal at 0.85Tm. Atom colors are assigned based on centrosymmetry. The white circles indicate dislocations, white

squares identify vacancies, and thin yellow lines show twins formed during grain growth. For a full animation of this simulation, see Supplementary Video 1
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mean linear grain size ‘ increases from 61 to 126 Å. A substantial
number of defects, including vacancies, dislocations, and twins,
also form during these simulations. Most of these defects form
during grain growth rather than in the initial relaxation; this
implies that defect generation is a consequence of GB migration
in the polycrystal. Dislocation and twin formation and propaga-
tion are widely associated with large stresses and generally serve
as a stress-relaxation mechanism. In particular, we observe the
formation of sets of parallel twins in the wake of migrating triple
junctions (TJs). TJs prevent shear at the ends of a migrating,
shear-coupled GB, and hence are sites of severe stress con-
centration. Twinning near such migrating GBs may relax these
stresses.

Direct measurements of stress (Fig. 2a) in the polycrystalline
simulations reinforce this stress-generation argument. Some
grains exhibit large internal stresses, while others show only
small or zero stresses. As shear stresses within the grains are very
small prior to grain growth, this stress generation must be
associated with GB migration. GB migration is also accompanied
by grain rotation (see Fig. 2b). While grain rotations are
sometimes attributed to torque on the grains associated with
the misorientation-dependence of GB energy13, 46 or with grain
coalescence47–50, no grain coalescence or disappearance occurs in
the vicinity of the rotating grains in Fig. 2 during the time-span in
the displacement vector plots. Lattice rotation is ubiquitous in
these simulations, implying that it is a general feature of grain
growth.

The stress generation and lattice rotation observed in the grain
growth simulation could be induced by shear-coupled GB
migration. Most shear-coupling studies focus on flat GBs of
infinite extent (or in periodic systems). However, GBs in a
polycrystal are finite; each grain is delimited by multiple grains
and each GB is delimited by GB triple junctions (TJs). Little is
known about the effects of such constraints on the evolution of a
polycrystal. Shear displacement across a GB plane will be limited
by these TJs; a disconnection cannot propagate from one GB to
another because each GB bicrystallography has a unique set of
disconnections. This implies that shear-coupling along a GB of
finite length necessarily generates stress at the TJs. How can a GB
migrate large distances if it is shear-coupled and generates stress

at the TJs proportional to its migration distance? Clearly, GB
migration during grain growth corresponds neither to conven-
tional curvature-driven migration nor to ideal shear-coupling.

Polycrystalline MD simulations hint at what is missing in
conventional grain growth models. However, such simulations
are too complex for detailed analysis of what is occurring in every
grain, every GB, and every TJ. Instead, we turn to a simpler,
idealized microstructure that exhibits many features of poly-
crystalline grain growth, but is more amenable to detailed
analysis.

Idealized polycrystalline microstructure. We construct a simple,
idealized, three-dimensional (3D) microstructure with just a few
grains and a small set of grain boundaries, as shown in Fig. 3a.
The lattice orientation of each grain and the mobility (M) and
shear-coupling factor (β) for each GB is given in Supplementary
Tables 1 and 2. The temporal evolution of the idealized micro-
structure is shown in Fig. 3. The central four-sided grain (B in
Fig. 3a) shrinks and disappears, while the outer square grains (A)
do not. This is inconsistent with conventional grain growth
theory, which implies that for such 2D microstructures, the area
A of an n-sided grain will evolve according to the von
Neumann–Mullins relation, dA

dt ¼ π
3Mγðn� 6Þ51, 52. While a

three-dimensional version of the von Neumann–Mullins relation
exists53, this two-dimensional form applies here because the
grains are columnar. All four-sided (n = 4) grains should shrink at
the same rate, provided all of the surrounding GBs have identical
Ms and γs. Supplementary Table 2 shows that this is true to
within 15% for both Grains A and B. However, Grain B shrinks
and disappears, while Grain A changes very little during the
present simulation. Therefore, capillarity is an insufficient
description of microstructure evolution, even in this simple case.

Most of the main features (stress generation, lattice rotation)
that occur in the general microstructure (Fig. 1) are reproduced in
the simple microstructure (Fig. 3) (no dislocations or twins are
formed, but dislocation slip and twinning occur predominantly
on {111} planes in FCC metals and the [111] direction is along
the axes of each columnar grain, so this is unsurprising). Figure 4
shows that Grain A (which does not shrink) develops a large

–300MPa 0MPa 300MPa

a b

Fig. 2 Stress generation and lattice rotation in MD polycrystalline grain growth. A small region of an xy cross-section of the simulation shown in Fig. 1 at

1.25 ns. a σxy showing large accumulations of stress (dark blue and dark red regions) inside grains. Stresses along GBs reflect the local GB structure and are

not pertinent to this discussion. b Displacement vectors depicting the motion of atoms between 1.0 and 1.25 ns after initial relaxation. Red and blue lines

indicate GB positions at 1.0 and 1.25 ns. Yellow and green lines indicate coherent twin boundaries and stacking faults. Lattice rotations (cyclic displacement

vector patterns) and translation (large regions of parallel displacement vectors) are both apparent. Atoms with very large displacements (such as where

the GB migrated) were removed for clarity
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shear stress, but rotates little, while the stress in grain B (which
does shrink) is small and the rotation is significant. Conventional
grain growth theory cannot account for the observed lattice
rotation, stress generation, or arrested GB migration, but shear-
coupling may. (Note that while a misorientation-dependent grain
boundary energy could produce a torque that may rotate a grain,
this would require long-range material transport and would likely
not be observable during the time-scale of the molecular
dynamics simulation in Fig. 4). Lattice rotation may result from
shear-coupling when all of the GBs bounding a grain have the
same coupling sense (e.g., clockwise); this depends on the signs of
the coupling parameters β for each GB. Meanwhile, if the shear-
coupled displacements are not of the same sense, no rotation will
occur, and a shear stress must develop during GB migration. If
this stress is large enough, it can produce an elastic driving force
for GB migration in the direction opposite that of capillarity.
Hence, GB migration will slow or stagnate. In the next section, we
examine these observations through investigation of individual
GBs.

Shear-coupled bicrystal simulations. Shear-coupled migration is
illustrated in Fig. 5 for a Ni bicrystal that is periodic in the
direction parallel to the symmetric tilt GB (Σ39[111]θ = 32.2°)
and free at the top and bottom of the MD simulation cell. We
drive GB migration via a difference in energy density between the
two crystals (a synthetic driving force54), Ψ. As the GB migrates,
it creates a shear displacement, which is visualized via the fiducial

line (a group of Ni atoms colored red). In Fig. 5, the slope of this
line is the inverse of the shear-coupling parameter β−1 = 1/0.58.

Shear-coupling can be understood in terms of the nucleation
and motion of disconnections along the GB39–42. The glide of a
disconnection with Burgers vector b (the component of b parallel
to the GB plane) and step-height h shifts the two crystals by b
parallel to the GB and displaces the GB (normal to itself) by h.
Microscopically, the shear-coupling factor associated with
disconnection i is βi = bi/hi. For any particular GB, (b, h) is not
unique; there is a series of possible disconnections {(bi, hj)} for
each GB determined by bicrystallography55. We distinguish
between a macroscopic value of β, which is temperature-
dependent, and reflects the observed shear-coupling behavior
(i.e., β ¼ _B= _H) and those associated with a particular disconnec-
tion {(bi, hj)}, βi. At low temperature, the expected value of β
corresponds to the disconnection mode {(bi, hj)} with the lowest
nucleation barrier under the current driving force (denoted i = 0),
β = β0

39, 56.
Figure 6 depicts a simulation with exactly the same initial

atomic configuration, temperature, driving force, and simulation
dimensions as in Fig. 5, but for which the top and bottom ends of
the simulation cell are held fixed (rather than free). Under these
conditions, the GB migrates a short distance, then arrests.
Figure 6d shows the GB position and shear stress vs. time for this
simulation. As the upper and lower edges of the simulation cell
cannot freely translate, a shear stress accumulates due to shear-
coupled GB migration. This results in an elastic driving force that
opposes migration. For an energy density difference between two
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Fig. 3 Idealized polycrystalline microstructure. Time Evolution of the columnar 3D microstructure. a Initial microstructure with grain and GB labels. The

dashed red line indicates the periodic simulation cell. Crystallographic details are provided in Supplementary Table 1. b–d Evolution of the microstructure in

a For a full animation of this simulation, see Supplementary Video 2
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grains Ψ, the total driving force tends to zero at a critical stress τc
= −Ψ/β (this is quantitatively consistent with the simulation data
in Fig. 6d). We return to this prediction below.

While these simulations focus on the migration of single, flat
GBs, they emulate one of the constraints that occurs in real
microstructures; one grain cannot freely translate with respect to
the other because of the presence of surrounding grains. While
the restriction in the case of the polycrystal is associated with the
surrounding grains in the polycrystal, the fixed-end bicrystal
simulations provide a simple analog. However, unlike in the
fixed-end bicrystal simulations where GB migration stops, many
GBs in polycrystals are able to migrate long distances. To examine
this apparent contradiction, we consider the migration of another
GB under similar constraints.

Figure 7 shows the migration of a Σ13[111]θ = 27.8° symmetric
tilt GB under the same fixed-end constraints as in Fig. 6. The GB
initially migrates with β = 0.50. However, instead of stagnating,
this GB switches the coupling parameter sign (a change in the

sign of the fiducial line slope) to β = −0.58 and continues to
migrate. It migrates with this new coupling sense for a finite
distance, then switches back to the initial coupling parameter.
This results in the zig-zag pattern in the fiducial mark in Fig. 7.
Figure 7f shows that the stress initially builds as the GB migrates,
then relaxes when β switches signs. Rather than stagnating, the
GB continues to migrate via this switch-back mechanism. Note
that the average stress is non-zero during this “steady” migration.

Both grain boundary stagnation and disconnection mode-
switching are possible during GB migration. In general, mode-
switching is necessary to permit long-distance GB migration. Not
all GBs migrate in the same manner, and even a single GB may
not migrate in the same fashion under all conditions. Mode-
switching depends not only on the accessibility of secondary
disconnection modes (difference in disconnection formation
energies for different modes), but also on the local microstruc-
ture. For example, the local microstructure determines the
direction and degree to which the GBs surrounding a particular

–800MPa 0MPa 800MPa –2 Deg 0 Deg 2 Deg

a b

c

Fig. 4 Stress generation and lattice rotation in the idealized microstructure. a σxy, b grain rotation, and c displacement vectors from 5.5 ns into the evolution

of the idealized microstructure. There is a large positive stress accumulation in Grain A and lattice rotation in Grain B. Displacement vectors are scaled by a

factor of 20 for visual clarity and grain labeling in c is consistent with Fig. 3a. The white box in b denotes the viewing boundaries in c. Displacement vectors

for atoms with very large displacements (such as those through which a GB has migrated) were removed for clarity. The rotation in b was calculated as the

curl of the displacement field depicted in c. For full animations corresponding to a, b see Supplementary Videos 3 and 4, respectively
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grain shear-couple, what disconnection reactions are possible at
GB triple junctions, and what stresses result at the GB from
processes within the grain (e.g., plasticity).

Single disconnection mode. We construct a simple elastic model
to describe grain boundary stagnation as observed in the con-
strained shear-coupling case shown in Fig. 6. In Fig. 8d, we
consider the lateral displacement field ux(y, t) with respect to the
reference configuration (Fig. 8a) for cases where the GB migrates
from H0 → H and a macroscopic displacement gradient tan γ is
applied:

uxðy; tÞ ¼
y tan γ y<H0

y tan γ þ y �H0ð Þβ H0<y<H

y tan γ þ H � H0ð Þβ y>H;

0

B

@
ð3Þ

where β = B/(H −H0) (Fig. 8c). Since β is constant, this definition
is equivalent to _B= _H. The lateral displacement at the top of the
cell (Fig. 8d) is

DðtÞ ¼ uxðL; tÞ ¼ Lγ þ β H �H0ð Þ; ð4Þ

where we have made the small strain approximation tan γ ≈ γ. For
constant Ψ, it follows (see the Supplementary Note 4 for the
detailed derivation) that

_H ¼ MðΨ þ βτÞ ð5Þ

_DðtÞ ¼ L

G
_τðtÞ þM βΨ þ β2τ

� �

; ð6Þ

where M is the GB mobility, τ is the shear stress, and G is the
shear modulus.

For the special case where the disconnections are perfect steps
(bi = 0), such that β = 0, then _H ¼ MΨ and _D ¼ ðL=GÞ_τ. GB
migration is then decoupled from τ and D. In the remainder of
the discussion, we implicitly assume that β ≠ 0 (although this
presents no problem). We now consider two cases: stress-
controlled migration and displacement-controlled migration.

Fixed Stress, τ = τ0: First, we consider a constant stress or
traction applied at the ends of the sample. From Eqs. (5) and (6),
_D ¼ M βΨ þ β2τ0

� �

and _H ¼ M Ψ þ βτ0ð Þ. The GB migrates to
the top of the cell and the top of the cell displaces both at constant
rates. For the unconstrained (free surface) boundary condition

(τ0 = 0, see Fig. 5), _H ¼ MΨ and _D ¼ βMΨ . This is the
commonly used synthetic driving force simulation approach31.

Fixed displacement rate, _D ¼ _D0: Many studies of shear-
coupled GB migration incorporate a fixed displacement rate _D21.
To model this, we rewrite Eq. (6) as
_τ ¼ G=Lð Þ _D0 �MβðΨ þ βτÞ

� �

, and integrate:

τðtÞ ¼
_D0

Mβ2
� Ψ

β
þ τ0 þ Ψ

β
�

_D0

Mβ2

� �

e�
GMβ2

L t: ð7Þ

Substituting Eq. (7) into Eq. (5) and integrating with respect to
time yields (for H0 = 0)

HðtÞ ¼
_D0

β
t � L

Gβ2
τ0β þ ψ �

_D0

Mβ

� �

e�
GMβ2

L t � 1
� 	

ð8Þ

In the constrained simulations (Figs. 5 and 6), _D ¼ 0 and τ0 = 0.
In steady state (t → ∞), this approaches

τ1 ¼
_D0

Mβ2
� Ψ

β
¼ �Ψ

β
ð9Þ

H1ðtÞ ¼
_D0

β
t þ L

Gβ2
Ψ �

_D0

Mβ

� �

¼ L

Gβ2
Ψ : ð10Þ

Initial 115 ps 215 ps

B

H

Fig. 5 Shear-coupling in a symmetric tilt GB with free ends. Time sequence

depicting shear-coupling in a Σ39[111]θ= 32.2° symmetric-tilt GB for a

difference in energy density between the two crystals54 Ψ= 8.0 meVÅ−3

at 300 K with free top and bottom surfaces. The blue horizontal and red

vertical lines are the GB position and fiducial mark (red atoms),

respectively. As the GB migrates, the upper grain shifts right. Two periods

of the simulation cell are shown in the horizontal direction and the free top

and bottom surfaces are outside the sections of the simulation cell shown
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Fig. 6 Shear-coupling in a symmetric tilt GB with fixed ends. a–c Time

sequence of a bicrystal simulation identical to that in Fig. 5 except that the

top and bottom surface of the simulation cell are fixed (do not translate). d

Shear stress τ and GB position H from the same simulation, compared with

Eq. (7) (theoretical stress) and (8) (theoretical GB position) from the

single-mode migration model, using measured values of mobility, β, and Ψ.

The overshoot of the simulation data vs. the theoretical prediction is

associated with the elastic response of the large simulation cell
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The GB travels a finite distance before stopping with a steady-
state stress, consistent with the observations in Fig. 6. The time
evolution of τ and H agrees with simulation results shown in
Fig. 6d (solid, colored lines). Here, we have used independently
measured values of β, G, M, and L. However, while this approach
is consistent with the constrained Σ39 simulation results in Fig. 6,
it fails to describe the zig-zag motion in Fig. 7, which indicates
disconnection mode-switching. To model this behavior, we must
consider multiple coupling modes.

Multiple disconnection modes. To understand the zig-zag
motion of the Σ13 GB (Fig. 7), we consider the thermal nuclea-
tion of disconnections along an initially flat GB within a periodic
simulation cell. We further assume that nucleation is slow com-
pared with the migration and annihilation of disconnections such
that the GB effectively remains flat. These are reasonable for the
relatively narrow, periodic bicrystal simulations here.

For each GB, there is an infinite set of possible disconnections
(bi, hi). The barrier to forming a disconnection pair of type i
depends on the energy required to form the disconnection pair
itself, the interactions between disconnections (together we label
these as Ei), and the driving force to separate the two
disconnections fi55. The nucleation barrier is Ei − fi, where

Ei ¼ 2γS hij j � G

2π
1

1� ν

b2i ln sin
πδ0

w

� �
 �

: ð11Þ

The first term is the excess energy associated with the GB step
and the second accounts for the dislocation core energy and
energy required to separate the disconnections. ν is the Poisson
ratio of the material, w is the length of the GB (periodic unit cell),
and δ0 is the dislocation core radius. The contribution to the
nucleation barrier due to the driving force on the GB is fi =w(hiΨ
+ biτ)/2. Ei and fi are normalized by the thickness of the bicrystal.

The nucleation rate of a disconnection pair of type i is
proportional to e� Ei�fið Þ=kT . However, disconnection pairs come in
equal, opposite sets ±(bi, hi). We can write _B and _H in terms of
the nucleation rates of all disconnection pair types as follows:

_B ¼ ω
X

i

bi e�
Ei�fi
kT � e�

Eiþfi
kT

� 	

ð12Þ

_H ¼ ω
X

i

hi e�
Ei�fi
kT � e�

Eiþfi
kT

� 	

; ð13Þ

where ω is an attempt frequency and the macroscopic shear-
coupling parameter is β ¼ _B= _H. If one disconnection mode (i =
0) dominates (E0 � Ei for i ≠ 0 or T→ 0), then β→ β0 = b0/h0.
This is single-mode coupling.

For fi � kT , we can expand the exponentials in Eqs. (12) and
(13) and substitute fi = w(hiΨ + biτ)/2:

_B ¼ ωw

kT
τ
X

i

b2i e
�Ei

kT þ Ψ
X

i

hibie
�Ei

kT

 !

¼ K11τ þ K12ψ ð14Þ

_H ¼ ωw

kT
τ
X

i

hibie
�Ei

kT þ Ψ
X

i

h2i e
�Ei

kT

 !

¼ K21τ þ K22Ψ ;

ð15Þ
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where Kij may be viewed as Onsager coefficients and K12 = K21

(we confirmed that _B and _H are near linear functions of Ψ via
independent simulations31. These results, in principle, include the
effects of all possible disconnections and describe the full
temperature-dependent behavior of any GB.

While the summands in K11 and K22 are positive-definite, those
in K12 are not. We therefore, expect the diagonal terms to
dominate at high temperature. In this limit, for stress-driven GB
migration (Ψ = 0, τ ≠ 0) β ¼ _B= _H ! 1, corresponding to perfect
sliding. For migration driven by an energy density difference
between two grains (τ = 0, Ψ ≠ 0), β→ 0, corresponding to GB
migration with zero net shear deformation. The explicit
temperature-dependence of K11, K22, and K12 using known values
of (bi, hi) for a Σ13[001](510) symmetric tilt GB and material
properties for the Ni potential used above57 is shown in Fig. 9a, b.
These trends may be considered generic for all GBs.

We now consider GB migration under stress-controlled and
displacement-controlled conditions for the multi-mode case.
Referring to Fig. 8d, we note that

_B ¼ _D� L=Gð Þ_τ; ð16Þ

where _B depends on temperature, stress, Ψ, simulation dimen-
sions, and includes all possible disconnections.

Fixed Stress, τ = τ0: For fixed stress, Eqs. (15) and (16) imply
_D ¼ K11τ

0 þ K12Ψ and _H ¼ K12τ
0 þ K22Ψ . This resembles the

single-mode case; the GB migrates and the top of the cell
translates, both at constant velocity. However, if the off-diagonal
term K12 vanishes at high temperature, either perfect sliding (for
ψ = 0, τ ≠ 0) or GB migration without shear-coupling (for τ = 0,
ψ ≠ 0) occurs. This multi-mode analysis explains why β is a
function of temperature and driving force; this is in contrast to
conventional (single mode) shear-coupling for which β is
constant.

Fixed displacement rate, _D ¼ _D0: This final case corresponds
to Fig. 7. Here, the distinction between single-mode and multi-
mode migration becomes even more important; as the stress
evolves, so does the relationship between _D and _H. Combining
Eqs. (15) and (16) and integrating with respect to time yields

τ ¼ τ0e�t=t� þ
_D
0 � K12Ψ

K11
1� e�t=t�
� 	

; ð17Þ

where t* = L/(GK11). If _D0 ¼ 0 and τ0 = 0 (Fig. 7),

HðtÞ ¼ Ψ K22 �
K2
12

K11

� �

t þ L

G

K12

K11

� �2

1� e�t=t�
� 	

" #

:

As t ! 1,

τ1 ¼ � K12
K11

Ψ ; _H1 ¼ K22 � K2
12

K11

� 	

Ψ

HðtÞ ¼ K22 � K2
12

K11

� 	

t þ L
G

K12
K11

� 	2

 �

Ψ :

Rather than stagnating, the GB will migrate at a constant rate at
late times.

At high temperature, the terms containing K12 vanish and the
boundary migrates at a constant velocity _H ¼ K22Ψ with no
stress accumulation. Here, K22 describes the conventional
mobility of the GB. At low-temperatures, where a single mode
(b0, h0) dominates, we recover Eqs. (9) and (10):

τ10 ¼ � K12
K11

Ψ ¼ � Ψ
β0

H1
0 ¼ L

G
K12
K11

� 	2
¼ L

Gβ20
Ψ :

Even when the GB appears to stagnate at low (finite) temperature,
there will be a small, constant velocity. However, Fig. 9 suggests
that this velocity will be extremely small. We associate this
velocity with the rare nucleation of a disconnection pair with a
high barrier.

The general case is difficult to address analytically, but we can
examine a case where migration is controlled by two types of
disconnections (b0, h0) and (b1, h1) (i.e., an intermediate
temperature). For example, consider a GB for which b0 = b, h0
= b, E0 = E, b1 = −b, h1 = b, and E1 = 2E. The dimensionless
quantities τ=τ10 , H=H1

0 , and _H= _H� (where _H� ¼ K22Ψ , the
velocity when τ = 0) are independent of ω, Ψ, the system
dimensions, and the specific choice of b, depending only on the
relative values of bi, hi, Ei, and T. The time evolution of τ=τ10 and
H=H1

0 for various temperatures is given in Fig. 9c, d and the
steady-state values τ1=τ10 and _H1= _H� as a function of
temperature are given in Fig. 9e. There is a range of low
temperatures for which the GB very-nearly stagnates with a stress
of τ1 ¼ τ10 . As temperature and (by extension) the (b1, h1)
nucleation rate increases, τ∞ decreases and _H increases.
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We now apply the disconnection model directly to the GBs
simulated in Figs. 6 and 7. The barriers (Eq. (11)) depend on the
spacing between nuclei (w in the limit of a narrow, periodic
simulation) and material properties (see Supplementary Note 3).
For the simulations in Figs. 6 and 7, we can infer the dominant
coupling modes for each GB based on the analyses of55 and39. For
the Σ39 GB in the arrested case (Fig. 6), the disconnection modes
correspond to b ¼ 2

ffiffiffi

3
p

nadsc and h = (6n + 39j)adsc, where n and j
are integers and adsc � a0= 2

ffiffiffiffiffi

78
p� �

, where a0 is the lattice
constant. The two disconnections (bi, hi) with the smallest Ei
corresponding to (n, j) = (1, 1) and (2, 2). Both modes correspond
to the same β ¼ 1=

ffiffiffi

3
p

� þ0:58, even though they correspond to
different Ei. Since both modes have the same sign of βi, activation
of both would not relax the stress accumulation and even higher
Ei modes would be necessary to facilitate further migration. On
the other hand, for the Σ13 GB (which exhibits switch-back
behavior), the allowed disconnections modes correspond to b =
6nadsc and h ¼ 6

ffiffiffi

3
p

nþ 13
ffiffiffi

3
p

j
� �

adsc. Those with the smallest Eis
correspond to (n, j) = (1, 1) and (1, −1). In this case, the Ei gap is
much smaller than in the Σ39 GB case and the corresponding
modes have βi values of opposite sign; i.e., β ¼ 1=

ffiffiffi

3
p

� 0:58 and
β ¼ �6= 7

ffiffiffi

3
p� �

� 0:50, respectively. This explains why the Σ13
GB readily migrates by alternating between two disconnection
modes, while the Σ39 GB stagnates.

Neither curvature flow nor ideal shear-coupling completely
describe the general nature of GB migration. However, the
disconnection model of GB migration is able to explain both GB
stagnation and the observed switch-back behavior (as well as
everything in between). The main difference between the Σ13 and
Σ39 GBs in Figs. 6 and 7 is the availability of disconnection
modes with relatively low Ei and βi values of opposite sign to the
lowest-Ei mode. This enables the Σ13 to access a coupling mode
that relaxes stresses generated by the first coupling mode and
facilitates long-distance GB migration. Figure 9c–e show that
while some mode switching may occur at any temperature, the
degree to which mode switching for each particular GB is
important depends on temperature. These results clearly
demonstrate that even a very-simple two-mode model is capable
of describing this rich behavior.

Idealized polycrystalline microstructure revisited. We can apply
our conclusions thus far to the idealized microstructure simula-
tion in Fig. 3. Unlike the GBs in Figs. 6 and 7, the relevant GBs in
the idealized microstructure simulation are asymmetric-tilt
boundaries. The migration mechanisms of asymmetric tilt GBs
are more complicated than those of symmetric tilt GBs, and the
details of how they will behave under general conditions is still an
active subject of study58–60. However, we can still apply the same
types of bicrystal simulations (free and/or constrained) to quali-
tatively infer whether their behavior under constraint is con-
sistent with our observations in Fig. 3.

We characterize each of the GBs in the idealized micro-
structure (Fig. 3a) using bicrystal simulations under both free and
fixed-end conditions. The results are given in Supplementary
Note 2. As Supplementary Figs. 1 and 2 show, all four GBs in the
free-end simulations exhibit shear-coupling even at the simula-
tion temperature of 0.85Tm and all four GBs show similar
velocities (and do not exhibit stick/slip behavior)31.

Figure 10a shows the direction of GB migration (assuming
Grains A and B shrink due to capillarity) and sense of β, as well as
the expected rotation/stress-generation of each grain in the ideal
microstructure, based on Supplementary Fig. 2. Figure 10b shows
the same results based on the actual simulation observations from
Fig. 4. The sense of the shear stress that develops in Grain A
(Fig. 4a) is consistent with the signs of β as measured from

Supplementary Fig. 2 (cf. Fig. 10a, b). The stress accumulation
(Fig. 4a) and GB stagnation (Fig. 3) can be considered by the
analogy with the arrested GB migration in Fig. 6. However, these
same measurements suggest (Fig. 10a) that Grain B should also
become stressed. The observed rotations in Grains B and C imply
that the GB that separates them (GB 4) is migrating with a
coupling mode of sign opposite to that implied by Supplementary
Fig. 2. Therefore, ideal shear-coupling cannot describe how this
grain behaves, just as it was insufficient to describe the mode-
switching behavior in Fig. 7.

Supplementary Fig. 3 shows the results of simulations of each
of the four GBs in the idealized microstructure, performed under
constraints (fixed-end) as in Figs. 6 and 7. Supplementary Fig. 3
shows that GBs 1–3 exhibit stress accumulation and arrested
migration behavior, similar to the simulation in Fig. 6. Critically,
GB 4 (Supplementary Fig. 3d) is the only GB that migrates a long
distance in the constrained simulations; this clearly indicates
mode-switching (with the concomitant stress oscillation). Grain B
shrinks because GB 4 exhibits mode-switching, while the other
GBs do not. Effectively, GB 4 migrates and slides (i.e., switches
between modes with opposite-sign βi), facilitating grain rotation
without stress accumulation (relaxing the stress associated with
the migration of GB 3).

The disconnection model of GB migration, incorporating the
effects of constraints endemic to all microstructures, allows us to
understand the microstructure evolution in Fig. 3. This is
significant because initial analysis suggested a wide range of
previously puzzling events (GB migration stagnation, grain
rotation, stress accumulation, and the different behaviors of two
grains with identical grain shape). Analysis of the migration of an
GB in a real microstructure is possible, but the complexity of
general GBs and microstructures makes this formidable for an
entire microstructure.

Discussion
The results presented above suggest that shear-coupling is an
intrinsic behavior of grain boundary migration. The present results
are a strong support for the speculation that this statement is true
for all grain boundaries under all conditions and it is simply a
consequence of the underlying mechanism by which GBs migrate.
This should apply at low temperatures, where shear-coupling is
obvious, and at high temperatures, even when GBs appear to slide.
It is important when GB migration leads to stress generation and
when it does not. It is not surprising, therefore, that shear-coupling

A A

D D

C C

B B

a b

Fig. 10 Idealized Microstructure Predicted and Observed Behavior. a

Predicted shear-coupling sense (arrows parallel to each GB), stress (grain

shading), and rotation (circular arrows) according to bicrystal simulations

for the idealized microstructure. b Same as in a but based on the actual

microstructure evolution simulations (Fig. 4). Red arrows denote behavior

in b that contradicts the predictions in a. Red and blue shading denote shear

stress of opposite sign
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can lead to complex effects during grain growth in a polycrystal,
and that grain rotation, stress generation (and potentially defect
generation), and grain growth stagnation are all inter-related and
dependent on shear-coupling and disconnection mode selection.
This suggests a much richer grain boundary dynamics/kinetics
than is commonly assumed in conventional curvature-driven GB
migration. This richness is in addition to that arising via non-
disconnection related phenomena, such as grain boundary torque,
crystal plasticity (and its interaction with GBs), and grain boundary
diffusional accommodation, each of which may occur on separate
time and length scales.

Real microstructures necessarily imply (at least) two types of
constraints on GB migration and shear-coupling. First, two grains
cannot simply shear relative to one another within a micro-
structure without severe mechanical consequences (stress gen-
eration). Second, since grain boundaries are necessarily delimited
by triple (and higher order) junctions, shear-coupling must
generate stress at these junctions. Hence, constraint plays a major
role in shear-coupled GB migration and, in turn, grain growth.

While shear-coupling necessarily implies significant stress
generation, nature endows microstructures with a myriad of
possibilities for relieving the stress associated with GB migration.
These include extrinsic mechanisms such as twinning and dis-
location generation (and more generally, plasticity within the
grains)—as observed in our simulations (Fig. 1b). It also includes
intrinsic mechanisms, largely associated with the availability of
multiple disconnection modes—nature’s choice of which depends
on the stresses generated and temperature. If the stresses get too
large and no relaxation mechanism is available, such coupling
and constraints can lead to the cessation of GB migration.

These observations also motivate the need to reconsider the
notion of grain boundary mobility. GB migration is not a
monolithic thermally-activated process, but rather an aggregate of
thermally-activated disconnection nucleation and migration
events. As disconnection selection and nucleation are sensitive to
the environment (e.g., stress and other driving forces) in which a
GB migrates, so too the GB mobility varies not only between GBs,
but for a given GB as it migrates within the material.

While the constraint associated with neighboring grains may
be less pronounced in microstructures with large average grain
sizes, grain boundaries must also migrate further to achieve the
same fractional increase in grain size. The development of stresses
associated with shear-coupling will, therefore, be essentially
grain-size independent. This is not true of stress-relaxation
mechanisms. It is our expectation that the macroscale effects of
stress-coupling will be more important with decreasing grain size
—where operative relaxation mechanisms are more limited. We
also note that even in a microstructure with a large mean grain
size, GBs bounding smaller grains will behave differently from
those bounding larger ones.

We note that grain boundaries themselves have degrees of
freedom that are not associated with disconnections at all. These
include the large range of metastable structures associated with
grain boundaries61, as well as compositional degrees of freedom,
which may modify disconnection dynamics.

Ultimately, the conventional theory of grain growth is expected
to still be functional on the macroscopic scale-largely because of
stress relaxation effects (e.g., at high temperature, GBs may
effectively slide with relatively little shear-coupling). On the other
hand, the conventional assumption that GB mobility is only a
function of macroscopic GB bicrystallography is particularly
simplistic. Conventional grain growth theory must be viewed as a
simplistic model that does not account for the fact that real
materials are crystalline and crystallinity imposes constraints on
how GBs move. Simply put, polycrystals are not soap froths, even

though that analogy has served us in good standing for over a half
century62.

The present work examines some of the implications of crystal
structure on the evolution of polycrystalline microstructures. Of
course, this falls within the framework of a wide-range of work on
GB migration and shear-coupling in recent years. However, it
should be viewed as an initial discussion with many implicit
assumptions and approximations. The present work has also
shown the considerable complexity in trying to apply our present
understanding of grain boundary migration to polycrystalline
systems. This complexity is enormous (given the 5 macroscopic
degrees of freedom of GB macro-crystallography, the inter-
connectedness of GB networks, the presence of triple and higher
order junctions, GB metastability, etc). The challenge is to take
this type of microscopic mechanistic theory and deduce an
effective equation of motion that can be applied to predict overall
GB migration while retaining only the essential ingredients
(approximating those that have little macroscopic effect). Bor-
rowing (liberally) from Einstein: “grain boundary dynamics
should be made as simple as possible, but no simpler” (e.g., see
ref. 63).

Methods
Polycrystal grain growth simulations. In polycrystal grain growth simulations,
initial microstructure can have a profound effect on subsequent evolution. In the
polycrystal simulation presented here, the initial structure was created by gen-
erating a steady-state, curvature flow, polycrystal microstructure64, assigning the
orientation of each grain at random, and generating the associated face centered
cubic (FCC) atomic lattice within the structure. This was done instead of the more
common method of generating a voronoi tesselation from a poisson distribution of
points, which produces flat GBs, unrealistic triple junction angles, and grain size
distributions inconsistent with grain growth microstructures65.

After the initial configuration was generated, atoms were removed which were
closer than 60% the equilibrium 0 K nearest neighbor distance and the atomic
configuration was relaxed at T = 0 K. Finally, the system was annealed for 100 ps at
300 K and then relaxed again. This approach was used to remove any artifacts of
the process that generated the initial configuration and separate phenomena
associated with grain growth from those related to relaxing the as-constructed,
high-energy GB structures.

The polycrystal simulation cell had edge length W ≈ 400 Å and the simulation
consisted of approximately 5,000,000 atoms. The polycrystal was annealed in an
NPT ensemble (Nose′–Hoover thermostat) at 0.85Tm and zero external pressure.
The temperature was chosen high enough to facilitate significant grain growth in a
reasonable computation time, but low enough to prevent GB pre-melting. The
simulation time was limited to 2.5 ns to prevent individual grains from spanning
the simulation cell. Mean grain size was calculated as ‘ ¼ W=N1=3 , where N is the
number of grains and W is the simulation cell width.

Bicrystal simulations. In both the free-end (Fig. 5) and fixed-end (Fig. 6) simu-
lations of the Σ39 symmetric-tilt bicrystal, the simulation cell had dimensions
1,914 Å × 72 Å × 18 Å in the directions perpendicular to the GB (L), parallel to the
GB (w), and perpendicular to the plane of Fig. 5. (The GB position H in these
figures is referenced to the center of the simulation cell.) The driving force in these
simulations is an energy density difference between two grains of different orien-
tation54 of magnitude 8.0 meV Å−3 (energy density difference between the two
grains). The simulations were performed with the same EAM nickel potential as in
the previous simulations57, under an NPT ensemble with zero external stress, at
300 K. In the constrained simulation of the Σ13 symmetric tilt bicrystal (Fig. 7), the
simulation cell dimensions were 956 Å × 16 Å × 18 Å.

The bicrystal simulations of the GBs in the idealized microstructure (Fig. 3 were
performed at 0.85Tm (the same temperature as the simulation in Fig. 3, and with Ψ

= 4.4 meV Å−3. GB energies were computed by relaxing the atomistic configuration
at 0 K. GB mobilities (M) and shear-coupling factors β for each of the bicrystals
were measured using a synthetic driving force potential method54 with an energy
difference between the two grains of 4.4 meV Å−3 at the same temperature as the
“simple” microstructure simulations. The results are given in Supplementary
Table 2. All bicrystal simulations are periodic in the horizontal x̂ð Þ direction as well
as the direction normal to the viewing plane ẑð Þ.

Data availability. The data that support the findings of this study are available
from the authors on reasonable request, see author contributions for specific data
sets.
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