
Utah State University

From the SelectedWorks of Frederick A. Baker

June, 2011

Reconciling multiple data sources to improve
accuracy of large-scale prediction of forest disease
incidence
Fred A. Baker, Utah State University

Available at: https://works.bepress.com/fred_baker/10/

http://www.usu.edu
https://works.bepress.com/fred_baker/
https://works.bepress.com/fred_baker/10/


Ecological Applications, 21(4), 2011, pp. 1173–1188
� 2011 by the Ecological Society of America

Reconciling multiple data sources to improve accuracy of large-scale
prediction of forest disease incidence

EPHRAIM M. HANKS,1,4 MEVIN B. HOOTEN,2 AND FRED A. BAKER
3

1Department of Statistics, Colorado State University, Fort Collins, Colorado 80523 USA
2U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University,

Fort Collins, Colorado 80521 USA
3Department of Wildland Resources, The Ecology Center, Utah State University, Logan, Utah 84322-5230 USA

Abstract. Ecological spatial data often come from multiple sources, varying in extent and
accuracy. We describe a general approach to reconciling such data sets through the use of the
Bayesian hierarchical framework. This approach provides a way for the data sets to borrow
strength from one another while allowing for inference on the underlying ecological process.
We apply this approach to study the incidence of eastern spruce dwarf mistletoe
(Arceuthobium pusillum) in Minnesota black spruce (Picea mariana). A Minnesota
Department of Natural Resources operational inventory of black spruce stands in northern
Minnesota found mistletoe in 11% of surveyed stands, while a small, specific-pest survey found
mistletoe in 56% of the surveyed stands. We reconcile these two surveys within a Bayesian
hierarchical framework and predict that 35–59% of black spruce stands in northern Minnesota
are infested with dwarf mistletoe.

Key words: Arceuthobium pusillum; Bayesian hierarchical models; black spruce; disease monitoring;
dwarf mistletoe; multiple data sources; northern Minnesota, USA; Picea mariana; spatial autocorrelation.

INTRODUCTION

Reliable ecological data can be difficult and costly to

obtain, especially over large landscapes, yet sound

management and science require accurate information.

No data are perfect in capturing the true ecological state

of the system being studied. Recognizing this, much

research has focused on accounting for inaccuracy in the

data-collection process. For example, models of detec-

tion accuracy for wildlife occupancy have received

significant attention in recent years (e.g., MacKenzie et

al. 2003, Tyre et al. 2003, Gu and Swihart 2004, Royle

2004, MacKenzie et al. 2005), and the Bayesian

hierarchical framework has been touted for its ability

to model uncertainty in the data collection process

separately from uncertainty in the ecological process

(e.g., Hooten et al. 2003, Ogle 2009).

Increasing the accuracy of predictions made from an

existing set of observations is typically accomplished by

gathering new data to replace or supplement the existing

data. Including new observations can decrease the

variance of predictions made from the data or can

allow for a better characterization of measurement bias,

thus increasing the reliability of predictions. For

example, replicate observations of the same ecological

process can be used to more rigorously account for

errors in the data collection process (e.g., Royle and

Nichols 2003) and can result in greater overall predic-

tion accuracy even though there has been no increase in

the reliability of the individual surveys.

Some data sets, however, cannot easily be replicated.

The expense and time involved in repeating large-scale

monitoring efforts to increase the accuracy of predic-

tions can be prohibitive, and alternate methods must be

used. Focusing resources on a small survey can generate

more reliable data, as time-consuming techniques and

more expensive data-gathering processes can be more

easily employed. In this study, we show how multiple

data sets, with varying strengths and weaknesses, can be

combined to yield improved inference concerning the

process of interest. This approach allows us to compare

and reconcile sets of observations within a Bayesian

hierarchical modeling framework. In our application,

involving forest pathogen incidence, the accuracy of

predictions based on an extensive forest inventory are

improved through reconciliation with a small, specific-

pest survey.

Bayesian data reconciliation

In what follows, we present an approach for

reconciling two sets of observations within a Bayesian

hierarchical modeling (BHM) framework. We have

chosen to call this particular application of BHMs

‘‘Bayesian data reconciliation.’’ We assume that the

response variable of interest has been observed in two

separate surveys, one of which, denoted here as DA, is

assumed to be more accurate than the other, denoted as

DL. We assume that the observations in DA are collected
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on a representative subset of the observation locations

for which we have the less accurate set of data, DL, and

on the same spatial scale. When the situation allows for

a selection of the survey locations for DA, optimal

sampling methods (e.g., Hooten and Wikle 2009) could

be employed. We seek to combine the accuracy of DA

with the scale and extent of the large, less accurate DL.

In an analogous generic ecological study we might

collect data from a sample of locations across a

landscape, fit a statistical model of an ecological process

using the collected data, and then use the results of the

statistical analysis to make predictions at unsurveyed

locations across the landscape. Similarly, in the data

reconciliation situation described above, we can con-

struct a statistical model that specifies the relationship

between the accurate data DA, the inaccurate data DL,

and the relevant ecological process. We can then use the

results to predict what would be found if the more

accurate survey were conducted at all locations across

the extent of DL.

Statistical methods commonly used for prediction

include linear regression, logistic regression, classifica-

tion and regression trees (e.g., Breiman et al. 1984), and

random forests (Breiman 2001). For a given set of data,

these methods may produce differing levels of accuracy,

and it is common to apply multiple methods to the

problem and choose the one that delivers the best

accuracy, often measured by cross-validation (e.g.,

Rejwan et al. 1999). In the context of reconciling data,

DL could be conditioned on as an independent variable

in one of these traditional methods with DA as the

dependent variable (Fig. 1a). One weakness shared by

these traditional methods is the lack of distinction in the

prediction model between the effect of environmental

covariates and the effect of the less accurate data. While

this may not adversely affect the accuracy of predictions

made from the method, it makes little ecological sense

and can lead to difficulties in interpreting the results of

the inference made on the parameters in the model.

In contrast, hierarchical models (e.g., Cressie et al.

2009) are well-suited to the task of synthesizing multiple

data sets, such as those described here, because of the

flexibility and interpretability they provide in modeling

interrelated processes. Specifying the relationship be-

tween the two data sets separately from the ecological

process allows us to model each process in a scientifically

meaningful way, and the hierarchical modeling frame-

work allows us to link these separate processes and

rigorously make inferences about both processes simul-

taneously. Cressie et al. (2009) provide an excellent

summary of the strengths and limitations of hierarchical

statistical modeling in ecology, especially Bayesian

hierarchical models (BHMs), and interested readers are

referred to that paper for a full treatment of the subject.

In brief, the traditional BHM is a series of three linked

statistical models (Berliner 1996), each dependent on the

next (Fig. 1b). The data model links the observed data,

D, to the true, but usually unobserved, ecological state

of interest, E, through data model parameters PD. The

process model describes the ecological process that gives

rise to this latent ecological state, often through the use

of parameters, PE, related to environmental covariates.

The parameter model specifies the prior knowledge

about the parameters in the data and process models.

The observed data, D, is used as the response variable in

the data model and linked to corresponding environ-

mental variables in the process model through the latent,

true ecological state, E. Thus the available data and the

environmental covariates are used to make inference

about the true, latent ecological state. Prediction can be

FIG. 1. Comparison of traditional prediction methods such as linear regression and regression trees with the Bayesian
hierarchical modeling (BHM) framework and the Bayesian data reconciliation (BDR) approach. (a) In attempting to reconcile two
data sets, one (DA) more accurate than the other (DL), traditional prediction methods such as linear regression and regression trees
make no distinction between the effect of the less accurate data (DL) and the effects of environmental covariates (P). (b)
Traditionally, BHMs use one set of data (D) to make inference about an unobserved ecological process (E). (c) BDR utilizes a
BHM by replacing the latent ecological process (E) with the more accurate set of data (DA). In this way, a small, accurate set of
data (DA) can be used to update and improve the accuracy of a large, inaccurate set of data (DL).
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made within this framework through the posterior

predictive distribution at locations for which we lack

observations of the response variable, but have all

information needed for the process model (e.g., envi-

ronmental covariates). This posterior predictive distri-

bution can be found using composition sampling (e.g.,

Banerjee et al. 2003) simultaneously with the joint

posterior distribution of the model parameters using

Markov chain Monte Carlo (MCMC) techniques.

Bayesian data reconciliation (BDR) fits within the

traditional BHM framework, with one key distinction:

our goal is no longer to use one set of observed data to

make inference about a latent ecological state, but

instead to reconcile two data sets, one more reliable than

the other. The data reconciliation process is as follows:

the data model links the less accurate data, DL, to the

more accurate data, DA, using model parameters, PD.

The more accurate data, and possibly the data

reconciliation parameters, PD, are then in turn linked

to environmental parameters PE within the process

model (Fig. 1c). Thus, BDR is, in effect, a BHM in

which the latent process is actually observed (DA [ E).

The data model represents the statistical relationship

of DL to the more accurate survey, DA. In practice,

thinking of DL as a noisy version of DA can aid the

choice of an appropriate data model. The form of the

BDR data model could be identical to a traditional

BHM data model linking observations to a latent

ecological state, though the interpretation would be

different. Instead of directly representing the data

collection process, the data model in BDR represents

the differences between the two collected data sets. This

could include factors such as differences in detection

between DA and DL, temporal change in the ecological

process between when DA and DL were observed, or

variation in spatial resolution from data collected at

differing scales.

The process model in BDR specifies the ecological

process that gives rise to DA, typically relating DA to the

coefficients PE of environmental covariates. Typically

these covariates are assumed to be fixed and known, but

if a choice must be made between using environmental

covariates collected from the more or less accurate

survey, use of the covariates from the large, less accurate

survey allows for straightforward prediction at locations

not present in the small, more accurate survey. If there is

reason to assume that these covariates are also less

accurate than those collected in the smaller survey, the

covariates from the more accurate survey can be used in

the process model as long as a statistical model

describing the relationship of the inaccurate covariates

to these more accurate covariates is specified.

The BDR framework allows us to borrow strength

from the reliability of the more accurate set of data, DA,

to make predictions through the posterior predictive

distribution at any location for which we have DL and

any environmental covariates needed for the process

model. Thus, within this framework we can use a small,

accurate source of data to update and improve

predictions made from a less accurate source of data

across its range.

APPLICATION: DWARF MISTLETOE IN MINNESOTA

BLACK SPRUCE

To illustrate Bayesian data reconciliation we focus

on the infestation of eastern spruce dwarf mistletoe

(Arceuthobium pusillum), which causes the most serious

disease of black spruce (Picea mariana) throughout its

range (Baker et al. 2006) (see Plate 1). Black spruce is a

valuable species used in the manufacture of high-

quality paper. Dwarf mistletoe infestation reduces

growth, longevity, and quality of host trees (Geils and

Hawksworth 2002). Severe infestations of this dwarf

mistletoe create large areas of mortality and can affect

entire ecosystems. Due to the significant impact of these

parasites in forests, information about the dwarf

mistletoe infestation often drives management deci-

sions on stand manipulations (e.g., Muir and Geils

2002, Reid and Shamoun 2009).

Using aerial photography, Anderson (1949) estimated

that 3–19% of the black spruce in the Big Falls

Management Unit in Minnesota was out of production

due to dwarf mistletoe. More recently, USDA Forest

Service Forest Inventory and Analysis (FIA) found

dwarf mistletoe on 5% of plots in northern Minnesota,

on the low end of what Anderson estimated nearly 60

years before. Additionally, the Minnesota Department

of Natural Resources (DNR) forest inventory shows

dwarf mistletoe in 11% of 46 415 black spruce stands

(Fig. 2). F. A. Baker, M. Hansen, J. D. Shaw, M.

Mielke, and D. N. Shelstad (unpublished manuscript)

intensively surveyed spruce forests around FIA plots to

characterize the ability of these operational inventories

to detect dwarf mistletoe. This intensive survey (Fig. 3)

was inspired by the low proportion of FIA sites in which

mistletoe was found, and thus Baker et al. (F. A. Baker,

M. Hansen, J. D. Shaw, M. Mielke, and D. N. Shelstad,

unpublished manuscript) focused their survey on stands

near FIA plots. Confidentiality required that the true

FIA plot locations were approximated somewhere

within 0.5 miles [1 mile ¼ 1.6 km] of the true location

and so Baker et al. surveyed 196 black spruce stands in

the DNR forest inventory within 0.5 miles of 31

approximate FIA plot locations. Thus the intensive

survey can be thought of as a confirmatory survey on a

small subset of the same areal units (stands) in the DNR

inventory. Of the 196 stands for which we have both the

DNR and intensive survey information, 17% are

reported by the DNR inventory to be infested with

mistletoe, while the intensive survey found mistletoe in

56% of the same stands.

Forest inventories such as the one conducted by the

Minnesota DNR traditionally focus on the forest type

and volume present. Forest insects and diseases are

often quite cryptic, and while inventory crews may be
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trained to recognize and record parasite incidence, this is

typically not the focus of the inventory. The size of the

area inventoried (often thousands of square kilometers)

and the variation within that area can also limit the

reliability of the inventory. This can result in insect and

disease information from forest inventories that is often

unreliable. Specific pest surveys, such as the intensive

survey conducted by Baker et al. (F. A. Baker, M.

Hansen, J. D. Shaw, M. Mielke, and D. N. Shelstad,

unpublished manuscript), are expensive and time con-

suming, but provide accurate information on the extent

of infestation. A comparison of the DNR forest

inventory and the intensive survey of Baker et al. shows

agreement in only 53% of the 196 stands where we have

FIG. 3. The Minnesota Department of Natural Resources (DNR) and Federal studies reported dwarf mistletoe (Arceuthobium
pusillum) present in 5–11% of black spruce (Picea mariana) stands in northern Minnesota. Baker et al. (F. A. Baker, M. Hansen,
J. D. Shaw, M. Mielke, and D. N. Shelstad, unpublished manuscript) conducted a confirmatory study of 196 DNR inventory stands
within 0.8 km of 31 different USDA Forest Service Forest Inventory and Analysis plot locations. This intensive survey found dwarf
mistletoe in 56% of these 196 stands. We developed a model that uses both the intensive and DNR surveys to predict mistletoe
presence or absence at stands in the DNR inventory not surveyed by Baker et al. The stands within the geographic convex hull of
this intensive survey are shown on the left.

FIG. 2. The Minnesota Department of Natural Resources (DNR) inventory covers 46 415 black spruce (Picea mariana) stands
across northern Minnesota, USA. At each stand, .40 stand characteristics are recorded. The black stands in the enlarged panel are
stands the DNR has reported are infested with dwarf mistletoe (Arceuthobium pusillum).
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both observations, little more than would be expected by

random chance.

The DNR inventory, while less accurate at detecting

dwarf mistletoe, still contains a wealth of valuable

information. At each of the DNR stands located across

northeastern Minnesota, more than 40 stand attributes

were measured, including: presence of different tree

species in the stand, cover type, stand density, under-

growth density, age of the stand, basal area, and

geographic location (latitude and longitude) of the

stand. Many of these stand characteristics could be

related to the presence or absence of dwarf mistletoe and

could aid in predicting the occurrence of dwarf mistletoe

in a particular stand.

The stands in the intensive survey are not a random

sample of the stands in the DNR inventory; rather, the

survey locations were selected to be near FIA inventory

sites. This results in 17% of stands in the intensive survey

being labeled by the DNR inventory as having mistletoe

present, as opposed to 11% of stands in the entire DNR

inventory. Care must be taken in interpreting the results

of such nonrandom samples (e.g., Keating and Cherry

2004). Appendix A contains details of a simulation

study conducted to examine the effect that such a

discrepancy might have on our results. For the level of

discrepancy found in this study, simulations show that

inferences based on our sample do not appear to be

affected.

In what follows, we link the small intensive survey to

the large DNR forest inventory through Bayesian data

reconciliation. We seek to understand and model the

differences between these two data sets, as well as the

ecological process driving dwarf mistletoe presence in

black spruce and use this understanding to make

improved predictions on the extent of the dwarf

mistletoe infestation across northern Minnesota.

Data model

To avoid extrapolation, all stands in the DNR

inventory that were outside of the geographic convex

hull of the 196 stands for which we have both the DNR

and intensive surveys were removed from the analysis.

The intensive survey and the DNR data agree quite

often (91% of the time) when the intensive survey did not

find dwarf mistletoe in a stand. On the other hand, when

the intensive survey found dwarf mistletoe, the DNR

inventory often did not, agreeing only 23% of the time.

From this, it is clear that the DNR inventory contains

both ‘‘false positive’’ and ‘‘false negative’’ errors when

compared to the accurate intensive survey and that the

false negative rate is likely to be higher than the false

positive rate. Royle and Link (2006) suggest a general-

ized site occupancy model that allows for both false

positive and false negative errors in the sampling

process. Following Royle and Link (2006), if yi is the

presence (yi ¼ 1) or absence (yi ¼ 0) of mistletoe in a

stand, as identified in the intensive survey, and wi is the

DNR inventory presence or absence in the same stand,

the data model can be written as

wi j/i;wi; yi ;
Bernð/iÞ if yi ¼ 1

BernðwiÞ if yi ¼ 0

(
ð1Þ

where /i is the probability of the DNR survey finding

mistletoe if it is present in the intensive survey (1� /i is
the probability of a false negative) and wi is the
probability of the DNR survey reporting mistletoe

present if it is not present in the intensive survey (wi is
the probability of a false positive).

If we compare this data model to the diagram in Fig.
1c, DL corresponds to the DNR inventory (w), and DA

corresponds to the intensive survey (y). Thus, in this
data model, we have modeled the less accurate DNR

inventory as a noisy version of the intensive survey.

Process model

Having specified a data model, we now model the
relationship between mistletoe presence or absence, as

reported by the intensive survey, and the stand
characteristics reported in the DNR inventory.

A generalized linear model (GLM) with a binary
response (e.g., logistic or probit regression) is a natural
choice for a statistical model of forest pest occupancy.

Stand characteristics from the DNR inventory are used
as covariates in a GLM with the response variable being

the presence or absence of mistletoe as found in the
intensive survey. Following Albert and Chib (1993), we

employ the probit link function in our GLM to allow the
use of a more robust MCMC algorithm; the probit link,
denoted as U�1, is the inverse cumulative distribution

function of the standard normal distribution. Thus,
consider the following process model specification:

yi jb ; BernðhiÞ;U�1ðhiÞ ¼ x 0
i b ð2Þ

where again yi is the presence or absence of mistletoe at

the ith stand as measured by the intensive survey, and hi
is the latent probability that stand i is infected. This

latent probability of presence, hi, depends on the DNR
stand characteristics in xi through the corresponding

regression coefficients b.
The parameters / and w could also vary with stand

characteristics recorded in the DNR inventory. The
processes resulting in false positive and false negative
surveys are different concerns and could be driven by

different environmental factors. We thus model these
processes individually:

U�1ð/iÞ ¼ x 0
i b/ ð3Þ

U�1ðwiÞ ¼ x 0
i bw: ð4Þ

Accounting for spatial autocorrelation

Dwarf mistletoe spreads by shooting seeds an average
of 1–2 m (e.g., Hawksworth and Wiens 1972, Baker and
French 1986). The short-range nature of this dispersal
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mechanism suggests that the presence of mistletoe

should be spatially autocorrelated, and previous studies

have indicated that pines infected with dwarf mistletoe

are spatially aggregated (Reich et al. 1991). Thus we

seek to account for possible spatial autocorrelation

explicitly in our model.

The data used in this study arise from black spruce

stands of varying sizes and shapes, some isolated from

one another and others contiguous (Fig. 2). We have no

information about where in the stand the mistletoe was

found, only that mistletoe is present (or absent) there.

Data of this type are called ‘‘areal data’’ in spatial

statistics (e.g., Schabenberger and Gotway 2004). In

contrast to geostatistical studies in which spatial analysis

relies on geographic distance between points of interest,

areal spatial analysis relies on a neighborhood structure

that specifies the spatial relationship of locations to one

another. There is no standard method for choosing a

neighborhood structure in an arbitrary setting, and thus

for this study we tested for autocorrelation using three

different neighborhood structures and a variety of

ranges of spatial structure. We chose between these

various neighborhood structures by comparing the

resulting goodness of fit of models with different

neighborhood structures. The first neighborhood struc-

ture defines a neighborhood as all stands within a

kilometer of the stand in question. The second defines a

neighborhood as the four stands nearest to each stand.

The third neighborhood structure was constructed by

first creating triangles with each stand’s centroid as a

vertex, then defining each stand’s neighborhood as all

other stands that shared a side of a triangle with the

stand in question. All neighborhood structures were

created by using the ‘‘spdep’’ package (Bivand et al.

2009) in the R statistical computing environment (R

Development Core Team 2009). A traditional probit

regression was conducted using the presence of mistletoe

as reported by the intensive survey as the response

variable and all possible stand characteristics as

covariates. The residuals of this analysis showed

significant spatial autocorrelation (P , 0.01 for all

neighborhood structures) when tested using Moran’s I

test statistic (e.g., Schabenberger and Gotway 2004).

Likewise, the residuals of a probit regression on w, the

probability of a ‘‘false positive,’’ showed significant

residual spatial structure (Moran’s I, P , 0.02), though

the residuals of a probit regression on /, the probability
of a ‘‘true positive,’’ showed no latent spatial autocor-

relation (Moran’s I, P . 0.7).

Accommodating spatial autocorrelation is necessary

to ensure that further modeling assumptions are met and

can improve the predictive power of the model (Hoeting

et al. 2000). Dormann et al. (2007) reviewed common

methods for accounting for spatial structure in areal

data, including, among others, spatial eigenvector

mapping, conditionally autoregressive (CAR) models,

and autocovariate regression. The large size of the DNR

data set makes many of these methods computationally

infeasible. Spatial eigenvector mapping, for example,

requires finding the eigenvectors of a matrix whose

entries are the pairwise distances between all sites in the

data set. For the DNR data, this would be a 25 235 by
25 235 matrix, requiring more memory than available in

standard computing environments. In contrast, autoco-

variate regression can easily be applied to large data sets

such as the DNR inventory. An extra covariate

(predictor variable) is created for each stand that
represents the proportion of ‘‘neighboring’’ stands

infested with dwarf mistletoe. This covariate is then

added to the data set for regression analysis.

Multiple autocovariates were created using the three

different neighborhood structures described above, all

based on a weighted average of stands within a certain

radius of the stand in question. Neighborhood distances
from 250 to 3000 m, in increments of 250 m, were used

in conjunction with three different weighting schemes:

all being weighted equally, stands weighted inverse

proportionally to their distance from the stand in

question, and stands weighted inverse proportionally
to the square of their distance. Each autocovariate

created in this way was tested in a traditional (non-

Bayesian) probit regression with the other stand

characteristics, and the Akaike information criterion

(AIC; Akaike 1974) of the resulting models were
compared. The autocovariates that resulted in a probit

regression model with the best AIC in this a priori

analysis were used in the full BHM.

Variable selection process

The Minnesota DNR inventory has more than 40

stand characteristics that could be used as predictor

variables in our model. This large number of variables

could make it more difficult to determine which stand

characteristics are significantly related to the presence or
absence of mistletoe in black spruce, especially if

multicollinearity is present between some of the vari-

ables. We employed three traditional probit regression

models with y, /, and w as response variables and all

stand characteristics, as well as the spatial autocovari-
ates for y and w, as predictor variables. A stepwise

model selection, based on AIC, was conducted on each

full set of models, and the resulting stand characteristics

were used in the process model of the BHM: Eqs. 2, 3,

and 4. Supplement 1 includes R code to reproduce the
variable selection process, and a full list and explanation

of DNR stand characteristics is obtainable from the

Minnesota DNR (available online).5

Parameter model

Bayesian statistical techniques require specification of

prior distributions on all parameters of interest in the

data and process models. In our model, we need to

specify priors for the regression coefficients b, b/, and

5 hhttp://www.dnr.state.mn.us/maps/forestview/csa_defs.
htmli
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bw, from the process model. In the absence of specific a

priori scientific knowledge of these parameters, we used

vague priors. Specifically, each regression coefficient was

given a normally distributed prior distribution with

mean zero and standard deviation 106. Sensitivity to the

choice of prior distributions was assessed by varying the

means of the prior distributions in four separate MCMC

runs.

Posterior distribution

Having specified data, process, and parameter models,

we can now consider the joint posterior distribution:

½b;/;w j y;w�

}
YN
i¼1

½wi j yi;/i;wi�

3
YN
i¼1

½yi j b�
YN1

i1¼1

½/i1 jb/�
YN0

i0¼1

½wi0 jbw�½b�½b/�½bw� ð5Þ

where N is the number of sites for which we have

observations from both the DNR inventory and the

intensive survey, N1 is the number of sites where

mistletoe was present in the intensive survey, and N0 is

the number of sites where mistletoe was absent in the

intensive survey.

The full-conditional distributions for the parameters

of this model were found analytically, allowing us to use

the computationally efficient Gibbs sampler (e.g.,

Gelman et al. 2004). The derivation of these full

conditionals is presented in Appendix B, and code used

to obtain the results that follow is presented in

Supplement 1.

Prediction

In the BDR framework, prediction is accomplished

through finding the posterior predictive distribution of

DA, given DL and all other parameters in the model. In

this situation, we seek the probability of mistletoe

presence in a stand surveyed by the DNR, but not by

the intensive survey:

Pðmistletoe is present jDNR dataÞ:

Conditioning on all parameters, Bayes’ theorem of

conditional probability allows for the calculation of the

desired predictive distribution. For a stand not exam-

ined in the intensive survey (denoted by the ‘‘u’’

subscript), we first take the case in which the DNR

has found mistletoe (wu ¼ 1). The posterior predictive

probability of mistletoe presence can be written as

follows:

Pðyu ¼ 1 jwu ¼ 1Þ

¼ ½Pðwu ¼ 1 j yu ¼ 1ÞPðyu ¼ 1Þ�

4½Pðwu ¼ 1 j yu ¼ 1ÞPðyu ¼ 1Þ

þ Pðwu ¼ 1 j yu ¼ 0ÞPðyu ¼ 0Þ�: ð6Þ

All of the probabilities on the right-hand side are

terms we have estimated in the model. Specifically, P(wu

¼ 1 j yu ¼ 1) is /u from the data model, P(yu ¼ 1) is the

probability, in the intensive survey, of mistletoe being

present, hu, which can be predicted from the DNR-

collected stand characteristics and the regression coef-

ficients in the process model (Eq. 2). Likewise, P(wu ¼
1 j yu¼ 0) is wu and P(yu¼ 0) is 1 – hu. We can then write

Eq. 6 as follows:

Pðyu ¼ 1 jwu ¼ 1Þ ¼ /uhu

/uhu þ wuð1� huÞ
: ð7Þ

In a similar fashion, the probability of true presence

of dwarf mistletoe in a stand where the DNR did not

observe it can be written as follows:

Pðyu ¼ 1 jwu ¼ 0Þ ¼ ð1� /uÞhu

ð1� /uÞhu þ ð1� wuÞð1� huÞ
:

ð8Þ

Eqs. 7 and 8 are written as probabilities, but together

they are sufficient to specify a full-conditional posterior

predictive distribution for the presence of mistletoe in a

stand surveyed by the DNR but not by the intensive

survey:

yu jwu;wu;/u; hu ; BernðguÞ

gu ¼

/uhu

/uhu þ wuð1� huÞ
if wu ¼ 1

ð1� /uÞhu

ð1� /uÞhu þ ð1� wuÞð1� huÞ
if wu ¼ 0:

ð9Þ

8>>>>><
>>>>>:

In this equation, gu is the posterior predictive probabil-

ity that mistletoe is present in the stand not examined in

the intensive survey.

Of the 46 415 stands in the Minnesota DNR

inventory, 21 180 were located outside of the area

covered by the intensive survey. To avoid extrapolation

we did not make predictions for these stands. Pre-

dictions using the model developed in this study were

made only for the 25 235 stands located within the

convex hull of the stands in the intensive survey (see Fig.

3).

Stand characteristics from the DNR inventory are

available for all stands where we seek to predict presence

or absence of mistletoe, but the spatial autocovariates

used in the model are based on a knowledge of the

presence or absence of mistletoe in neighboring stands,

something known only for stands in the intensive survey.

To approximate these missing autocovariates at stands

not in the intensive survey, both spatial autocovariates

are approximated at each iteration in the Gibbs sampler

using the predicted probability of presence of mistletoe

at neighboring stands as a surrogate for the missing

presence or absence (Augustin et al. 1996, Hoeting et al.

2000). Essentially, the autocovariates can be thought of
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as spatial random processes with their own distributions.

Estimating the autocovariates in this way accounts for

the uncertainty we have regarding the presence or

absence of mistletoe at stands in the DNR inventory.

Instead of using a point estimate, the autocovariates

constructed in each iteration of the Gibbs sampler

change as the predicted presence of mistletoe at

neighboring stands changes. Embedding the estimation

of the spatial autocovariates in the Gibbs sampler also

allows us to estimate the autocovariates within the same

procedure in which we will fit the model and make

predictions. In contrast, traditional statistical techniques

would require estimating the autocovariates separately

from the model-fitting stage. These techniques would

result in a point estimate of the autocovariates, and this

point estimate would then be treated as the exact

autocovariates and used for prediction.

Model implementation

All full-conditional distributions of parameters in the

model were found analytically, and an MCMC algo-

rithm was constructed within the R statistical computing

environment to iteratively sample from the joint

posterior distribution of the parameters by repeatedly

sampling from each full-conditional distribution in turn.

The necessary R code to accomplish this is available in

Supplement 1. In order to assess convergence to a

stationary posterior distribution, four separate runs of

the iterative MCMC algorithm were conducted using

different starting values that were over-dispersed relative

to the posterior distribution of the parameters. We

conducted 20 000 iterations of each run, and the first

half of each chain was discarded as burn-in iterations.

The between- and within-chain variances of the four

resulting chains were computed for each parameter

being estimated and used to calculate a common

convergence statistic, the potential scale reduction

factor, R̂ (Gelman et al. 2004:297).

For comparison, we also fit two similar, but more

parsimonious, BDR models. The first assumes homoge-

neous detection probabilities, in which / and w are

assumed to be constant for all stands, as opposed to

spatially varying. This will allow us to consider whether

we are overfitting by making inference about two

spatially varying parameters (/i and wi ) for each stand

where we have observations.

In the second more parsimonious BDR model we

removed the spatial autocovariates for y and w. The

residuals from this model fit, as well as the correspond-

ing residuals from the full model, were examined for

spatial dependence using Moran’s I test statistic. This

allows us to gauge the effectiveness of these autocovari-

ates at accounting for possible spatial structure in the

presence or absence of mistletoe.

Assessment through cross-validation

In order to assess the effectiveness of BDR, we

employed leave-one-out cross-validation, in which each

stand in the intensive survey was dropped, one by one,

from the analysis and the remaining stands were used to

fit the model and predict mistletoe presence or absence

at the dropped stand. We conducted a single run of

10 000 iterations of the Gibbs sampler for each stand,

using parameter estimates from a traditional probit

regression as initial values for the parameters. The

resulting posterior predictive means of mistletoe pres-

ence at the dropped stands were recorded and used to set

a threshold value, T, which gives the most accurate

predictions on the withheld stands (e.g., Hooten et al.

2003). Stands whose posterior predictive mean proba-

bility of mistletoe was greater than T were classified as

infested, while those with a posterior predictive mean of

less than T were classified as uninfested. For compar-

ison, analogous cross-validation tests were conducted

for two prediction methods: a traditional probit

regression model and random forests. The predictions

resulting from these three methods were compared with

the presence or absence of mistletoe in the stand as

measured by the intensive survey.

In binary classification, the accuracy of a classifier is

defined as the proportion of units that are correctly

classified (e.g., Taylor 1996):

accuracy ¼ ½ðtrue positivesÞ þ ðtrue negativesÞ�

4½ðtrue positivesÞ þ ðfalse positivesÞ

þ ðtrue negativesÞ þ ðfalse negativesÞ�:

The accuracy of each prediction method was com-

puted and used to measure the ability of each method to

predict the presence or absence of mistletoe as measured

in the intensive survey, using only the information in the

DNR inventory.

RESULTS

All MCMC runs converged to similar posterior

distributions, suggesting that the model is fairly robust

to variation in the prior distributions and thus the data

will be the dominant driver of statistical inference. The

potential scale reduction factor (R̂) was calculated for

each parameter in our model (Tables 1 and 2). The

quantity, R̂, measures the factor by which the spread (or

scale) of the estimated posterior distribution might be

diminished by running an infinite number of samples in

each MCMC chain. Values close to one indicate

convergence, while values higher than one indicate that

convergence to the true joint posterior distribution has

not yet occurred. Gelman et al. (2004) suggest, as a rule

of thumb, that R̂ values below 1.1 indicate convergence.

In this study, R̂ values for all parameters were deemed to

be close enough to one that we can be confident our

iterative MCMC algorithm has converged to the true

joint posterior distribution of the parameters. The four

separate chains were combined for each parameter, and

the resulting 40 000 samples were used for inference on
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model parameters and for prediction of mistletoe

presence or absence.

Inferences on the regression coefficients describing

the effect of various stand characteristics in the process

model: Eqs. 2, 3, and 4, are shown in Table 1. The stand

characteristics in Table 1 are those chosen through the

stepwise model selection process for each of the three

probit regressions in the process model. The credible

TABLE 1. Probit regression coefficients in the Bayesian data reconciliation model of eastern spruce
dwarf mistletoe (Arceuthobium pusillum) incidence in black spruce (Picea mariana) stands in
Minnesota, USA.

Covariate Median

95% credible interval

R̂�Lower bound Upper bound

Regression coefficients for y

Intercept �4.2628 �7.0404 �1.6239 1.0005
Cover type size class 0.3511 0.1028 0.6100 ,1.0001
Stand ‘‘wetness’’ class 1.0409 0.5049 1.6102 1.0002
Stand density (1000 board-feet/acre) 0.3903 0.0985 0.7770 1.0003
Height of dominant species �0.0215 �0.0364 �0.0070 ,1.0001
Mortality of dominant species 0.6293 0.2258 1.0590 1.0001
Understory density �0.2604 �0.4891 �0.0334 1.0001
Presence of tamarack �0.4096 �0.9518 0.1241 ,1.0001
Presence of northern white cedar 1.1044 0.2255 2.0577 1.0003
Presence of lowland black spruce �0.9994 �1.9956 �0.0593 1.0002
Presence of balsam fir �1.3029 �2.8215 0.0535 1.0002
Northern white cedar cover type �2.2702 �3.8039 �0.8033 ,1.0001
Stagnant spruce cover type �1.5354 �2.5737 �0.5478 1.0001
Aspen cover type 1.2018 �0.0580 2.5019 1.0009
Jack pine cover type 2.3823 �0.0549 4.9522 1.0003
Spatial autocovariate (acy) 1.7365 1.1196 2.3783 1.0007

Regression coefficients for /
Intercept �2.0911 �2.8211 �1.4656 1.0002
Mortality of dominant species 0.9544 0.5971 1.3323 1.0001
Presence of tamarack 0.5449 �0.1605 1.2392 1.0001
Lowland black spruce cover type 0.9909 0.3080 1.7219 1.0003

Regression coefficients for w
Intercept �5.7777 �11.6221 �1.2673 1.0226
Cover type size class �0.7722 �1.6764 0.1065 1.0037
Understory size class 2.9167 1.1279 5.3506 1.0221
Mortality of dominant species 3.4327 1.1825 6.4058 1.0215
Understory density �1.6632 �3.1416 �0.5392 1.0185
Presence of northern white cedar 8.6992 3.6880 15.6561 1.0262
Spatial autocovariate (acw) 13.2552 5.8397 23.8439 1.0285

Tests for spatial autocorrelation

Moran’s I P value

Without acy and acw 0.0980 0.0004 0.8774 ,1.0001
With acy and acw 0.4730 0.0295 0.9690 ,1.0001

Notes: The variable y is the presence (yi ¼ 1) or absence (yi ¼ 0) of mistletoe in a stand, as
identified in the intensive survey; / is the probability of the DNR survey finding mistletoe if it is
present in the intensive survey; and w is the probability of the DNR survey reporting mistletoe
present if it is not present in the intensive survey. ‘‘DNR’’ is the Minnesota Department of Natural
Resources.

� R̂ is the potential scale reduction factor (Gelman et al. 2004). Values of R̂ , 1.1 indicate
convergence of the iterative Markov chain Monte Carlo (MCMC) procedure used to fit the model.

TABLE 2. Additional model parameters.

Statistic

P value for spatial autocorrelation test Homogeneous detection probabilities

Without acy
and acw

With acy
and acw

DNR true
detection, /

DNR false
detection, w

Median 0.0980 0.4730 0.0413 0.0530
Lower 95% CI 0.0004 0.0295 0.0182 0.0225
Upper 95% CI 0.8774 0.9690 0.0847 0.0809
R̂ ,1.0001 ,1.0001 ,1.0001 ,1.0001

Notes: ‘‘DNR’’ is the Minnesota Department of Natural Resources; ‘‘CI’’ is the credible interval.
Moran’s I was used to test for spatial autocorrelation. R̂ is the potential scale reduction factor
(Gelman et al. 2004). Values of R̂ , 1.1 indicate convergence of the iterative Markov chain Monte
Carlo (MCMC) procedure used to fit the model.

June 2011 1181RECONCILING MULTIPLE DATA SOURCES



intervals of four parameters in the model for mistletoe

presence (y) contain zero: presence of tamarack,

presence of balsam fir, aspen cover type, and jack pine

cover type. Thus the effect of these stand characteristics

on the presence or absence of mistletoe is not

statistically different from zero. Similarly, neither the

presence of tamarack in the model for / nor the cover

type size class in the model for w are statistically

different from zero.

The spatial autocovariate related to the presence of

mistletoe in neighboring stands is positively correlated

with mistletoe presence. When both autocovariates are

removed from the analysis, Moran’s I test statistic is

marginally significant; however, when the spatial auto-

covariates are included in the model, Moran’s I test

statistic is no longer significant (Table 2).

The results of the leave-one-out cross-validation for

the various predictive methods are shown in Table 3.

The full BDR model with spatially varying / and w
performs best at using the DNR inventory to predict

mistletoe presence as observed in the intensive survey.

Of the 25 235 black spruce stands inventoried by the

Minnesota DNR within the geographical range of the

intensive survey, 11% are classified by the DNR as

infested. The BHM presented here estimates that 59% of

the same stands have a posterior predictive mean

probability of dwarf mistletoe presence greater than

the threshold value of T ¼ 0.4 (Table 4). These stands

are more likely to be infested than not. Under the

Bayesian framework we can also predict the standard

deviation of the posterior predictive distribution of the

probability of infestation in each stand, which can then

be used to infer the probability of mistletoe being

present at a stand. We define a stand as being ‘‘highly

likely’’ to have mistletoe present if there is at least a 95%

chance that the posterior predictive probability of

mistletoe presence (g) is greater than the threshold

value, T. Likewise, a stand is ‘‘highly unlikely’’ to have

mistletoe present if there is at least a 95% chance that the

posterior predictive probability of mistletoe presence (g)
is lower than the threshold value. Of the 25 235 stands in

our study, we predict that 8883 (35%) are highly likely to

TABLE 3. Contingency table of dwarf mistletoe (Arceuthobium pusillum) presence in the intensive
survey of black spruce (Picea mariana) stands with the Minnesota Department of Natural
Resources (DNR) inventory and cross-validation predictions from various models.

Statistical approach
Presence/
absence

Intensive survey

Threshold, T Accuracy (%)Present Absent

DNR inventory present 25 8 NA 52.55
absent 85 78

Random forests present 82 32 NA 69.39
absent 28 54

Bayesian data reconciliation present 94 34 0.45 73.98
Homogeneous / and w absent 16 52
Traditional probit regression present 93 31 0.43 75.51

absent 17 55
Bayesian data reconciliation present 95 32 0.40 76.02
Spatially varying / and w absent 15 54

Note: The abbreviation ‘‘NA’’ means ‘‘not applicable.’’

TABLE 4. Comparison of Minnesota Department of Natural Resources (DNR) status with
posterior predictive probability g of dwarf mistletoe (Arceuthobium pusillum) presence by
county.

County
No. stands
in county

DNR
infected
status (%)

Bayesian probability g exceeds T
(% of stands)

Likely,
Pr . 0.5

Highly
unlikely,
Pr , 0.05

Highly
likely,

Pr . 0.95

Koochiching 14 159 10.89 59.61 22.44 37.08
Lake of the Woods 66 18.18 21.21 48.48 3.03
Beltrami 46 73.91 73.91 8.70 13.04
St. Louis 6843 8.18 57.11 20.58 30.22
Lake 1906 26.18 74.82 10.86 49.32
Itasca 2215 8.67 53.36 24.38 27.86

Total (all counties) 25 235 11.25 59.46 21.27 35.20

Note: Stands are classified as infested if g exceeds the threshold level T. In the Bayesian model,
predictions come in the form of a probability distribution of g, allowing for gradation in the
certainty of the predictions.
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be infested and 5367 (21%) are highly unlikely to be

infested (Table 4).
In the case in which / and w are assumed to be

homogeneous, the predicted rate of false negative
classification (1 � /) in the DNR inventory, relative to

the intensive survey, is 0.81 (Table 5), while the
predicted rate of a false positive classification (w) is 0.21.

DISCUSSION

Dwarf mistletoe

The results of the leave-one-out cross-validation show

that our methods have increased the accuracy of
predictions made from the DNR inventory, relative to

the intensive survey. Before the data reconciliation
process, the DNR data only agreed with the more

accurate intensive survey 53% of the time (Table 3), just
slightly better than would be expected by random

chance. Predictions from the spatially varying BDR
process agree with the intensive survey 76% of the time,

a higher level of accuracy than any of the other methods
attempted here. We have successfully updated the
extensive but inaccurate DNR forest inventory using

the small, reliable intensive survey, and our predictions
reflect what might be found were the intensive survey

extended to cover the whole range of the DNR
inventory.

Our analysis also suggests a disparity in the reliability
of the Minnesota DNR survey. When compared to the

more accurate intensive survey, the DNR survey is
highly accurate at correctly assessing uninfested stands,

as seen by the low proportion of false positives (see w in
Table 5), but much less accurate at correctly assessing

stands infested with dwarf mistletoe. The high false
negative rate indicates that, on average, the probability

of an infested stand being correctly classified is only
19%. Taken together, our results for / and w suggest

that in comparison to the intensive survey the
Minnesota DNR inventory significantly underestimates

the extent of dwarf mistletoe in black spruce stands.
We predict that mistletoe is present in roughly 3–5

times as many stands as reported in the DNR inventory
(Table 4). This significant increase in the level of dwarf

mistletoe infestation is apparent across all counties in
the study except for Beltrami and Lake of the Woods.
The predictions for each stand in the DNR survey and

maps of these stands indicate locations where our
predictions are similar to or different from the DNR

survey presence or absence of mistletoe (Fig. 4). This
knowledge can be used to make forest management

decisions such as which stands to survey next for dwarf
mistletoe or which areas are currently most threatened

by mistletoe infestation. New surveys could be conduct-
ed to verify or refute the predictions we make in this

study.
We have allowed the detection probabilities / and w

to vary across stands, illuminating stand characteristics
that might affect the ease or difficulty of correctly

surveying spruce stands for mistletoe presence (Table 1).

County-level aggregation of results (Table 5) predicts

that the false negative rate (1 � /) is fairly constant

across all counties in the DNR survey. In contrast, the

false positive rate (w) varies more between counties. For

example, the false positive rate in Koochiching county is

0.24, much higher than the rate in St. Louis county, 0.13.

This may reflect the difficulty in surveying the extensive

forests found in Koochiching county, as compared to

the relatively sparse and much more accessible forest

stands in St. Louis County (Fig. 3).

More extensive results, including a full list of stand

characteristics and results for all stands in the

Minnesota DNR survey are provided in Supplement 2.

Large-scale images showing the incidence of mistletoe as

reported by the DNR inventory, predicted probability of

mistletoe presence, standard deviation of the posterior

predictive distribution, and predictions for the detection

probabilities / and w are provided in Appendix C.

The BDR approach allows us to make predictions of

mistletoe incidence simultaneously with inference about

the epidemiological process driving mistletoe in northern

Minnesota. The estimated regression coefficients of

stand characteristics from the model for y (Table 1)

give some insight in to what drives dwarf mistletoe

infestation. For example, the positive coefficient related

to stand mortality and the negative coefficient related to

the height of the dominant species reflect the effects of

dwarf mistletoe on infested stands.

By modeling the less accurate DNR survey as a noisy

version of the more accurate intensive survey, / and w
contain information about any effect that is related to

discrepancies in the two data sets. Aside from differences

in the ability of the two surveys to correctly detect

mistletoe, / and w may also model any temporal

difference in the mistletoe infestation that has occurred

between the observation of both surveys, differences in

the spatial domain surveyed in each stand, and other

possible factors. Thus, care must be taken in interpreting

the results for detection probabilities / and w, as well as

their corresponding regression coefficients. For example,

the positive coefficient for mortality in the model for w

TABLE 5. Summary of results for spatially varying detection
probabilities / and w for dwarf mistletoe (Arceuthobium
pusillum) in black spruce (Picea mariana) stands in northern
Minnesota, USA.

County

Average
false

negative rate
(1 � /)

Average
false

positive
rate (w)

Stands with
w . 0.75

(%)

Koochiching 0.80 0.24 19.26
Lake of the Woods 0.88 0.17 14.81
Beltrami 0.78 0.40 23.55
St. Louis 0.83 0.13 8.84
Lake 0.77 0.26 19.14
Itasca 0.82 0.19 14.41

Total 0.81 0.21 16.00

Note: For the numbers of stands in each county, see Table 4.
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FIG. 4. Plots of Minnesota Department of Natural Resources (DNR) survey and model predictions at a selection of stands in
Koochiching County. (a) Presence or absence of dwarf mistletoe (Arceuthobium pusillum) as reported in the DNR survey. The DNR
survey reports 11% of black spruce (Picea mariana) stands are infected with dwarf mistletoe. (b) Posterior predicted mean
probability of mistletoe presence in each stand. Darker shades of gray correspond to higher probability of mistletoe in a stand. (c)
Standard deviation of the posterior predicted probability of mistletoe presence at each stand. Darker shades of gray correspond to
higher variance in the posterior predictive distribution. (d) The mean and standard deviation of the posterior predictive distribution
allow us to identify whether stands are ‘‘highly likely’’ (black) or ‘‘highly unlikely’’ (white) to have mistletoe present. Prediction is
unclear at stands depicted in gray. Our model predicts that 35% of stands in the DNR survey are ‘‘highly likely’’ to be infected with
dwarf mistletoe. (e) Probability of a ‘‘false negative’’ (1� /i ) in the DNR inventory, relative to the intensive survey. Darker shades
of gray correspond to higher probability of a false negative. The probability of a false negative is high throughout most of the DNR
inventory, indicating that the DNR data underrepresent the extent of the mistletoe infestation in northern Minnesota. (f )
Probability of a ‘‘false positive’’ (wi ) in the DNR inventory, relative to the intensive survey. Darker shades of gray correspond to
higher probability of a false positive. This indicates regions where the DNR inventory inflates the extent of the mistletoe infestation.
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indicates that false-positive errors in the DNR survey

relative to the intensive survey are more likely to occur

in stands with high mortality than in stands with low

mortality. This result might indicate that survey crews

sometimes assume that dwarf mistletoe is the cause of

observed mortality in a stand when the mortality is

actually caused by some other agent, but, because we

have only modeled the differences between the two data

sets, making such a conclusion definitively would require

a separate study.

The spatial autocovariate acy is positively correlated

with mistletoe presence, confirming that mistletoe is

more likely in stands near other infected stands.

Likewise, acw is positively correlated with w, indicating

spatial structure in the rate of false-positive errors in the

DNR data, relative to the intensive survey. The residuals

of the full BDR model fit were tested for spatial

autocorrelation using Moran’s I. When the spatial

autocovariates are omitted from the model, the median

of the Moran’s I P value (0.0980) indicates significant

spatial autocorrelation in the residuals. With the spatial

autocovariates in the model, the median (0.4730) and

95% credible interval (0.0295–0.9690) of the posterior

predictive distribution of the Moran’s I P value are close

to what would be expected for random, uncorrelated

data (mean of 0.5 and 95% credible interval of 0.025–

0.975), indicating that the spatial autocovariate success-

fully accounts for the spatial autocorrelation present in

the data and satisfies the model assumption of uncor-

related residuals.

Bayesian data reconciliation

Bayesian data reconciliation provides a flexible and

robust framework for integrating multiple sources of

data, as illustrated by our study of dwarf mistletoe in

Minnesota black spruce stands. The hierarchical

Bayesian nature of the modeling framework allows us

to implement meaningful models for both the ecological

process and for the relationship of the data sources. We

chose data and process models that would allow us to

make inferences about the ecological process being

studied, as well as the relationships between the DNR

and intensive surveys, and the Bayesian framework

allows us to formally couple these two statistical models,

something not easily done using traditional methods.

The hierarchical nature of the data reconciliation

process allows for simultaneous inference about ecolog-

ical process and relationship between the two sources of

data. This provides better integration of the two data

sets than would be accomplished with a two-step

process. For example, based solely on a comparison of

the two sources of data (see Table 3), we might

empirically assign w, the probability of a false positive

in the DNR data relative to the intensive survey, to be

0.09. However, when w is assumed to be spatially

homogeneous, its 95% credible interval is bounded by

PLATE 1. Dwarf mistletoe (Arceuthobium pusillum) causes the most serious disease of black spruce (Picea mariana). This black
spruce stand exhibits the thinning and ‘‘witches brooms’’ that are characteristic of a dwarf mistletoe infestation. Photo credit: F. A.
Baker.
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0.02 and 0.08. In a similar fashion, the empirical

estimate of /, the probability of both the intensive and

DNR surveys finding mistletoe in a stand, is higher than

the 95% credible interval found in our analysis (see

Tables 1 and 5). The simultaneous inference of the

parameters in the data and process models through

composition sampling allows the ecological process to

influence the inference made in the data model. Thus,

the hierarchical modeling framework allows us to see

that in this case, the DNR inventory is more accurate

than would be assumed from a separate empirical

comparison of the DNR inventory to the intensive

survey.

In analyses involving prediction, there is often an

inherent trade-off between predictive power and inter-

pretability of the results. In the application given here,

we removed many covariates from the analysis in the

variable selection process with the aim of removing

collinearity and producing a parsimonious model.

Multicollinearity among these covariates could cloud

inference on their effects, as well as slow the convergence

of the MCMC algorithm, and thus needs to be

accounted for in some way. Alternately, all stand

characteristics could be used to create a corresponding

set of orthogonal covariates (e.g., through principal

component analysis), which could then be used, without

variable selection, in the model. This would retain the

information from all covariates and could improve the

predictive ability of the resulting model. Unfortunately,

these orthogonal covariates are typically difficult, if not

impossible, to interpret in an ecologically meaningful

context. This is perfectly acceptable if prediction is the

sole aim of the study, but if the researcher is also

interested in illuminating ecological processes involved

in the natural system, leaving stand characteristics

untransformed may be preferred.

Implicit in the data reconciliation approach we have

outlined here is the assumption that one data set is more

accurate than the other. Outside of controlled experi-

ments, there is typically no way to judge the absolute

accuracy of a set of observations of an ecological

process, and thus a priori knowledge must guide

decisions on the relative accuracy of the data sets being

reconciled. In our application, the focus of the small

intensive survey was solely on dwarf mistletoe presence,

while a wide range of characteristics were recorded for

each stand in the DNR forest inventory. This discrep-

ancy in focus makes it likely that the intensive survey

more reliably reports dwarf mistletoe presence than does

the DNR inventory. We are thus confident that, as our

data reconciliation process has produced predictions

that are more closely in line with the more accurate

intensive survey than were the original DNR data, these

predictions are themselves more likely to accurately

represent the true extent of the dwarf mistletoe

infestation in northern Minnesota.

If no assumption about the relative accuracy of

multiple surveys can be made, the disease surveillance

literature contains existing methods for estimating the

sensitivity and specificity of diagnostic tests in the

absence of a ‘‘gold standard’’ test (e.g., Hanson et al.

2003, Engel et al. 2006). Similarly, the occupancy

literature contains methods for utilizing repeated obser-

vations considered to be of equivalent accuracy to make

inference about the true underlying state of nature, as

well as the accuracy of the surveys (e.g., Royle and

Nichols 2003, Royle 2004, Royle and Link 2006). These

methods assume a latent, unobservable, true state. The

BHM framework allows for inference on this latent

state, based on the observed data.

In this study, we focused on the extent of the

infestation of a forest disease. The approach we present

has direct application to, and links to existing methods

in, disease surveillance in animals (Salman 2003) and

humans (Lee et al. 2010). For example, it may be quite

difficult or expensive to perform a highly accurate test

for a disease on a human or animal (e.g., collecting and

analyzing a tissue sample), but much less difficult to

obtain a less accurate test for the same disease (e.g.,

visual examination or interview). Thus, a study in which

many animals are tested using the more easily obtained

disease test could be augmented by also applying the

more accurate test to a small sample of the animals. In

this way, more accurate predictions on disease rates can

be obtained in a cost-efficient way using the BDR

approach presented here. This situation is quite similar

to that of ‘‘double sampling’’ (e.g., Tenenbein 1970),

though the hierarchical modeling approach we advocate

here allows for inference to be made jointly about the

underlying process driving the disease, something not

typically obtained in double sampling.

The BHM framework is highly flexible and can

accommodate a wide variety of designs. For example,

three or more sets of related data could be integrated in

a similar fashion to the method we have presented here.

Likewise, hierarchical models with more levels than the

three traditionally included (data, process, and param-

eter models) could be used to model the relationships

between multiple sources of data and highly complex

systems. All manner of conditional relationships

between data and latent parameters can be written

within a hierarchical modeling framework (Cressie et.

al. 2009).

The BDR approach could also be used to take

advantage of existing data sets that may be outdated.

A representative selection of the existing sites could be

sampled using more modern and accurate survey

methods, even optimally by minimizing a design

criterion of choice (e.g., Hooten and Wikle 2009). This

could facilitate updating outdated data sets in a cost-

efficient manner, as long as a meaningful form of model

dependency is used to account for the lag in time

between sampling periods.

With the widespread availability of remotely sensed

data and advances in geographic information systems

(GIS), utilizing multiple sources of data is becoming
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common in ecological studies. Spatial data are often

available at a variety of scales, and the change of scale
required to reconcile such data often results in the so-

called ‘‘modifiable areal unit problem’’ (e.g., Gotway
and Young 2002). While our study focused on two
surveys that were conducted on the same spruce stands,

and thus on the same spatial scale, a similar approach to
what we present here might be employed to reconcile

spatial data at differing scales. In this way, BDR could
be used to model the differences between the finer and

coarser resolution data and predict the finer resolution
information at locations where only the coarser resolu-

tion data is available.
Using data from multiple sources within a BHM is

not a new idea, though the purpose of past studies has
typically been to assimilate multiple types of data to

make inferences about a latent ecological process (e.g.,
Clark et al. 2007). In the BDR approach presented

here, we model the relationship between two data sets,
one more accurate than the other, by placing data at
different levels of a hierarchical model. Placing the

more accurate data in the process level of a hierarchical
model, instead of a latent ecological process as is

traditional in BHMs, allows us to model the differences
in the data jointly with the ecological process of interest

and update predictions across the support of the less
accurate data. The BHM framework allows us to

accomplish these goals in a way that is statistically
rigorous and results in scientifically meaningful infor-

mation about the observational and ecological pro-
cesses.
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