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Reconciling Simplicity and Likelihood Principles 
in Perceptual Organization 

N i c k  C h a t e r  
University of Oxford 

Two principles of perceptual organization have been proposed. The likelihood principle, following 

H. L. E yon Helmholtz ( 1910 / 1962 ), proposes that perceptual organization is chosen to correspond 
to the most likely distal layout. The simplicity principle, following Gestalt psychology, suggests that 
perceptual organization is chosen to be as simple as possible. The debate between these two views 
has been a central topic in the study of perceptual organization. Drawing on mathematical results in 
A. N. Kolmogorov's ( 1965 ) complexity theory, the author argues that simplicity and likelihood are 
not in competition, but are identical. Various implications for the theory of perceptual organization 

and psychology more generally are outlined. 

How does the perceptual system derive a complex and struc- 

tured description of the perceptual world from patterns of ac- 

tivity at the sensory receptors? Two apparently competing theo- 

ries of perceptual organization have been influential. The first, 

initiated by Helmholtz ( 1910/1962), advocates the likelihood 

principle: Sensory input will be organized into the most proba- 

ble distal object or event consistent with that input. The second, 

initiated by Wertheimer and developed by other Gestalt psy- 

chologists, advocates what Pomerantz and Kubovy (1986) 

called the simplicity principle: The perceptual system is viewed 

as finding the simplest, rather than the most likely, perceptual 

organization consistent with the sensory input '. 

There has been considerable theoretical and empirical con- 

troversy concerning whether likelihood or simplicity is the gov- 

erning principle of perceptual organization (e.g., Hatfield, & 

Epstein, 1985; Leeuwenberg & Boselie, 1988; Pomerantz and 

Kubovy, 1986; Rock, 1983). The controversy has been difficult 

to settle because neither of the key principles, likelihood and 

simplicity, is clearly defined. Moreover, there have been suspi- 

cions that the two principles are not in fact separate, but are 

two sides of the same coin. Pomerantz and Kubovy ( 1986 ) cited 

Mach (1906/1959)--"The visual sense acts therefore in con- 

formity with the principle of economy [i.e., simplicity], and at 

the same time, in conformity with the principle of probability 

[i.e., likelihood]" (p. 215)- -and  themselves have suggested 

that some resolution between the two approaches might be pos- 

sible. Moreover, the close mathematical relationship between 

simplicity and likelihood has been widely acknowledged in a 

range of technical literatures, in computational modeling of 

perception (e.g., Mumford, 1992), artificial intelligence (e.g., 

Cheeseman, 1995), and statistics (e.g., Wallace & Freeman, 

1987). But this relationship has not been used to demonstrate 
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the equivalence between simplicity and likelihood principles in 

perceptual organization. 

This article shows that the likelihood and simplicity princi- 

ples of perceptual organization can indeed be rigorously unified 

by using results linking simplicity and probability theory devel- 

oped within the mathematical theory of Kolmogorov complex- 

ity (Chaitin, 1966; Kolmogorov, 1965; Li & Vitanyi, 1993; Sol- 

omonoff, 1964). 

Likelihood Versus Simplicity:  The Debate  

Both the likelihood and simplicity principles explain, at least 

at an intuitive level, a wide range of phenomena of perceptual 

organization. Consider, for example, the Gestalt law of good 

continuation, that perceptual interpretations that involve con- 

tinuous lines or contours are favored. The likelihood explana- 

tion is based on the observation that continuous lines and con- 

tours are very frequent in the environment (e.g., Brunswick, 

1956). Although it is possible that the input was generated by 

discontinuous lines or contours that happen, by coincidence, to 

be arranged so that they are in alignment from the perspective 

of the viewer, this possibility is rejected because it is less likely. 

The simplicity explanation, by contrast, suggests that continu- 

ous lines or contours are imposed on the stimulus when they 

allow that stimulus to be described more simply. 

Another example is the tendency to perceptually interpret 

ambiguous two-dimensional projections as generated by three- 

dimensional shapes containing only right angles (Attneave, 

1972; Perkins, 1972, 1982; Shepard, 1981 ). The likelihood ex- 

planation is that right-angled structures are more frequent in 

the environment (at least in the "carpentered" environment of 

the typical experiments subject; Segall, Campbell & Herskovits, 

1966). The simplicity explanation is that right-angled struc- 

t This principle is also known as priignanz or the minimum principle. 
The term minimum principle comes from the minimization of com- 
plexity; the term priignanz was used with somewhat broader scope by 
the Gestalt school, to include regularity, symmetry, and other properties 
(Koffka, 1935/1963). 
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tures are s impler--for  example, they have fewer degrees of  free- 

d o m - t h a n  trapezoidal structures. 

There is a vast range of  phenomena that appear consistent 

with both likelihood and simplicity interpretations. From the 

standpoint of  this ar t ic le-- that  the likelihood and simplicity 

principles are equivalent--the common coverage of  the two ap- 

proaches is not surprising. More interesting, however, are phe- 

nomena that have been taken as evidence for one view or the 

other. On the present interpretation, such evidence cannot, of  

course, be taken at face value, as we shall see below. For now, let 

us consider a typical example of  evidence adduced on each side 

of  the debate. 

Putative Evidence for Likelihood 

Likelihood is widely assumed to be favored by evidence that 

shows that preferred perceptual organization is influenced by 

factors concerning the structure of  the everyday environment. 

For example, consider two-dimensional projections of  a shaded 

pattern, which can be seen either as a bump or an indentation 

(see, e.g., Rock, 1975). The preferred interpretation is consis- 

tent with a light source from above, as in natural lighting condi- 

tions. Thus, the perceptual system appears to choose the inter- 

pretation that is most likely, but there is no intuitive difference 

between the simplicity of  the two interpretations. 

Putative Evidence for Simplicity 

Cases of  perceptual organizations that violate, rather than 

conform to, environmental constraints are widely assumed to 

favor the simplicity account. Leeuwenberg and Boselie (1988) 

show a schematic drawing of  a symmetrical, two-headed horse. 

The more likely interpretation, also consistent with the draw- 

ing, is that there are two horses, one occluding the other. But 

the perceptual system appears to reject likelihood; it favors the 

interpretation that there is a single, rather bizarre, animal. 

These considerations suggest that likelihood and simplicity 

cannot be the same principles; the two appear to give rise to 

different predictions. I now discuss likelihood and simplicity in 

turn and argue that, despite appearances, they are identical. 

limiting frequency of  the outcome, "heads," divided by the total 

number of  trials will tend toward 0.5 as the number of  trials 

increases. According to the frequentist interpretation of proba- 

bility, this is what it means to say that the probability of  the coin 

falling heads, on any given trial, is 0.5. The frequentist inter- 

pretation of the conditional probability P(A I B) is simply the 

frequency of  trials on which B and A occur, divided by the total 

frequency of trials on which B occurs. Although the frequentist 

interpretation of probability is used in many philosophical and 

mathematical contexts, it does not give a meaningful interpreta- 

tion of  probability in the present context. According to the fre- 

quentist account, the conditional probability of  the distal lay- 

out, given the sensory input, P(H~ I D), is defined as the limit of  

the frequency of  trials on which both the sensory input, D,  and 

the distal layout, H~, occur, divided by the total frequency of  

trials on which D occurs. But this limit is not well defined, be- 

cause the same sensory input will never occur again--and hence 

a limiting frequency can never be obtained. Of course, similar 

inputs will occur, but this does not help---because classifying 

inputs as similar requires that some organization is imposed 

upon them, and it is organization that we want to explain. In 

short, then, the frequentist interpretation of  probability is de- 

fined in terms of limiting frequencies in a repeated experiment; 

and this is inapplicable to probabilities involving sensory in- 

puts, because sensory inputs are never repeated. 

Therefore a different notion of probability is required. The 

natural alternative is a subjective conception ofprobability. 2 Ac- 

cording to a subjectivist conception (de Finetti, 1972; Keynes, 

1921 ), probability is a measure of degree of belief in some event 

or state. Conditional probability corresponds to degree of  belief 

in an event or state, given some other belief in an event or state. 

How can these ideas be translated into the context of perceptual 

organization? The likelihood, P(H~ I D), is interpreted as the 

degree of  belief in the hypothesis (Hi)  concerning the distal lay- 

out, given data (D) concerning the sensory state)  

In order to calculate likelihood, Bayes's theorem must be 

applied: 

P(DIH~)P(H~) 
/ ' ( n ~  I D )  = , ( l ) 

P(D) 

Like l ihood  

The likelihood principle proposes that the perceptual system 

chooses the organization that corresponds to the most likely dis- 

tal layout consistent with the sensory input. But what does it 

mean to say that a hypothesized distal layout, H~, is or is not 

likely, given sensory data,/9.9 The obvious interpretation is that 

this likelihood corresponds to the conditional probability of  the 

distal layout, given the sensory input: P(Hi I D). But this step 

does not take us very far, because there are a variety of  ways in 

which probabilities can be interpreted, and it is not clear which 

interpretation is appropriate in the present case. 

A first suggestion is that the probability can be interpreted in 

terms of frequencies. This frequentist interpretation of proba- 

bility (yon Mises, 1939/1981 ) is that the probability of  an out- 

come is the limit of  the frequency of  the outcome divided by the 

total number of"tr ia ls"  in a repeated experiment. For example, 

suppose that the repeated experiment is tossing a fair coin. The 

where 

P(D) = ~ PfDII-Ij)PtI-Ij), 
J 

Bayes's theorem allows the likelihood to be calculated from two 

kinds of quantity: (a)  terms of the form: P ( H j ) - - " p r i o r "  prob- 

abilities for each distal layout; and (b) terms of  the form 

2 There is a further possibility, an objectivist or propensity approach 
to probability (e.g., Mellor, 1971 ), but it is not clear how this approach 
might be applicable in this case. 

31 use the term likelihood in the sense used by perceptual theorists. 
In statistics, it is frequently used to denote P(D I Hi ), the probability of 
data given a hypothesis. Classical sampling theory approaches to statis- 
tical inference often involve maximizing likelihood (Fisher, 1922 ), in 
the statisticians sense, rather than posterior probability, which is the 
appropriate sense of maximum likelihood for perceptual theory. 
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P(D[Hj)--conditional probabilities for each sensory input, 

given the distal layout. 

The likelihood approach assumes that the perceptual system 

chooses the most likely//j, (i.e., the H i that maximizes Equa- 

tion 1 ). To state this formally, and for use in the calculations 

below, I introduce some notation: 

a r g m a x [ f ( x ) ]  = i ¢~ f ( i )max imizes f ( x )  (2) 
x definition 

and 

a r g m i n [ f ( x ) ] = i  ~ f ( i )m in imizes f ( x ) .  (3) 
x definition 

Using this notation, the likelihood principle states that the cho- 

sen hypothesis is the Hk such that 

k = arg max [P(H~L D)]. (4) 
i 

Simplicity 

Applying a simplicity criterion to perceptual organization re- 

quires clarification on two points: what is assessed for simplic- 

ity? and how is simplicity measured? I address these in turn. 

What Is Assessed for  Simplicity? 

The first question invites an easy answer: that the perceptual 

organization is made as simple as possible. But, taken at face 

value, this means that a very simple organization (perhaps per- 

ceiving the distal scene to be a uniform, unstructured field) 

would always be a preferred organization. This possibility is, 

of course, ruled out by the constraint that the organization is 

consistent with the sensory input--and most sensory inputs will 

not be consistent with this organization, because they are highly 

nonuniform. But this point itself raises difficult questions: 

What does it mean for an organization to be consistent, or com- 

patible, with a perceptual input? Can consistency with the input 

be traded against simplicity of interpretation? 4 If so, how are 

simplicity and consistency with the input to be jointly opti- 

mized? The theoretical account of simplicity presented below 

suggests how these questions may be answered. 

There is, however, a further, and more subtle difficulty: What 

rules out the simplest possible, "null," perceptual organization? 

This organization is completely consistent with the sensory in- 

put, since it adds nothing to it. Mere consistency or compatibil- 

ity with the sensory input is plainly not enough; the perceptual 

organization must also, in some sense, capture regularities in 

the sensory input. This naive use of simplicity of perceptual 

organization as a guiding principle is analogous to a naive use 
of simplicity as a guiding principle in science: Preferring the 

simplest theory compatible with the data would lead to null the- 

ories of great simplicity, such as "anything whatsoever can hap- 

pen" Such null theories, although simple, are unsatisfactory 

because they do not explain any of  the regularities in the natural 

world. In science, simplicity of theory must be traded against 

explanatory power (Harman, 1965); the same point applies for 

perceptual organization. But this appears to imply that percep- 

tual organization involves the joint optimization of two factors, 

and the relative influence of  these two factors is unspecified. 

Moreover, this conclusion is unattractive because two notions, 

simplicity and explanatory power, must be explicated rather 

than just one. 

Fortunately, there is an alternative way to proceed. This is to 

view perceptual organization as a means of encoding the sen- 

sory stimulus; and to propose the perceptual organization cho- 

sen is that which allows the simplest encoding of the stimulus. 

This view disallows simple perceptual organizations that bear 

little or no relation to the stimulus, because these organizations 

do not help encode the stimulus simply. It also provides an op- 

erational definition of the explanatory power of a perceptual or- 

ganizat ion-as the degree to which that organization helps pro- 

vide a simple encoding of the stimulus. If a perceptual organi- 

zation captures the regularities in the stimulus (i.e., if it 

"explains" those regularities), then it will provide the basis for 

a brief description of the stimulus; if an organization fails to 

capture regularities in the stimulus, then it will be of no value 

in providing a brief description of the stimulus. Explanatory 

power is therefore not an additional constraint that must be 

traded off against simplicity; maximizing explanatory power is 

the same as maximizing the simplicity of the encoding of the 

stimulus. 

How Can Simplicity Be Measured? 

I have established what simplicity should apply to: namely, 

the encoding of the perceptual stimulus. But how is simplicity 

to be measured? The measurement of simplicity has been con- 

sidered extensively in philosophy (e.g., Sober, 1975) where no 

quantitative measure has gained acceptance. In psychology, the- 

orists concerned with perceptual organization have taken the 

pragmatic step of identifying the simplicity of an encoding with 

its length. Attneave ( 1954, 1981 ), for example, explicitly sug- 

gested that "what the [perceptual] system likes is short descrip- 

tions" (Attneave, 1981, p. 417 ). According to this point of  view, 

the preferred perceptual organization is that which allows the 

briefest possible perceptual encoding. It is interesting that the 

suggestion that the perceptual system has economical encoding 

as an important goal has also been suggested in a variety of 

other contexts (e.g., Atick & Redlich, 1990; Barlow, Kaushal, 

& Mitchison, 1989; Blakemore, 1990). Moreover, as I discuss 

below, this is an appropriate choice--an independent tradition 

within mathematics and computer science, Kolmogorov com- 

plexity theory, shows that the identification of simplicity with 

brevity provides a deep and important theory of  simplicity 

(Chaitin, 1966; Kolmogorov, 1965; Li & Vitanyi, 1993; Solo- 
monoff, 1964). 

Psychologists have used two approaches to operationalize the 

notion of brevity of encoding: Shannon's (1948) information 

theory (Attneave, 1959; Garner, 1962 ) and the tradition known 
as coding theory (Hochberg & McAlister, 1953; Restle, 1979; 

Simon, 1972), one elaboration of which is structural informa- 

tion theory (Buffart, Leeuwenberg & Restle, 1981 ). I consider 
these in turn. 

4 Koffka ( 1935/1963 ) allowed the possibility of organizations that 
are not consistent with the perceptual stimulus, allowing distortion to 
be traded with simplicity. The empirical evidence indicates that such 
trade-offs, if they occur, may be quite small (Attneave, 1982 ). 
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Information theory and brevity. The information-theoretic 

approach quantifies brevity in terms of  the number of  bits re- 

quired to distinguish the stimulus ( or some part of the stimulus) 

from a range of mutually exclusive and exhaustive alternatives, 

known as an information source. Each alternative, Ai,  in an in- 

formation source, A, is associated with some probability of  oc- 

currence, P(A~ ). The amount of information, I(Ai ), associated 

with the choice of  a particular alternative, A~, is called the sur- 
prisal of Ai and is defined 

I (Ai )  = l°g2 (p~A~))  • 

Later, 1 shall consider the surprisal ofA~, conditional on some 

other event, By. I denote this by I(Ail By), and the definition 

parallels Equation 5: 

I( A~ [ Bj) = l°gz ( p( A~[ Bj) ) " 

The average surprisal of a source, A, is known as its entropy, 

H(A), and is simply the surprisal of each alternative, weighted 

by its probability of occurrence: 

H(A) = ~, P(Aj)I(Aj). 
J 

Surprisal can be viewed as a measure of  brevity of  encoding 

because of  basic ideas from information theory, which I now 

discuss. Suppose that a sequence of alternatives is indepen- 

dently chosen according to the probabilities of the information 

source, and that this sequence of alternatives must be encoded 

in a binary sequence. Let us stipulate that the encoding must be 

noiseless (i.e., the sequence of alternatives can be reconstructed 

with perfect accuracy). Suppose, moreover, that the encoding 

proceeds by associating each alternative, A~, with a "code 

word"; that is, a sequence of  binary digits (so, e.g., a particular 

alternative, Als, might be associated with the code word 

001101 ). A particular sequence of alternatives is then encoded 

by concatenating the corresponding code words into a single 

binary sequence. 

How should the code words be assigned to alternatives in or- 

der to minimize the average length of the binary string required 

to transmit the sequence o f  alternatives? The length of  the string 

encoding the sequence is the product of the length of the se- 

quence and the average length of code words for elements in the 

sequence; hence we must assign code words in order to mini- 

mize the average code word length. Suppose that the code word 

for alternative Ai is a binary string of length, li. Then the average 

code word length for the source A is specified: 

X P(Aj)/j. 
J 

Let us call the minimum value of, this average L(A). Shannon's 

(1948) noiseless coding theorem is that this minimum is very 

close to the entropy of the source: 

H(A) < L(A) <_ H(A) + 1. 

Crucially, this minimum is obtained when the code length for 

an alternative is its surprisal (rounded up to the nearest integer, 

because binary sequences can only have integer lengths). In 

symbols: 

(10) 

where the notation rx] denotes x rounded up to the nearest in- 

teger. This means that the surprisal of an alternative can be 

viewed as a measure of  its code length in an optimal binary 

code. Thus, surprisal can be viewed as a measure of brevity of 

( 5 ) encoding. 

Despite the theoretical elegance of  information theory in 

many contexts, it proves to have a number of  difficulties when 

applied to individual perceptual stimuli, as we now see. Sup- 

pose, to borrow an example from Leeuwenberg and Boselie 

(1988), that the stimulus consists of  a sequence of  letters: 

aaabbbbbgg. The amount of information in this stimulus de- 

(6) pends on the information source being considered. Suppose 

that it is assumed that each letter is chosen independently and 

that there is an equal (1/3) chance that the letter chosen will be 

a, b, or g. Then the information associated with the specifica- 

tion of, say, the initial a is log2( 1 / I/3) = 1og2(3) bits of informa- 

tion. The information associated with the specification of  each 

(7)  of  the 10 letters in this sequence is, in this case, the same. Hence 

the information required to specify the entire sequence is 10 

log2(3) bits. But a different result is obtained if we suppose that 

the letters have different probabilities of being chosen. Suppose 

that we assume that b is chosen with probability 1/2, and a and g 

with probabilities I/4. Now, five of the letters (the bs) can each 

be specified with log2( 1/J/2) = 1og2(2) = 1 bit; and five (the as 

and gs) can each be specified with log2( 1/1/4) = log2(4) = 2 

bits, making a total of  15 bits of  information. Furthermore, a 

different result again is obtained if it is assumed that the letters 

are chosen from the entire alphabet, or the entire computer key- 

board, or all possible shapes of  a certain size, and so on. The 

larger the set from which the stimulus is presumed to have been 

chosen, the more information is required to specify it. More- 

over, we might assume that the individual elements of the stim- 

ulus are not chosen independently (as the sequential runs in our 

sample sequence would tend to suggest). Perhaps the stimulus 

was generated by a more complex process, such as a Markov 

source, or a stochastic context-free grammar. Each distinct 

specification of the source from which the stimulus was gener- 

ated gives rise to a different answer concerning the amount of  

information in the stimulus. 

In short, the information-theoretic approach does not mea- 

sure the information in a particular stimulus per se, but rather 

measures the amount of information in that stimulus relative to 

the probabilities of all the other stimuli that might have been 

(8) generated. In experimental settings, where a small number of  

stimuli are presented many times, this range of  possibilities has 

a relatively natural definition, in terms of the probabilities of 

each stimulus p~:esented in the experiment (e.g., Garner, 1962). 

But in many experimental contexts, and in natural perception, 

the range of  possibilities from which the current stimulus is 

(9)  drawn can be defined in innumerably many different ways, as is 

clear even with the simple letter sequence described above. 

Hence, in most contexts, information theory does not provide a 

useful measure of the brevity with which a particular stimulus 
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can be encoded because it is not defined relative to the stimulus 

alone (see Garner, 1962, for related discussion).5 

Even putting this difficulty aside, information theory merely 

specifies the length of the code (the number of bits) required to 

encode the stimulus, but it does not pick out any particular code 

as the best code for the stimulus. Yet it is the nature, not just 

the length, of the code that is crucial from the point of view of 

understanding perceptual organization (Garner, 1974). Sup- 

pose, for example, that the sequence above was drawn from the 

eight equally likely alternatives shown in Table 1. These se- 

quences can be viewed as consisting of three "segments" of re- 

peated letters--the first segment being three letters long, the sec- 

ond segment five letters long, and the final segment two letters 

long. The eight alternatives can be viewed as generated by three 

binary decisions, concerning whether the first segment consists 

of as or xs, whether the second segment consists orbs or ys, and 

whether the third segment consists of gs or zs. By information 

theory, the number of bits required to specify a choice between 

eight equally probable alternatives is three bits. But optimal 

three-bit codes need not relate to the organization present in 

the perceptual stimuli. Table 1 illustrates two optimal codes for 

the stimuli. The first is "meaningful" in the sense that each bit 

carries information about the identity of the letters in a partic- 

ular segment; it therefore reflects this (minimal) organization of 

the stimulus into three segments. By contrast, the second code 

is "meaningless"; codes are arbitrarily assigned to strings, and 

hence the organization of the stimulus is ignored. From an in- 

formation-theoretic point of view there is no distinction be- 

tween these codes; information theory does not favor the code 

that reflects the underlying organization of the stimulus over 

that which does not. But from the point of view of perceptual 

organization, the difference between codes that express the 

Table 1 

"'Meaningful'and "'Meaningless" Codes for 

a Simple Sequence 

"Meaningful . . . .  Meaningless" 
Stimulus code code 

aaabbbbbgg  111 101 
a a a b b b b b z z  110 011 
a a a y y y y y g g  101 0(91 
a a a y y y y y z z  100 111 
x x x b b b b b g g  011 000 
x x x b b b b b z z  010 100 
x x x y y y y y g g  001 110 
x x x y y y y y z z  000 010 

Note. Table 1 shows a set of eight stimuli that are assumed to be 
equally probable. By information theory, any given stimulus can be en- 
coded in just three bits. Two possible optimal codes are shown. The 
first is "meaningful," in the sense that each element of the code can be 
interpreted as specifying part of the structure of the stimulus. Specifi- 
cally, the first element of the code specifies whether the first three letters 
are as or xs, the second element specifies whether the next five letters are 
bs or ys, and the third element specifies whether the final two letters are 
gs or zs. The second code is "meaningless," in that the relation between 
stimuli and codes is chosen at random. Information theory does not 
distinguish between the code that "organizes" the stimuli and the code 
that does not. 

Table 2 

A "'Meaningless" Code for Heterogeneous Stimuli 

Stimulus Code 

a a a b b b b b g g  111 
24*£1fhq+ 3 110 
(Hh8cQ l a l 101 
wwwww 100 
% 011 
T 010 
PERCEPTION 001 
4242 000 

Note. Table 2 reinforces the point made by Table 1, again showing a 
set of eight stimuli, assumed to be equally probable. Here the stimuli 
are completely heterogeneous. The sequence a a a b b b b b g g has the 
same code as in Table 1, but it is not "meaningful?' Information theory 
does not recognize this distinction: In both Tables 1 and 2, the code 
used for the sequence is optimal. 

structure of the stimuli and those that do not would appear to 

be crucial. 

This point is reinforced by the example shown in Table 2, of 

eight further stimuli assumed to be equally likely. Unlike the 

stimuli in Table 1, these stimuli cannot be organized in any co- 

herent way, but are completely heterogeneous. Nonetheless, the 

same code as before ( 111 ) is used to specify aaabbbbbgg as in 

the meaningful code in Table 1. But while the stimulus and the 

code are the same as before, now there is no meaningful inter- 

pretation of the individual parts of the code as specifying the 

structure of the sequence. From the point of view of perceptual 

organization this is a crucial difference, the difference between 

stimuli that can be organized and those that cannot; but it is 

ignored by information theory. 

Coding theory and brevity The difficulties with the applica- 

tion of information theory have led psychologists to develop an 

alternative approach to measuring the brevity with which a per- 

ceptual organization allows a stimulus to be encoded. This 

method is to define what Simon ( 1972 ) calls pattern languages 

in which different organizations of the stimulus can be ex- 

pressed. The preferred organization is that which allows the 

shortest description of the stimulus, when measured in terms of 

the length of the expression in the pattern language. This con- 

straint is stated in terms of number of symbols in the descrip- 

tion (e.g., Simon, 1972) and sometimes the number of parame- 

ters (e.g., Leeuwenberg, 1969). These formulations are equiva- 

lent according to the natural stipulation that the values of each 

parameter are coded by a distinct symbol. 

The coding theory approach may be illustrated with the 

aaabbbbbgg sequence described above. The coding correspond- 

ing to the null organization requires 10 parameters ( I  = 10), 

one for each symbol of the sequence. A spurious organization, 

dividing the sequence (aa) (ab) (bb) (bb) (gg) can support the 

code 2(a)ab2(b)2(b)2(g); where 2(a)  is a code in the pattern 

5 Various ingenious notions such as inferred subsets (Garner, 1974) 
and perceived subsets ( Pomerantz, 1981; Royer & Garner, 1966) have 
been used to specify a relevant set of alternatives from which the stimu- 
lus is chosen, although these apply only in very specific contexts. 
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language meaning a run of two as. But this expression contains 

10 parameters, either numbers or letters, and hence no economy 

is achieved ( I  = 10, as before). 6 A good organization, (aaa) 
(bbbbb) (gg), can support the code 3(a)5 (b)2(g) ,  which re- 

quires just six parameters ( I  = 6 ). This intuitively sensible or- 

ganization thus corresponds to the organization that supports a 

short code. 

This general approach has been applied in a variety of  

contexts, from the organization of  simple sequences, such as 

the example just considered (Leeuwenberg, 1969; Restle, 1970; 

Simon, 1972; Simon & Kotovsky, 1963; Vitz & Todd, 1969), 

to judgments of "figural goodness" (Hochberg & McAllister, 

1953), the analysis of Johansson's (1950) experiments on the 

perception of motion configurations (Restle, 1979), and figural 

completion (Buffart, Leeuwenberg & Restle, 1981 ). It has also 

been advanced as a general framework for understanding per- 

ceptual organization (e.g., Attneave & Frost, 1969; Leeuwenb- 

erg, 1971; Leeuwenberg & Boselie, 1988). 

Approaches based on short description length appear to be 

dogged by two problems: (a) that a fresh description language 

must be constructed for each fresh kind of  perceptual stimulus 

and (b) that the predictions of  the theory depend on the descrip- 

tion language chosen and there is no (direct) empirical means 

of  deciding between putative languages. In practice, as Simon 

(1972) noted, the second problem is not terribly severe; de- 

scription lengths in different proposed description languages 

tend to be highly correlated. The mathematical theory of  Kol- 

mogorov complexity provides a useful generalization of coding 

theory that addresses these issues. 

Reconcil ing Likel ihood and Simplicity: I 

I now show that the likelihood and simplicity principles can 

be viewed as different sides of the same coin. I present the dis- 

cussion in two stages. This section describes how to effect the 

reconciliation, if simplicity is measured using standard infor- 

mation theory. This connection between simplicity and likeli- 

hood has previously been discussed in the context of  computa- 

tional models of  visual perception by Mumford ( 1992; see also 

Grenander, 1976-1981 ) and is well-known in the literature on 

information theory (e.g., Cover & Thomas, 1991 ) and statistics 

(e.g., Rissanen, 1989). The next, much longer, section, general- 

izes this analysis, using Ko!mogorov complexity instead of stan- 

dard information theory, to provide a deeper reconciliation of 

simplicity and likelihood. I now turn, then, to the analysis in 

terms of  standard information theory. 

Let us begin with the likelihood view. I noted above that the 

likelihood view recommends the most probable hypothesis, Ilk, 
about perceptual organization, given the sensory data, D. In 

symbols (Equation 4) this is 

k = arg max [P(HiID)]. 
i 

Applying Bayes's theorem (Equation 1 ), this implies that 

[ P(DIHiLP(Hi) ] 
k = arg max 

i L P(D) ] 

The k that maximizes this quantity will also maximize the log- 

arithm of that quantity (because log is monotonically 

increasing). This implies that 

k=argm,ax{l°g2[ P(D) JJ 

= arg max { log2[ P (D I Hi ) ] + logz[ P(Hi ) ] - log2[ P(D)  ] }. 
i 

Because P(D) is independent of the choice of/ ,  the final term is 

irrelevant, such that: 

k = arg max ( log2[P(D I Hi ) ] + log2[P(Hi ) ] } 
i 

= arg min { -log2[e(DIHi )] - log2[P(Hi)] } 
i 

= arg mini log2 P(D + log2 . 

This gives the result: 

k = arg min [I(DIHi) + I (H;) ] ,  (11) 
i 

where this last step follows from the definitions of  surprisal, I 

(Equations 5 and 6 ). 

Having considered the likelihood principle, I now consider 

simplicity, using information theory. The length of  code re- 

quired to encode data D (the stimulus) needs to be determined, 

using a particular hypothesis, Hi, concerning perceptual orga- 

nization. This code will have two parts: first, an encoding of the 

choice of hypothesis, Hi, and second an encoding of  the data D, 

given Hi. The total code length, lto,,t~, will be the sum of the 

length of  the code for the hypothesis, In,, and the length of  the 

code for the data given the hypothesis, ID fn,. In symbols: 

Zto,,6 = ln, + loln~. (12) 

The simplicity strategy is to choose the k' that minimizes the 

total code length,/to,ate, or, in symbols: 

k' = arg min (lto~6) = arg min (ln, + 1Dl~/). 
i i 

Using Equation 10 to convert code lengths into surprisals 

(assuming that we use optimal codes, at each step), this is 

k' = min [[I(DIHi)] + II(H;)q ]. (13) 
i 

Aside from the rounding terms (which can in any case be elim- 

inated by a more sophisticated treatment), the goal of  choosing 

a hypothesis to minimize description length (13) is the same as 

the goal of choosing a hypothesis to maximize likelihood ( 11 ). 

That is, the most likely hypothesis, Hi, about perceptual orga- 

nization is the Hi that supports the shortest description of the 

data, D, concerning the stimulus. Thus, the likelihood principle 

6 This code also contains 10 symbols (ignoring brackets, which are 
present only for clarity). In this code, each parameter value corresponds 
to a single symbol (although this would cease to be true for numeri- 
cal values larger than 9, which are expressed as compound symbols in 
base 10). 
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(choose the organization that is most likely) and the simplicity 

principle (choose the organization that allows the briefest en- 

coding of the stimulus) are equivalent. 

It is important to stress that this result shows not just that 

likelihood and description length are sometimes identical. 

Rather, it shows that for any problem of maximizing likelihood 

there is a corresponding "dual" problem of minimizing de- 

scription lengths. Specifically, given any specification of  subjec- 

tive probabilities P(Hk) and P(D I Hk), there will be a code that 

is optimal with respect to those probabilities. The hypothesis 

that minimizes the length of code required for the data, D, will 

be the same as the hypothesis that maximizes likelihood. Sim- 

ilarly, any code can be viewed as an optimal code with respect 

to a set of subjective probabilities. Therefore, choosing the hy- 

pothesis that minimizes the code length of the data will be 

equivalent to maximizing likelihood with respect to those prob- 

abilities. This equivalence has not been noted in the psychology 

of perceptual organization, but in the study of  computational 

models of perception, it has been widely exploited. For exam- 

ple, problems of maximizing likelihood can sometimes be made 

more tractable when prior knowledge of relevant probabilities 

is not available, by switching to a formulation of  minimizing 

code length (Mumford, 1992). Conversely, problems of mini- 

mizing code length can sometimes be solved by switching to 

a probabilistic formulation, where relevant prior knowledge is 

available (e.g., Atick & Redlich, 1992). 

It follows, therefore, that any evidence that the perceptual 

system chooses perceptual organizations that follow from the 

likelihood principle (where certain assumptions are made 

about subjective probabilities) can be viewed equally well as ev- 

idence for the simplicity principle (where certain and equiva- 

lent assumptions are made about the coding language). 

Reconcil ing Simplicity and Likelihood: II 

The analysis above is suggestive, but unsatisfactory in two 

ways. First, regarding simplicity, I have used the information- 

theoretic measure of simplicity, which I have already noted is 

not an appropriate measure of the brevity with which an indi- 

vidual stimulus can be encoded. Second, regarding likelihood, I 

have sidestepped a fundamental difficulty: that there are infi- 

nitely many possible distal states (i.e., infinitely many Hi) con- 

sistent with any given perceptual stimulus, D, and it is by no 

means obvious that these can consistently be assigned prior 

probabilities, P(Hi ). I now show how both of  these problems 

have been addressed by the mathematical theory of Kolmo- 

gorov complexity. Specifically, I show how a measure of  the in- 

formation in an individual stimulus can be defined, which can 

be viewed as a generalization and unification of  the information 

theory and coding theory approaches developed in psychology; 

and how a coherent definition of prior probability for a distal 

state can be specified. I then show that the equivalence between 

the likelihood and simplicity criteria holds, using these more 

satisfactory notions of likelihood and simplicity. 

The literature on Kolmogorov complexity is not well-known 

in psychology, and I therefore sketch relevant aspects of the the- 

ory below, referring the reader to Li and Vitanyi's ( 1993) excel- 

lent textbook for more details. 

Kolmogorov Complexity as a Measure of  Simplicity 

Coding theory suggests a means of deciding between rival per- 

ceptual organizations of  the stimulus. This involves defining a 

pattern language, expressing the rival perceptual organizations 

in that pattern language, and favoring the organization that al- 

lows the briefest description of the stimulus. By extension, cod- 

ing theory suggests a way of measuring the complexity of stimuli 

themselves: the length of  the shortest description in the pattern 

language that encodes the stimulus. Indeed, this notion has been 

used to account for subjects' judgments of  the complexity of  

stimuli by a number of researchers (Leeuwenberg, 1969; Si- 

mon, 1972; Simon & Kotovsky, 1963; Vitz & Todd, 1969). The 

theory of  Kolmogorov complexity (Chaitin, 1966; Kolmo- 

gorov, 1965; Soiomonoff, 1964), developed independently, can 

be viewed as a more general version of  this approach to measur- 

ing complexity (and it can also be viewed as a generalization of 

standard information theory). 

I noted above two apparently unattractive features of coding 

theory: (a) that different pattern languages must be developed 

for different kinds of stimuli and (b) that the measure of sim- 

plicity depends on the pattern language used. Kolmogorov com- 

plexity avoids the first problem by choosing a much more gen- 

eral language for encoding. Specifically, the language chosen is 

a universal programming language. A universal programming 

language is a general purpose language for programming a com- 

puter. The familiar programming languages such as PROLOG, 

LISP, and PASCAL are all universal programming languages. 

How can an object, such as a perceptual stimulus, be encoded 

in a universal programming language such as, for example, 

LISP? The idea is that a program in LISP encodes an object if 

the object is generated as the output or final result of running 

the program. 

Whereas coding theory requires the development of special 

purpose languages for coding particular kinds of perceptual 

stimulus, Kolmogorov complexity theory can describe all per- 

ceptual stimuli using a single universal programming language. 

This follows because, by the definition of a universal program- 

ming language, if an object has a description from which it can 

be reconstructed in any language, then it will have a description 

from which it can be reconstructed in the universal program- 

ming language. It is this that makes the programming language 

universal. The existence of universal programming languages is 

a remarkable and central result of  computability theory 

(Odifreddi, 1989; Rogers, 1967). Perhaps even more remark- 

able is that there are so many universal programming lan- 

guages, including all the familiar computer languages. 7 

One of the simplest universal languages, which we will con- 

sider below, is that used to encode programs on a standard uni- 

versal Turing machine (Minsky, 1967). A Turing machine is a 

simple computational device, with two components. The first 

component is a linear "tape" consisting of squares that may 

contain the symbols 0 or 1 or may be left blank. The tape can be 

extended indefinitely in both directions, and hence there can be 

infinitely many different patterns of 0s and ls on the tape. The 

second component is a "control box," consisting of a finite 

7 Specifically, any language rich enough to express the partial recur- 
sive functions will be universal (Rogers, 1967 ). 
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number of  states, which operates upon the tape. At any time, 

the control box is located over a particular square of  the Turing 

machine's tape. The control box has a small number of  possible 

actions: It can move left or right along the tape, one square at a 

time; it can read the symbol on the tape over which it is cur- 

rently located; it can replace the current symbol with a different 

symbol; and the current state oftbe control box may be replaced 

by one of  the finite number of  other possible states. Which ac- 

tions the control box performs is determined by two factors: the 

current state of  the machine and the symbol on the square of  

the tape over which it is located. 

A Turing machine can be viewed as a computer in the follow- 

ing way. The input to the computation is encoded as the string 

of  ls and 0s that comprise the initial state of  the tape. The na- 

ture of  the control box (that is, which symbols and states lead to 

which actions and changes of  state) determines how this input is 

modified by the operation of  the control box. The control box 

might, for example, leave the input intact, delete it entirely and 

replace it with a completely different string of  I s and 0s, or more 

interestingly perform some useful manipulation of  the input. 

This resulting string encodes the output of  the computation, s 

Each control box can therefore be associated with a mapping 

from inputs to outputs, defining the computation that it per- 

forms. According to the Church-Turing thesis (Boolos & 

Jeffrey, 1980), every mapping that can be computed by any 

physical device whatever can be computed by some Turing 

machine. 

A universal Turing machine is a Turing machine that is pro- 

grammable. There are many different possible programming 

languages corresponding to different universal Turing machines 

(in the same way that there are many different programming 

languages for conventional computers).  In the following, one 

universal Turing machine (it does not matter which) has been 

chosen, which is called U. The input to U can be thought of  

as divided into two parts (these will typically be separated, for 

example, by blank spaces between them on the tape). The first 

part is the program, which encodes the series of instructions 

to be followed. The second part is the data, upon which the 

instructions in the program are to operate. U's control box is 

designed so that it reads and carries out the instructions in the 

program as applied to the data provided. In this way, U can 

perform not just a single computation from input to output, 

but many different mappings, depending on what is specified by 

its program. In fact, it is possible to write a program that will 

make Ucompute the same mapping as any specified Turing ma- 

chine, and thus every mapping that can be computed at all 

(assuming the Church-Turing thesis). So U is universal in that 

it can perform all possible computations, if  it is given the appro- 

priate program. Notice, finally, that the program of  the univer- 

sal Turing machine is just a string of  Is and 0s on the input 

tape- - th is  is the same form as the data on which the program 

operates. We shall see that this is useful when considering the 

notion of  universal a priori probability below. 

For any object, 9 including perceptual stimuli, the definition 

of the complexity of  that object is the length of  the shortest code 

(i.e., the shortest program) that generates that object, in the uni- 

versal programming language of  choice. By using a universal 

language, the need to invent special purpose languages for each 

kind of  perceptual stimulus is avoided, thus solving the first 

problem noted with coding theory. 

Moreover, in solving the first problem, the second problem, 

that different patterns languages give different code lengths, is 

solved automatically. A central result of Kolmogorov complex- 

ity theory, the invariance theorem (Li & Vitanyi, 1993 ), states 

that the shortest description of  any object is invariant (up to a 

constant) between different universal languages. Therefore, it 

does not matter whether the universal language chosen is PRO- 

LOG, LISP or PASCAL, or binary strings on the tape of  a uni- 

versal Turing machine; the length of  the shortest description for 

each object will be approximately the same. Let us introduce 

the notation KLise(X) tO denote the length of the shortest LISP 

program that generates object x;  and KpASCAL(X) to denote the 

length of  the shortest PASCAL program. The invariance theo- 

rem implies that KLlse(x) and KeASCAL(X) will only differ by 

some constant, c (which may be positive or negative), for all 

objects, including, of  course, all possible perceptual stimuli. In 

symbols: 

3CVx(KL~sI,(X) = KeaSCAL(X) + C). (14) 

(where 3 denotes existential quantification and V denotes uni- 

versal quantification). In specifying the complexity of  an ob- 

ject, it is therefore possible to abstract away from the particular 

language under consideration. Thus the complexity of  an ob- 

ject, x,  can be denoted simply as K(x) ;  this is known as the 

Kolmogorov complexity of that object. 

Why is complexity language invariant? To see this intuitively, 

note that any universal language can be used to encode any 

other universal programming language. This follows from the 

preceding discussion because a programming language is just a 

particular kind of  computable mapping, and universal pro- 

gramming language can encode any computable mapping. For 

example, starting with LISP, a program can be written, known 

in computer science as a compiler, that translates any program 

written in PASCAL into LISP. Suppose that this program has 

length ct. Now suppose that KpASCAL(X), the length of  the short- 

cst program that generates an object x in PASCAL, is known. 

What is KL~sp(X), the shortest program in LISP that encodes x?. 

Notice that one way of  encoding x in LISP works as follows: The 

first part of the program translates from PASCAL into LISP (of  

length ct), and the second part of  the program, which is an input 

to the first, is simply the shortest PASCAL program generating 

the object. The length of  this program is the sum of  the lengths 

of its two components: KpASCAL(X) + Ct. This is a LISP program 

s It is also possible that the control box will continue modifying the 
contents of the tape forever, so that there is no well-defined output. We 
shall ignore such nonhalting "luring machines later for simplicity. See 
Footnote 12. 

9 There is an implicit restriction, ofcourse, to abstract, mathematical 
objects, both in this general context and in the context of perception. 
The perceptual stimulus is considered in terms of some level of descrip- 
tion (e.g., in terms of pixel values, or activity of receptors); it is the 
abstract description that is encoded in the pattern language. It would 
be incoherent to speak of the perceptual stimulus itself being encoded. 
Encoding concerns information, and information is by definition an 
abstract quantity, dependent on the level of description (see Chater, 
1989; Dretske, ! 981, for discussion). 
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that generates x,  if by a rather roundabout means. Therefore 

KLzsp(X), the shortest possible LISP program must be no longer 

than this: Kuse(X) < KeASCAL(X) + Ct. An exactly similar argu- 

ment based on translating in the opposite direction establishes 

that KeASCAL ( X) < KL~se( X) + C2. Putting these results together, 

KenscnL(x) and Kzlse(X) are the same up to a constant, for all 

possible objects x. This is the Invariance Theorem (see Li & 

Vitanyi, 1993, for a rigorous proof along these lines) and estab- 

lishes that Kolmogorov complexity is language invariant. 

Both limitations of  coding theory-- the  need to develop spe- 

cial purpose languages for particular kinds of pattern and the 

dependence of code length on the pattern language used--are  

overcome. Only a single language need be used, a universal pro- 

gramming language, and moreover it does not matter which 

universal programming language is chosen, because code 

lengths are invariant across universal languages. 

In addition to providing a measure of the complexity of a 

single object, x, Kolmogorov complexity can be generalized to 

measure the complexity of transforming one object, y, into an- 

other object, x. This quantity is the length of  the shortest pro- 

gram that takes y as input and produces x as output and is called 

conditional Kolmogorov complexity which is written K(xl y). 

K(xl y) will sometimes be much less than K(x). Suppose, for 

example, that x and y are both random strings ofn binary num- 

bers (where n is very large). Because random strings have no 

structure, they cannot be compressed by any program, and 

hence K(x) = K(y) = n (Li & Vitanyi, 1993). But suppose that 

x and y are closely related (e.g., that x is simply the same string 

as y but in reverse order). Then the shortest program 

transforming y into x will be the few instructions needed to 

reverse a string, of  length c3, where c3 is very much smaller than 

n. Thus, in this case, K(xl y) will be much smaller than K(x). 

On the other hand, K(xl y) can never be substantially larger 

than K(x). This is because one way of transforming y into x is 

to first run a (very short) program that completely deletes the 

input y and then reconstruct x from scratch. The length of the 

former program is very small (say, c4), and the length of the 

latter is K(x). The shortest program transforming y into x can- 

not be longer than this program, which makes the transforma- 

tion successfully. Therefore K(x[ y) < K(x) + c4, which estab- 

lishes that K(xl y) can never be substantially larger than K(x) 

(see Li & Vitanyi, 1993, for discussion). Conditional Kolmo- 

gorov complexity is important below as a measure of the com- 

plexity of  perceptual, D, given a hypothesized perceptual orga- 

nization, Hr. 

Kolmogorov complexity also has very close relations to Shan- 

non's notion of information. For an information source, A, it 

can be shown (Li & Vitanyi, 1993, p. 194) that the entropy 

H(A ) of the source is approximately equal to the expected Kol- 

mogorov complexity of the alternatives At, which comprise the 
10 source: 

H(A) = Z P(Aj)I(Aj) ~ Z P(Aj)K(A:) 
J J 

= expected Kolmogorov complexity. (15) 

Intuitively, this is plausible, because entropy is the expected 

value of surprisal I(Ai ), and that surprisal (rounded up to the 

nearest integer) was noted earlier as the minimal code length 

for the alternative Ai, in an informationally optimal code. Kol- 

mogorov complexity is simply a different measure of code 

length for an alternative; but on average it has the same value as 

the original measure. There are many other parallels between 

the standard notion of  information theory and Kolmogorov 

complexity, which has given rise to algorithmic information 

theory, a reformulation of information theory based on Kolmo- 

gorov complexity (see, e.g., Kolmogorov, 1965; Zvonkin & 

Levin, 1970). Notice that Kolmogorov complexity overcomes 

the crucial difficulty with the classical notion of information in 

the context of the study of  perceptual organization, because it 

applies to a single object in isolation, not in relation to the set 

of alternatives. 

It is therefore possible to view Kolmogorov complexity as a 

measure of  simplicity, which is both a generalization of infor- 

mation theory and a generalization of coding theory. It thus pro- 

vides an attractive unification of the two principal approaches 

used by psychologists to quantify simplicity; and it overcomes 

the standard difficulties with both notions from the point of 

view of measuring complexity of perceptual stimuli. More im- 

portant than unifying the two approaches to simplicity, how- 

ever, is that it allows the reconciliation of the apparently distinct 

likelihood and simplicity principles of  perceptual organization. 

Before this reconciliation can be demonstrated, it is necessary 

to provide a more detailed mathematical treatment of the like- 

lihood view, to which I now turn. 

Likelihood and Prior Probabilities 

I showed above how Bayes's theorem (Equation 1 ) can be 

used to calculate the probability of a particular hypothesis con- 

cerning the distal layout, given data concerning the perceptual 

stimulus. 

An immediate possible concern regarding the application of 

Equation 1 is that the number of possible sensory stimuli is very 

large indeed (indeed it is infinite, aside from the limits of reso- 

lution of  the sensory systems), and the probability P(D) of any 

specific stimulus, D, will be very close to 0. This possible divi- 

sion by 0 is not actually problematic, however, because the nu- 

merator will always be even smaller than the denominator; oth- 

erwise P(H~ID) would be greater than 1, violating the laws of 

probability theory. That is, P(H~ [ D) is the ratio of two very 

small quantities, but the ratio is well-defined. Indeed, in typical 

applications of Bayesian statistics, P(D) is typically very close 

to 0, but no problems arise (e.g., Lindley, 1971 ). 

A more difficult problem arises, however, with respect to the 

prior probabilities of hypotheses, P(H~ ). Applying Bayes's the- 

orem requires being able to specify the prior probabilities of the 

possible hypotheses. But, as I noted earlier, there are infinitely 

many distal layouts (or perceptual organizations) that are con- 

sistent with a given stimulus (at least for the degraded stimuli 

studied in experiments on perceptual organization j~ ). For ex- 

10 This result requires the weak condition that the function from the 
index, i, of a state to its probability P(Ai ) is recursive. See Li and Vi- 
tanyi ( 1993, p. 194) for details. 

lJ Gibson ( 1950, 1966, 1979) has, of course, argued that in the rich, 
ecologically valid conditions of normal perception, this underdetermi- 
nation of the distal layout by the perceptual input does not apply. Al- 
though I would argue against this point of view, 1 simply note here that 
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ample, a two-dimensional line drawing may be the projection 

of  an infinite number of  different three-dimensional shapes; a 

pattern of  dots may be joined up by infinitely many different 

curves; and so on. 

Priors must be assigned so that each of  this infinite number 

of alternatives is assigned a nonzero prior (so that it is not ruled 

out a priori)  and so that the sum of the probabilities is 1 

(otherwise the axioms of probability theory are violated). 

These constraints rule out the possibility of  assigning each hy- 

pothesis an equal probability, because the sum of  an infinite 

number of finite quantities, however small, will be infinite and 

hence not equal to 1 (the problems associated with such "im- 

proper" priors have been extensively discussed in the philoso- 

phy of science and the foundations of  statistics; e.g., Carnap, 

1952; Jeffrey, 1983; and Keynes, 1921 ). Therefore, an uneven 

distribution of  prior probabilities is required. 

In a perceptual context, an uneven distribution of  priors is 

quite reasonable. I have already noted that, according to the 

likelihood interpretation, the perceptual system can be viewed 

as favoring (i.e., assigned a higher prior probability to) certain 

hypotheses (such as three-dimensional shapes containing right 

angles) over other hypotheses (such as highly skewed 

trapezoids). The likelihood view typically (though not 

necessarily) takes the empiricist view that certain hypotheses 

are favored because of  past perceptual experience (e.g., that hu- 

mans live in a "carpentered world").  Hence the question arises: 

How should priors be set for the newborn, before any perceptual 

experience? The obvious approach is to suggest that each hy- 

pothesis is given equal probability. However, this is not possible, 

because there are an infinite number of  hypotheses. 

The problem of  assigning priors to an infinite number of 

hypotheses has been most intensively studied in the context of  

scientific inference (Horwich, 1982; Howson & Urbach, 1989; 

Jeffreys & Wrinch, 1921; Keynes, 1921 ). Indeed, the inability 

to find a satisfactory solution to this problem proved to be a 

serious difficulty for Carnap's (1950, 1952) program of at- 

tempting to devise an inductive logic (see Earman, 1992; for 

discussion). In the context of  attempting to solve the problems 

of  inductive inference raised by Carnap, Solomonoff (1964) 

showed how priors could be assigned consistently and neutrally 

to an infinite range of hypotheses and in doing so provided the 

first formulation of  the principles of  Kolmogorov complexity. 

Solomonoff suggested that hypotheses could be neutrally as- 

signed probabilities as follows. First, a programming language 

is selected. For simplicity, the very simple language of the uni- 

versal Turing machine, U, is chosen. Recall that a program for 

U consists of arbitrary strings of  0s and ls on a particular por- 

tion of U's tape. 1 now consider a two-stage process for generat- 

ing objects, x,  whose a priori probability we wish to assign. The 

first stage involves generating programs, p,  for the universal Tu- 

ring machine at random. This simply involves generating ran- 

dom strings of  0s and 1 s, for example, by tossing a coin. The 

second stage is to run each program, p,  until it halts, having 

generated some object (some programs will not halt, but we can 

ignore these). Solomonoff defines the universal a priori proba- 

research on perceptual organization typically concerns ecologically in- 
valid stimuli, such as line drawings. 

bility, Qv(x) ,  of an object x as the probability that the object 

produced by this process is x.  

Intuitively, the universal a priori probability of  an object de- 

pends on how many programs there are that generate it (i.e., 

how many descriptions it has). If  any of  these programs is gen- 

erated in the first stage, then the xwil l  be produced at the second 

stage. In addition, it is important how long the programs 

(descriptions) of the object are: The shorter the program, the 

more likely it i s to  be generated at random at the first stage. 

Specifically, consider a particular program, p',  for U that gen- 

erates the object x;  that is, U(p') = x.  The length of  program 

(i.e., the number of 0s and Is it contains) is denoted by l(p'). 

Then the probability of  the program p '  being generated at ran- 

dom at the first stage of  the process above is the probability of  

l(p') consecutive coin tosses coming up in a particular way: 

(l/2)tcP') = 2- t t f ) .  I fp '  is generated at the first stage, then at the 

second stage U runsp '  and generates the object x. 

The above calculation gives the probability o f x  being gener- 

ated by this particular program. The universal prior probability 

Qv(x)  is the probability o f x  being generated by any program. 

To calculate this, we must sum over all programs, p,  which gen- 

erate x (in symbols, p:  U(p) = x)  Thus, universal prior proba- 

bility Qv(x)  is 

Qv(x)  = ~ 2 -I~p). (16) 
p : U ( p ) f f i  x 

Although the language of  a particular universal Turing ma- 

chine, U, has been considered, universal a priori probability, 

like most quantities in Kolmogorov complexity theory, is lan- 

guage independent. ~2 

The intuition behind Solomonoff's (1964) approach to set- 

ting priors concerning sets of  alternative objects is that neutral- 

ity should consist of  evenhandedness between processes 

(programs) that generate alternative objects, not evenhanded- 

ness between objects themselves. Thus, objects that are easy to 

generate should be those that are expected, a priori. Further- 

more, evenhandedness among processes means generating pro- 

grams at random; this favors simpler processes (i.e., those with 

shorter programs),  since they are more likely to arise by 

chance. It is here that the first sign of  a relationship between a 

priori probability and simplicity is seen. 

Recall that the application of  Bayes's theorem requires the 

specification not just of  prior probabilities, P(Hi  ), but also con- 

ditional probabilities P(DIHj) .  These can be specified in a di- 

rectly analogous way to the prior probabilities, defined as 

follows: 

Qv(xl y) = ~ 2 -ttp). (17) 
p : U ( p , y )  = x 

~2 There are a number of technical details that I ignore for simplicity. 
For example, it is important that the programs for the universal Turing 
machine are what is known as prefix codes. That is, no complete pro- 
gram is also the initial portion (prefix) of any other program. I also 
ignore the question of how, or if, to take account of those Turing ma- 
chines that do not halt. On the current definition, the prior probabilities 
sum to less than one because of the nonhaiting machines. These and 
other technical issues have been tackled in different ways by different 
researchers (e.g., Solomonoff, 1978; Zvonkin & Levin, 1970), but do 
not affect the present discussion. 
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Qu( xl y) is known as the conditional universal distribution. It 

represents the probability that a randomly generated program 

for U will generate object x (according to the two stages given 

earlier), given y as an input. Intuitively, i f x  is probable given y 

(e.g., y is a hypothesis that correctly describes some aspect of 

data x) ,  then it should be easy to reconstruct x given y. 

Aside from intuitive appeal, universal a priori probability 

(and its generalization to conditional probabilities) has a large 

number of attractive mathematical characteristics that have led 

to it, or close variants, being widely adopted in mathematics (Li 

& Vitanyi, 1993). Moreover, entirely independent mathemati- 

cal arguments, drawing on nonstandard measure theory, con- 

verge on the same notion of universal a priori probability 

(Zvonkin & Levin, 1970). For these reasons, universal a priori 

probability has become a standard approach to assigning prob- 

abilities to infinite numbers of alternatives, in the absence of 

prior experience. It therefore seems reasonable to apply this no- 

tion to assigning probabilities to alternative hypotheses con- 

cerning the distal layout. 

Reconciling Simplicity and Likelihood: H 

The first reconciliation of simplicity and likelihood relied on 

Shannon's (1948) noiseless coding theorem, which relates the 

probability of an alternative to its code length. It was noted that 

(by Equation 10), where lj is the length of the code for alterna- 

tive A j, given an optimal code. The second, and deeper, recon- 

ciliation between simplicity and likelihood also requires relat- 

ing probability and code length, via what Li and Vitanyi ( 1993 ) 

call the coding theorem (due to Levin, 1974 ), a direct analog of 

Shannon's result. This states that (up to a constant) 

K(x) = log2 [ Q ~ ( x ) ] .  (18) 

The length K(x) of the shortest program generating an object, 

x, is related to its universal prior probability by the coding the- 

orem in the same way as optimal code length lj is related to the 

probability of the alternative A j, which it encodes. 

There is another analogous result that applies to conditional 

probabilities, known as the conditional coding theorem, which 

states that (up to a constant) 

K(xly)=l°g2[~l~dv,'l'xl Y)']" (19) 

The argument for the reconciliation of likelihood and sim- 

plicity runs as before. As above, the likelihood principle recom- 

mends that we choose k so that 

k = arg max (P(H;  I D))  
i 

Following our previous analysis this implies 

k=argmin{l°g2[p(lhH;)]+l°g2[p~H~)]} " 

We can now apply the coding theorem and the conditional cod- 

ing theorem, to derive 

k = arg min [K(DIH;) + K(H;) ] .  (20) 
i 

Thus, choosing hypothesis Hk in order to maximize likelihood 

is equivalent to choosing the H~, which minimizes the descrip- 

tion length of the data, D, when that data is encoded using Hk. 

That is, maximizing likelihood is equivalent to maximiz- 

ing simplicity. The simplicity and likelihood principles are 

equivalent.~3 

As I noted in discussing the information-theoretic reconcili- 

ation between likelihood and simplicity above, every problem 

of  maximizing likelihood has a dual problem of  minimiz- 

ing code length. This also holds in terms of Kolmogorov 

complexity. 

The possibility of establishing an equivalence between sim- 

plicity and likelihood is not merely a matter of mathematical 

curiosity. It has been part of  the motivation for the development 

of approaches to statistical inference couched in terms of sim- 

plicity, rather than probabilities, known variously as minimum 

message length (Wallace & Boulton, 1968; Wallace & Freeman, 

1987 ) and minimum description length (e.g., Rissanen, 1978, 

1987, 1989). These ideas have also been applied in the litera- 

tures on machine learning (e.g., Quinlan & Rivest, 1989), neu- 

ral networks (e.g., Zemel, 1993), and even to problems quite 

closely connected to perceptual organization: automatic hand- 

written character recognition (Goa & Li, 1989) and computer 

vision approaches to surface reconstruction (Pednault, 1989). 

It is interesting that such a range of important applications have 

resulted from the reconciliation of the two psychologically mo- 

tivated principles of simplicity and likelihood. It is possible to 

speculate that the reconciliation may have potentially impor- 

tant consequences for perceptual theory and for the study of 

cognition more generally. 1 consider some possible implications 

in the discussion. 

Discuss ion 

I now consider the wider implications of this analysis. First, I 

reconsider the empirical evidence that has been viewed as favor- 

ing either the likelihood, or the simplicity, principle and show 

how this evidence does not distinguish between the two views. 

Second, I outline possible residual debates concerning which 

principle should be viewed as fundamental. Third, I note that it 

can be mathematically proved that the cognitive system cannot 

follow either principle, as traditionally formulated, and suggest 

a minor modification of the principles, to retain psychological 

plausibility. Fourth, I consider possible applications of simplic- 

ity-likelihood principles in relation to other aspects of cogni- 

tion. Finally, I discuss what the simplicity-likelihood view of 

perceptual organization leaves out. 

~3 Li and Vitanyi ( 1995 ) provide a rigorous and detailed discussion 
of the mathematical conditions under which this relation holds, in the 
context of the relationship between minimum description length 
( Rissanen, 1987 ) and Bayesian approaches to statistical inference. 
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Reconsidering the Empirical Evidence 

If the simplicity and likelihood principles are identical, then 

evidence from experiments on perceptual organization cannot 

favor one rather than the other. Indeed, ~ as noted above, a wide 

range of  phenomena in perceptual organization have been in- 

terpreted equally easily in terms of both principles. Nonethe- 

less, various lines of empirical evidence have been viewed as 

favoring one view or the other. 1 argued that this evidence does 

not distinguish between the simplicity and likelihood principles 

of perceptual organization. 

Putative evidence for the likelihood principle comes from 

preference for organizations that "make sense" given the struc- 

ture of the natural world, but are not in any intuitively obvious 

sense simpler than less "natural"  organizations, such as the ten- 

dency to interpret objects as if they are illuminated from above. 

The mathematical analysis above suggests that there must, how- 

ever, be an explanation in terms of simplicity. The simplicity- 

based explanation can be intuitively understood as follows. 

Consider the simplest description not of a single stimulus, but 

of a typical sample of natural scenes. Any regularity that is con- 

sistent across those scenes need not be encoded afresh for each 

scene; rather, it can be treated as a "default." That is, unless 

there is an specific additional part of the code for a stimulus 

that indicates that the scene violates the regularity (and in what 

way), it can be assumed that the regularity applies. Therefore, 

other things being equal, scenes that respect the regularity can 

be encoded more briefly than those that do not. Moreover, per- 

ceptual organizations of ambiguous scenes that respect the reg- 

ularity will be encoded more briefly than those that violate it. In 

particular, then, the perceptual organization of an ambiguous 

stimulus obeying the natural regularity of illumination from 

above will be briefer than the alternative organization with illu- 

mination from below. In general, preferences for likely inter- 

pretations also give rise to preferences for simple inter- 

pretations: If the code for perceptual stimuli and organizations 

is to be optimal when considered over all (or a typical sample 

of) natural scenes, it will reflect regularities across those scenes. 

Putative evidence for simplicity involves cases of  perceptual 

organizations that appear to be very unlikely. Recall Leeuwenb- 

erg and Boselie's (1988) schematic drawing of what is seen as a 

symmetrical, two-headed horse. People do not perceive what 

seems to be a more likely interpretation, that one horse is oc- 

cluding another. This appears to be at variance with the likeli- 

hood principle, and Leeuwenberg and Boselie hinted that this 

is evidence in favor of simplicity. But a likelihood explanation of 

this phenomenon, where likelihood applies locally rather than 

globally, can also be provided. That is, the perceptual system 

may determine the interpretation of particular parts of  the stim- 

ulus according to likelihood (e,g., the fact that there are no local 

depth or boundary cues may locally suggest a continuous 

object). These local processes will not always be guaranteed to 

arrive at the globally most likely interpretation (see Hochberg, 

1982). 

Residual Debates Between Likelihood and Simplicity 

From an abstract point of  view, simplicity and likelihood 

principles are equivalent. But from the point of  view of  percep- 

tual theory, one may be more attractive than the other. 

Leeuwenberg and Boselie (1988) give an important argu- 

ment against the likelihood principle and in favor of  the sim- 

plicity principle: that the likelihood principle presupposes that 

patterns are interpreted, rather than explaining the interpreta- 

tion of those patterns. This is because the likelihood principle 

holds that the structure in the world explains the structure in 

perceptual organization; but the theorist has no independent 

way of  accessing structure in the world, aside from relying on 

the results of  the principles of  perceptual organization. Hence, 

likelihood cannot be taken as basic in explaining perceptual or- 

ganization. This point of view has parallels in the literature on 

inductive inference using Kolmogorov complexity. For exam- 

ple, Rissanen (1989) argues that, although minimizing descrip- 

tion length and maximizing likelihood are formally equivalent, 

the former is a preferable viewpoint as a foundation for induc- 

tive inference, because the likelihood approach presupposes 

that the world has a certain (probabilistic) structure, and the 

only way to access this structure is by inductive inference. 

Therefore, likelihood cannot be taken as basic in inductive in- 

ference. This line of argument provides a motivation for prefer- 

ring simplicity over likelihood; but it will not, of course, be per- 

suasive to theorists with a strong realist point of  view, according 

to which the structure of  the world is independent of human 

cognition, and can be objectively studied without embodying 

presuppositions about the structure of  the human cognitive 

system. 

A very different reason to prefer one or other principle may 

be derived by considering the nature of mental representations 

and algorithms used by the cognitive system. This issue is use- 

fully framed in terms of Marr 's (1982) distinction between 

"computational level" and "algorithmic level" explanation of  

an information-processing device. At the computational level, 

the questions "What  is the goal of the computation, why is it 

appropriate, and what is the logic of  the strategy by which it is 

carried out?" are asked (Marr, 1982, p. 25). It is clear that the 

principles of simplicity and likelihood are typically understood 

at this level of explanation; they define goals for the perceptual 

system: maximizing simplicity or likelihood. I have shown that 

these goals are equivalent, and therefore that the simplicity and 

likelihood are equivalent principles at Marr's computational 

level. By contrast, at the algorithmic level the questions "How 

can this computation be implemented? • • • what is the repre- 

sentation for the input and output, and what is the transforma- 

tion?" are asked (Marr, 1982, p. 25). If the simplicity and like- 

lihood principles are viewed as rival accounts of the algorithmic 

level, then there may be a genuine debate between them. An 

algorithmic-level elaboration of  the simplicity view based on 

description length is that algorithmic calculations are defined 

over description lengths, rather than probabilities. Specifically, 

perceptual organizations are chosen to minimize description 

length in some language of  internal representation. This notion 

of description length could then be interpreted not only as an 

abstract measure of simplicity but also as a concrete measure 

of the amount of memory storage space used by the cognitive 

system in storing the stimulus, using the internal language. Evi- 

dence for the existence of such an internal language, along with 

evidence that short codes in that language correspond to pre- 

ferred organizations, might be taken as evidence in favor of  the 

priority of the simplicity view at the algorithmic level. Accord- 
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ing to this view, perceptual organization would not involve 

probabilistic calculations, but the minimization of the amount 

of storage space required in memory. Similarly, evidence for the 

internal representation of information concerning probabilities 

and evidence that this information was used in algorithms for 

probabilistic calculations could be used in favor of the likeli- 

hood view. According to this view, the cognitive system would 

not be minimizing the amount of storage space required in 

memory but would be conducting explicit probabilistic 

reasoning. 

How could simplicity and likelihood accounts of the algorith- 

mic level be distinguished empirically? Evidence distinguishing 

between these competing algorithmic-level accounts is likely to 

be very difficult to collect, particularly because the most obvi- 

ous line of attack, experimental study of the structure of per- 

ceptual organizations for various kinds of  stimulus, is inappli- 

cable because of the equivalence of the two principles at the 

computational level. Nonetheless, the two principles can 

(although they need not) be interpreted as making distinct em- 

pirical claims concerning the algorithms underlying perceptual 

organization. 

Overall, even the provable equivalence of the simplicity and 

likelihood principles may not preclude arguments over which is 

fundamental, based either on philosophical or algorithmic-level 

c o n c e r n s .  

A Psychologically Plausible Modification of the 
Simplicity-Likelihood Principle 

In this article, I have been concerned with showing that the 

simplicity and likelihood principles are the same. I now note 

that it is provably impossible that the cognitive system follows 

either principle in its strongest form. For concreteness, I discuss 

the simplicity principle, although the same considerations ap- 

ply to the likelihood principle. 

Is it possible that the perceptual system invariably chooses 

the simplest (most probable) organization of the stimulus? As- 

suming that the perceptual system is computational, there are 

strong reasons to suppose that it cannot. The general problem 

of finding the shortest description of an object is provably un- 

computable (Li & Vitanyi, 1993). It is important to note that 

this result applies to any kind of  computer, whether serial or 

parallel, and to any style of  computation, whether symbolic, 

connectionist or analog.14 It is also intuitively obvious that peo- 

ple cannot find arbitrary structure in perceptual scenes. To pick 

an extreme example, a grid in which pixels encoded the binary 

expansion of ~r would, of course, have a very simple description, 

but this structure would not be identified by the perceptual sys- 

tem; the grid would, instead, appear completely unstructured. 

It is clear, then, that the perceptual system cannot, in general, 

maximize simplicity (or likelihood) over all perceptual organi- 

zations, pace traditional formulations of the simplicity and like- 

lihood principles. It is, nonetheless, entirely possible that the 

perceptual system chooses the simplest (or most probable) or- 

ganization that it is able to construct. That is, simplicity may be 
the criterion for deciding between rival organizations. To retain 

psychological plausibility, the simplicity (likelihood) principles 

must be modified, to say that the perceptual system chooses the 

simplest (most likely) hypothesis it can find; this will not, in 

general, be the simplest possible hypothesis. 

Notice, however, that this revised formulation--that the per- 

ceptual system chooses the simplest (most probable) organiza- 

tion that it can construct--does not affect the equivalence be- 

tween the simplicity and likelihood principles, Because there is 

a one-to-one relationship between probabilities and code 

lengths, a small (but not quite minimal) code will correspond 

to a probable (but not quite most probable) organization. So 

maximizing simplicity and maximizing likelihood are equiva- 

lent, even when maximization is approximate rather than exact. 

Implications for Other Psychological Processes 

Could the relationship between simplicity and likelihood 

principles be relevant to other areas of  psychology? One possi- 

ble application is to areas of low-level perception in which com- 

pression of  the sensory signal has been viewed as a central goal 

(Atick & Redlich, 1990; Barlow, Kaushal, & Mitchison, 1989; 

Blakemore, 1990). ts The goal of compression is frequently 

viewed as stemming from limitations in the information-carry- 

ing capacity of the sensory pathways. However, the equivalence 

of maximizing compression (i.e., minimizing description 

length) and maximizing likelihood indicates a complementary 

interpretation. It could be that compressed perceptual repre- 

sentations will tend to involve the extraction of features likely 

to have generated the sensory input. According to this comple- 

mentary interpretation, perceptual inference occurs in the very 

earliest stages of  perception (e.g., as implemented in mecha- 

nisms such as lateral inhibition in the retina), where neural 

coding serves to compress the sensory input. 

The relationship between the simplicity and likelihood prin- 

ciples may also be relevant to the relationship between inference 

and memory. Perceptual, linguistic, or other information is not 

remembered in a "raw" form, but in terms of  high-level cate- 

gories and relations organized into structured representations 

(e.g., Anderson, 1983; Hinton, 1979; Johnson-Laird & Steven- 

son, 1970) such as "sketches" (Mart, 1982), schemata (Bobrow 

& Norman, 1975), scripts (Schank & Abelson, 1977), or 

frames (Minsky, 1977 ). Two constraints on such memory orga- 

nizations suggest themselves: (a) that they allow the structure 

of the world to be captured as well as possible, and (b) that 

they allow the most compact encoding of the information to be 

recalled, so that memory load is minimized. Prima facie, these 

goals might potentially conflict and require the cognitive system 

to somehow make appropriate trade-offs between them. But, as 

we have seen, the goal of capturing the structure of the world 

and the goal of  providing a compressed representation can be 

seen as equivalent. 

14 Strictly speaking, this statement requires a caveat. It applies only to 
neural network and analog styles of computation where states need not 
be specified with infinite precision. This restriction is very mild, since 
it seems extremely unlikely, to say the least, that an infinite precision 
computational method could be implemented in the brain, particularly 
in view of the apparently noisy character of neural signals. 

15 These theorists advocate a variety of distinct proposals concerning 
the objectives of perception. They are all closely related to the goal of 
minimizing description length, although not necessarily couched in 
these terms. 
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More generally, the relationship between simplicity and like- 

lihood principles may be useful in integrating psychological the- 

ories that stress probabilistic inference (e.g., Anderson, 1990; 

Fried & Holyoak, 1984; Oaksford & Chater, 1994) and those 

that stress the importance of  finding compressed representa- 

tions (Redlich, 1993; Wolff, 1982). Furthermore, the possibility 

of  viewing cognitive processes from two complementary per- 

spectives may throw valuable light on both kinds of accounts. 

What  the  S imp l i c i t y  and  L i ke l i hood  Principles  

Leave  Out  

This article has been concerned with showing that the sim- 

plicity and likelihood principles are identical. I have not consid- 

ered whether the unified simplicity-likelihood principle really 

governs perceptual organization. This question is clearly a large 

topic for future research, and a full discussion is beyond the 

scope of this article. Nonetheless, two preliminary comments 

are worth making. 

First, on the positive side, the evidence for the unified sim- 

plicity-likelihood principle is the sum of  the evidence that has 

been previously adduced in favor of  the simplicity and likeli- 

hood principles. 

Second, on the negative side, the simplicity-likelihood prin- 

ciple ignores a factor that may be of  considerable importance: 

the interests and potential actions of  the agent. The application 

of the simplicity-likelihood principle can be viewed as "disin- 

terested contemplation" of  the sensory stimulus: The simplest 

encoding, or the most likely environmental layout, is sought 

without any concern for the specific interests of  the perceiver. 

But perceivers are not disinterested; they are concerned with 

particular goals and actions and hence with aspects of  the envi- 

ronment relevant to those goals and actions. The frog's percep- 

tual system is, for example, geared toward the detection of dark, 

fast, moving concave blobs (among other things), because this 

information allows the frog to perform actions (snapping in the 

appropriate direction) that satisfy its interests (eating flies; 

Lettvin, Maturana, McCullough, & Pitts, 1959). Similarly, the 

fly is sensitive to correlates of  optic expansion because of  the 

importance of this information in the timing of landing (Poggio 

& Reichardt, 1976; Reichardt & Poggio, 1976). It has been sug- 

gested that many aspects of  human perception, too, may be ex- 

plained in terms of  people's interests and motor abilities (e.g., 

Gibson, 1979). Indeed, one of the most important tenets of 

Gibson's "direct" perception is that agents pick up properties 

of  the world that afford various actions to the agent, such as 

being lifted, reached, grasped, or climbed. The important point 

here is that affordances are defined in terms of the actions and 

goals of  the agent: just those factors that the simplicity and like- 

lihood principles ignore. The importance of  affordances and 

like notions has been widely discussed in many areas of  percep- 

tion, but has not been a focus of  interest in the literature on 

perceptual organization. It is possible that the interests and ac- 

tions of the agent are not relevant in organizational processes in 

perception. On the other hand, it is possible that here, too, it is 

necessary to view the perceiver not merely as a disinterested 

observer of sensory stimuli, but as using sensory input to deter- 

mine appropriate actions. Devising experimental tests of  the 

importance of  interests and actions in the context of perceptual 

organization is an important empirical challenge. If these fac- 

tors do influence perceptual organization, then the simplicity- 

likelihood principle must be elaborated or replaced. 

Conc lus ion  

I have shown that the simplicity and likelihood principles in 

perceptual organization are equivalent, given natural inter- 

pretations of  simplicity in terms of  shortest description length 

and of  likelihood in terms of  probability theory. This implies 

that the empirical and theoretical debate over whether percep- 

tual organization maximizes simplicity or maximizes likeli- 

hood is misguided. Instead, the fundamental question is 

whether, or to what extent, perceptual organization is maximiz- 

ing simplicity and maximizing likelihood. 
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