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Abstract

Hydrogen/deuterium exchange (HDX) is a powerful technique to investigate protein

conformational dynamics at amino acid resolution. Because HDX provides a measure-

ment of solvent exposure of backbone hydrogens, ensemble-averaged over potentially

slow kinetic processes, it has been challenging to use HDX protection factors to refine

structural ensembles obtained from molecular dynamics simulations. This entails two

dual challenges: (1) identifying structural observables that best correlate with back-

bone amide protection from exchange, and (2) restraining these observables in molecu-

lar simulations to model ensembles consistent with experimental measurements. Here,

we make significant progress on both fronts. First, we describe an improved predictor

of HDX protection factors from structural observables in simulated ensembles, parame-

terized from ultra-long molecular dynamics simulation trajectory data, with a Bayesian

inference approach used to retain the full posterior distribution of model parameters.
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We next present a new method for obtaining simulated ensembles in agreement with

experimental HDX protection factors, in which molecular simulations are performed

at various temperatures and restraint biases, and used to construct multi-ensemble

Markov State Models (MSMs). Finally, the BICePs algorithm (Bayesian Inference of

Conformational Populations) is then used with our HDX protection factor predictor

to infer which thermodynamic ensemble agrees best with experiment, and estimate

populations of each conformational state in the MSM. To illustrate the approach, we

use a combination of HDX protection factor restraints and chemical shift restraints to

model the conformational ensemble of apomyoglobin at pH 6. The resulting ensemble

agrees well with experiment, and gives insight into the all-atom structure of disordered

helices F and H in the absence of heme.

Introduction

Hydrogen/deuterium exchange (HDX) is a powerful technique to investigate protein con-

formational dynamics at amino acid resolution.1–6 In this technique, competition between

the rates of exchange and the rates at which proteins exposing backbone amides can be

used to probe a wide range of time scales, including very slow local and/or global unfold-

ing/refolding dynamics. Exposed (unprotected) backbone amide hydrogens exchange with

deuterated solvent according to the following kinetic model:

(N-H)c
ko⇀↽
kc

(N-H)o
kint−−→ (N-D)o (1)

where ko is the opening rate, kc is the closing rate and kint is the intrinsic exchange rate.

The observed exchange rate, kex = kokint/(ko + kc + kint), is very sensitive to temperature,

pH, and the neighbor-dependent folded-state stability of each amino acid.7

In the so-called EX1 regime, which occurs at high pH, high temperature or low sta-

bility, kc << kint, resulting in an exchange rate of kex = kokint/(ko + kint). In the so-

called EX2 regime, kc >> kint, i.e. the rate at which backbone amide hydrogens exchange
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with deuterium is slow compared to the rates at which backbone residues convert be-

tween “closed” conformations protected from exchange, and “open” conformations where

exchange can occur. Therefore, the observed hydrogen/deuterium (HD) exchange rate,

kex = kokint/(kc + kint), can be used to measure the relative populations of the “open”

and “closed” states, by comparing it to the intrinsic exchange rate, kint, observed for an

unstructured peptide. In this regime, the extent of protection for a residue i is characterized

by a protection factor, PFi = k
(i)
int/k

(i)
ex , which can be related to the apparent free energy

difference between open and closed states, ∆G, through lnPFi = β∆Gi, where β = 1/kT .

Existing methods for modeling HDX protection factors

Because HDX protection factors reflect potentially fleeting excursions to solvent-exposed

states (“open” states), it has been challenging to make direct connections between molec-

ular simulations of native-state protein dynamics and HDX protection factors, both in (1)

predicting HDX protection factors directly from simulated trajectory data, and in (2) using

experimental protection factors as restraints in simulated ensembles. Below, we review some

of the methodology that has been used previously.

Predicting HDX protection factors from trajectory data

Because most molecular simulations are unable to sample rare fluctuations on long time

scales, much of the past work on predicting protection factors from trajectory data has

relied on the correlation between structural observables and rare fluctuations, using proxy

quantities such as solvent exposure and protein/solvent hydrogen bonding. Petruk et al.

predicted protection from all-atom MD simulations of MAPK ERK2 protein using average

solvent-accessible surface area and numbers of solvation waters for each backbone amide

hydrogen as proxy structural variables.8 Ma et al. have identified aggregation states of

polymorphic amyloid β42 peptide through a combination of NMR HDX data and predicted

protection factors using the ratio of the average number of hydrogen-bonds between amide
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hydrogens and water oxygens, and between amide hydrogens and carbonyl oxygens.9 Sljoka

et al. use average hydrogen bond strengths to quantify protein rigidity/flexibility, which they

use with solvent accessibility of backbone amide hydrogens to predict HDX data of Sso AcP

from NMR ensembles.10 Kieseritzky et al. predict protection factors from MD simulations

using hydrogen-bond occupancy, survival times, and fluctuations of backbone atoms and

hydrogen bond length.11 Resing et al. showed that a linear combination of surface distance,

inverse number of hydrogen-bonds, and the shortest distance to the first turn of the helix

could predict the protection factors of ERK2 kinase helices with a linear correlation coefficient

of 0.78.12

In a similar strategy, first employed by Vendruscolo et al.,13 experimental protection

factors are modeled according to ln PFi = βc〈Nc〉i + βh〈Nh〉i, where 〈Nc〉i is the average

number of heavy-atom contacts with residue i and 〈Nh〉i is the average number of backbone

hydrogen bonds. The parameters βc and βh can be determined by fitting the results of

native-state protein simulations to experimental data.13,14 An advantage of this model is

the computation of structural observables solely through pairwise distances, which are easily

amenable to restraints. Another benefit of this model is its physical interpretation; the

terms βc〈Nc〉i and βh〈Nh〉i represent free energies of residue burial and hydrogen bonding,

respectively.

Now that millisecond-long explicit-solvent MD trajectories have become available,15,16

it has become possible to predict protection factors using a more mechanistic approach.

Persson and Halle,17 based on an analysis of the millisecond simulation trajectory of bovine

pancreatic trypsin inhibitor (BPTI), have proposed that exchange-competent (“open”) con-

formations can be modeled as having two water oxygens found simultaneously within 2.6Å of

the amide hydrogen. Persuasively, they show that direct counts of the number of trajectory

snapshots containing open versus closed states gives computed protection factors in very

good agreement with experiment. Limiting the practicality of the approach are (1) the need

to obtain ultra-long simulation trajectories including sampled water configurations, and (2)
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the fact that highly protected amide hydrogens are likely coupled to global unfolding events

which are not necessarily sampled in millisecond trajectories (indeed, such highly protected

hydrogen exchange rates are not considered in the Persson and Halles analysis). It is prob-

lematic to use this “two-water” criterion to restrain simulated ensembles, as it would require

three-body terms impractical for most molecular simulations. Nevertheless, the success of

this approach suggests that millisecond simulations should provide more information for

parameterizing empirical models than previously possible.

Using experimental protection factors as restraints in simulated ensembles

Here, too, the inability of most simulations to sample fluctuations on long timescales makes

it difficult to restrain ensemble-averaged structural observables correlated with backbone

amide protection. One approach has been to use simple structural models enabling the

enumeration of a complete statistical thermodynamic ensemble. In the DXCOREX method

of Liu et al,18 the statistical thermodynamic ensemble of the protein is modeled as a set of

folding units (microstates) that are either folded or unfolded, allowing complete enumeration

of the complete state space and state probabilities according to an empirical Gibbs free energy

function that depends on the accessible surface area of polar and nonpolar microstates. The

per-residue protection factors can then be calculated from the Boltzmann probabilities of

folded vs. unfolded states.

Another approach is to use restraint-biased all-atom simulations to model structural

ensembles. Typically, these methods are used to achieve partial or global unfolding of a pro-

tein to produce ensembles more consistent with experimental protection factors. To restrain

ensemble-average quantities in all-atom molecular dynamics ensembles, Vendruscolo et al.13

developed a method whereby multiple simulation replicas are simultaneously maintained,

with harmonic restraints enforcing the average 〈ln PFi〉 = βc〈Nc〉i+βh〈Nh〉i calculated across

all the simulation replicas. All-atom simulations of chymotrypsin inhibitor 2 (CI2) restrained

by this method yield conformational ensembles consistent with experiment.
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One problem with restraint simulations is the risk of introducing unnecessary bias into

the ensemble from the restraint potential. Pitera and Chodera have used a maximum entropy

approach to show that the least-biased method to restrain some ensemble-averaged quantity

〈f(x)〉, where f(x) is a structural observable computed for a conformation, x, is to use a

modified force field potential U(x) = U(x) + αf(x), for some scaling parameter α.19 In

practice, the value of α can be determined by performing multiple simulations at different

values of α, and selecting the value that reproduces the correct value of 〈f(x)〉. In the

limit of large numbers of replicas, the Vendroscolo et al. method approaches this maximum

entropy solution. The maximum entropy method has a practical drawback, however: using

it to restrain protection factors for a large number of amino acids in a protein would require

exploring an enormously large parameter space. As we show below, we can alternatively use a

simplified version of this idea to simulate ensembles more consistent experimental protection

factors.

Overview

In this manuscript, we expand on previous work in several ways. Our results are organized

into three parts. In Part I, we take a Bayesian inference approach to parameterizing an

empirical predictor of HDX protection factors from molecular simulation data. Starting

with a functional form similar to Vendruscolo et al., we fit against newly-available ultra-

long molecular simulation trajectory data, while retaining the full posterior distribution

of model parameters. In Part II, we pursue a new way of performing biased simulations

to generate structural ensembles consistent with HDX protection factor data, through the

example of apomyoglobin (apoMb). Inspired by the maximum entropy method of Pitera and

Chodera,19 we perform simulations of apoMb using a number of different bias potentials and

temperatures, and use the resulting trajectory data to construct multi-ensemble Markov

State Models.20 In Part III, we use a Bayesian inference approach, implemented through

our BICePs (Bayesian Inference of Conformational Populations) algorithm,21,22 to reconcile
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the MSMs built for each thermodynamic ensemble against experimental protection factor

measurements and chemical shift measurements. The key advantage of this approach is that

we can use Bayesian inference to propagate uncertainty in model parameters (found in the

first part) to perform quantitative model selection.

Methods and Results

Part I: An empirical model of HDX protection parameterized from

ultra-long simulation trajectory data

We first attempted to construct a new empirical model–trained on ultra-long MD trajectories–

to predict protection factors according to the following form:

ln PFi = βc〈Nc〉i + βh〈Nh〉i + β0, (2)

This form is similar to the Vendruscolo et al. model,13 but with an additional cooperativity

term β0 that can compensate for the correlations between heavy-atom contacts and hydrogen-

bond contacts.

The values of the parameters for this model come from fitting to ultra-long (millisecond)

native-state molecular dynamics simulations of the 58-residue protein BPTI,15 and the 76-

residue protein ubiquitin,16 both provided by D.E. Shaw Research. First, we will describe

the simulation trajectory data sets, and later describe our parameterization scheme, in which

we use Bayesian inference to compute the full posterior distribution of likely parameters.

BPTI and ubiquitin molecular dynamics trajectory data. From each simulation,

we procured a sample trajectory of 50000 snapshots for model parameterization, typical of

conventional explicit-solvent simulation trajectories. The native-state BPTI simulation was

performed at 300 K with 4215 water molecules, from which we analyzed a segment of the
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full trajectory (71-83.5 µs) containing 50000 frames taken every 250 ps. The native-state

ubiquitin simulation was performed at 300 K with 5581 water molecules, from which we

analyzed a trajectory of 50000 snapshots taken every 20 ns. The RMSD variances on the

native state ensembles of both systems is small (Figure 1), and thus can be used to study

hydrogen exchange in native states.
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Figure 1: Molecular dynamics trajectory data used for training an empirical model of HDX
protection. Shown is rmsd-to-native over time for 50000 frames of BPTI (frames every 250
ps) ubiquitin (frames every 20 ns). Trajectory data was provided by D.E. Shaw Research.

Bayesian model parameterization. In addition to the scaling parameters βc, βh, and

β0 in Equation (2), there are parameters associated with how the average numbers of heavy-

atom contacts 〈Nc〉i and hydrogen-bonds 〈Nh〉i are computed for each residue i. The averages

are calculated using sigmoidal cut-off functions averaged over all T snapshots in the sample.

〈Nc〉i is computed as

〈Nc〉i =
1

T

T∑

t=1

∑

j

e−b(xij(t)−xc)

1 + e−b(xij(t)−xc)
, (3)

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 28, 2019. ; https://doi.org/10.1101/563320doi: bioRxiv preprint 

https://doi.org/10.1101/563320


where xij(t) are the distances (in Å) from the backbone amide nitrogen of residue i to other

heavy atoms j, at snapshot t, and xc is a distance threshold parameter defining a heavy-atom

contact. Similarly, 〈Nh〉i is computed as:

〈Nh〉i =
1

T

T∑

t=1

∑

k

e−b(xik(t)−xh)

1 + e−b(xik(t)−xh)
, (4)

where xik(t) are the distances (in Å) between the backbone amide hydrogen of residue i to

oxygen hydrogen-bond acceptors k, at snapshot t, and xh is a distance threshold parameter

defining a hydrogen bond. The parameter b has units Å−1 and controls the sharpness of the

sigmoidal cutoff for both 〈Nc〉i and 〈Nh〉i. Taken together, there are six parameters in our

model to be inferred from the training data: βc, βh, β0, xc, xh, and b.

To determine these parameters, we implement a Bayesian inference approach. While

traditional optimization schemes aim to find a particular set of parameters that maximize

a likelihood function, Bayesian approaches aim to sample the entire posterior distribution

of parameters λ = (βc, βh, β0, xc, xh, b), from which uncertainty estimates can be computed.

By Bayes theorem, the posterior probability distribution P (λ|D) of parameters, given some

experimental data D, obeys the proportionality

P (λ|D) ∝ P (D|λ, σ)P (λ)P (σ) (5)

where P (D|λ) is a likelihood function describing the probability of observing the data given

the parameters, and P (λ) is a prior distribution of parameters, which we set to be uniform

in some reasonable range. For our likelihood function, we use a Gaussian error function

P (D | λ) =
nres∏

i

(2πσ2)−1/2e−(∆ lnPFi)
2/2σ2

(6)

where ∆(lnPFi) are the differences in experimental and predicted protection factors, nres

is the number of residues, and σ is a parameter specifying the expected error. Since the
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expected error is unknown, we include σ as a nuisance parameter in the posterior distribution,

P (λ, σ|D) ∝ P (D|λ, σ)P (λ)P (σ) (7)

with P (σ) ∼ σ−1 chosen to be an uninformative Jeffreys prior.

Training the model. The experimental data used to train the model included: (1) 72

experimental protection factors for ubiquitin compiled by Craig et al. as the average of

rescaled HDX data studied at different pH,23 and (2) experimental protection factors for 30

of the 53 amide hydrogens of BPTI with published NMR HDX measurements at 300 K.24–27

These 30 were the same set used by Persson and Halle, in which the authors excluded highly

protected amides and surface amides which exhibited anomalous pH dependence.17 A full

list of experimental protection factors, converted to lnPF values, are listed in the Supporting

Information (Tables S1 and S2).

Training the model entails sampling the full posterior P (λ, σ|D) over all model parameters

(λ = (βc, βh, β0, xc, xh, b), σ) using random walk Monte Carlo sampling. At each step, one

of these seven variables was randomly chosen and a move was proposed to a new nearest-

neighbor on a grid of allowed values, and accepted with the Metropolis criterion. Values of

βc ranged from 0.05 to 0.20 kT in increments of 0.01 kT . Values of βh ranged from 0 to 5.0

kT in increments of 0.2 kT . Values of β0 ranged from -10 to 0 kT in increments of 0.2 kT .

Values of xc ranged from 5.0 to 8.0 Å in increments of 0.5 Å. Values of xh ranged from 2.0

to 2.7 Å in increments of 0.1 Å. Values of b ranged from 3 to 20 Å−1 in increments of 1 Å−1.

The value of σ was constrained to 100 log-spaced grid values from 0.25 to 5.0. Using these

values, all variables had acceptance ratios greater than 0.50. Trials of 106 and 107 steps were

performed, with similar results (see below).

The marginal distribution of P (λ|D) is obtained through
∫
P (λ, σ|D)dσ. Posterior

marginal distributions for each parameter are calculated similarly, from the values sam-

pled by Monte Carlo (Figure 2). To ensure robust results, we trained the model separately
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on ubiquitin (Figure 2a) and BPTI (Figure 2b), and also on both data sets (Figure 2c).

trained on Ubiquitin data onlyA

trained on BPTI data onlyB

trained on both Ubiquitin and BPTIC

Figure 2: Posterior marginal distributions of model parameters βcβh, β0, xc, xh, b, and σ, ob-
tained from Monte Carlo sampling. Parameters βcβh, β0 are in units kT . Parameters xc and
xh have units Å. The parameter b (units Å−1) controls the sharpness of the sigmoidal cutoff
for determining the presence of a heavy-atom contact or hydrogen bond, and σ represents
the standard error in predicting lnPFi.

The posterior distributions of model parameters are similar when trained individually

on ubiquitin or BPTI protection factors alone, but differences can be observed, mainly in

the importance of heavy-atom coordination versus hydrogren bonds. Whereas the ubiquitin-
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Table 1: Maximum likelihood (ML) and maximum a posteriori (MAP) model parameters
for a lnPFi predictor trained on ubiquitin data only (Ubq).

ML MAP (106 samples) MAP (107 samples)
βc

a 0.15 0.24 0.23
βh

a 2.8 0.2 0.4
β0

a -5.0 -9.6 -9.0
xc

b 8 8 8
xh

b 2.7 2.0 2.7
bc 20 3 3
σ 2.097 2.036
SSEd 470.00 563.99 550.87
rmse 2.555 2.799 2.766

a units kT ; b units Å; c units Å−1; d sum of squared errors over 72 ubiquitin residues; e

root mean squared deviation.

Table 2: Maximum likelihood (ML) and maximum a posteriori (MAP) model parameters
for a lnPFi predictor trained on BPTI data only (BPTI).

ML MAP (106 samples) MAP (107 samples)
βc

a 0.08 0.09 0.07
βh

a 5.0 3.4 4.0
β0

a -0.2 -0.2 -1.8
xc

b 7.5 7.5 8.0
xh

b 2.6 2.4 2.7
bc 20 16 3
σ 2.227 2.227
SSEd 221.03 267.58 272.00
rmse 2.714 2.986 3.011

a units kT ; b units Å; c units Å−1; d sum of squared errors over 30 BPTI residues; e root
mean squared deviation.

trained model has a large βc coefficient and a low βh coefficient (with a lower distance

threshold xh for including hydrogen bonds), the opposite is true for the BPTI-trained model.

The model trained on both data sets has posterior distributions centers on intermediate

values of βc and βh.

Of all the possible sets of parameters sampled in the full posterior distribution, it is

useful to pick a single set of parameters to formulate a lnPFi predictor. We do this by

choosing the maximum a posteriori (MAP) parameter values λ∗ = argmax P (λ|D), i.e. the

parameters that give the maximum value of the joint posterior distribution. The MAP is
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Table 3: Maximum likelihood (ML) and maximum a posteriori (MAP) model parameters
for a lnPFi predictor trained on both ubiquitin and BPTI data (Ubq+BPTI).

ML MAP (106 samples) MAP (107 samples)
βc

a 0.08 0.14 0.14
βh

a 4.6 3.8 3.4
β0

a -1 -6.2 -5.8
xc

b 8.0 8.0 8.0
xh

b 2.6 2.7 2.7
bc 20 3 3
σ 2.161 2.161
SSEa 764.25 872.10 866.14
rmsb 2.737 2.924 2.914

a units kT ;x b units Å; c units Å−1; d sum of squared errors over 102 residues; e root mean
squared deviation.

trained on Ubiquitin data only 

Maximum a posteriori (MAP) predictors of ln PF

ln PF (experiment)

ln
 P

F
 (
p

re
d

ic
te

d
)

trained on BPTI data only trained on Ubiquitin and BPTI 

ln PF (experiment) ln PF (experiment)

R
2 = 0.466

rms = 2.91

R
2 = 0.312

rms = 2.77

R
2 = 0.480

rms = 3.01

Figure 3: Comparisons of experimental and predicted values of ln PFi from maximum a
posteriori (MAP) models trained on ubiquitin data only (Ubq), BPTI data only (BPTI),
and both data sets (Ubq+BPTI). Values of R2 and rms values reported in each subplot are
for the entire dataset (Ubq+BPTI)

distinguished from the maximum likelihood (ML) parameters, which are the set of parameters

that minimize the likelihood function in Equation 6. Because this likelihood function is a

Gaussian error function, it is minimized when sum of squared errors (SSE)
∑

i ∆ lnPFi is

minimized. Thus, the ML model is comparable to a linear regression model where the sum of

squared residuals are minimized. Such models can be overly sensitive to outliers, a problem
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which can be ameliorated with the use of a Bayesian posterior. Indeed, we find that the

ML model (black circles in Figure 2) parameters are located in the tails of the posterior

distribution, unrepresentative of the larger posterior distribution. Moreover, we also note

that, because the parameters are not independent, the maximum a posteriori (MAP) set of

parameters λ∗ = argmax P (λ|D) (red filled circles in Figure 2) is not the maximum of each

marginal posterior distribution.

ML and MAP parameters λ∗ for ubiquitin-trained (Ubq) and BPTI-trained models

(BPTI) are shown in Tables 1 and 2, respectively. ML and MAP parameters λ∗ for models

trained on both data sets (Ubq+BPTI) are shown in Table 3. To test whether we have ade-

quately sampled the posterior distribution, we compare the results when using 106 and 107

MCMC samples; the results are extremely similar in all cases. The rms errors in the lnPFi

predictions from MAP are not that much larger than those for the ML models (which by

definition give the lowest rms errors): whereas the Ubq, BPTI and (Ubq+BPTI) ML models

yield rms errors in ln PFi of 2.555, 2.714 and 2.737, respectively, the MAP models have rms

only slightly larger: 2.766, 3.011 and 2.914, respectively (using 107 MCMC samples). For

both the ML and MAP models, training on both sets of data (Ubq+BPTI) yields rms errors

similar to models trained on each protein alone (Ubq, or BPTI).

When we use the MAP λ∗ of Ubq-, BPTI- and (Ubq+BPTI)-trained models to compare

experimental and predicted values of ln PFi (Figure 3), we find squared correlation coefficient

R2 values of 0.312, 0.480 and 0.466, respectively. Since the (Ubq+BPTI)-trained MAP model

exhibits the best balance of low rms error and high R2 values, and uses all the available

training data, we use this model for all subsequent work (see Part III). The R2 value of

this model is comparable to Craig et al.’s prediction on ubiquitin (R2 = 0.53) and Persson

and Halle’s predictions for BPTI (R2 = 0.68). The lower extent of correlation for our PF

predictions may arise in part from our smaller training set of molecular simulation data. Only

5 × 104 frames were used to train our model, versus 106 frames used in Halle’s predictions

on BPTI, and 2× 105 frames for Craig’s prediction on ubiquitin.
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The values of βc and βh in our final MAP (Ubq+BPTI) model (Table 3, 107 steps) can

be used to gain insight into the unfolding (closed-to-open state) free energy contributions

provided by heavy-atom contacts and hydrogen bonds, through the terms βc · 〈Nc〉i and

βh · 〈Nh〉i, respectively, for each residue i (Figure 4). These values range from contributions

of 4–16 kT attributed to heavy-atom contacts, and 1–6 kT attributed to hydrogen bond

breaking, depending on the residue. These two free energy contributions are correlated, as

indicated by the cooperativity term of β0 = -5.8 kT . This term provides a correction factor

to offset the “double-counting” of these related contributions. These results are similar to

the results of Vendruscolo et al., who estimated (uncorrelated) free energy contributions of

0.6 kcal mol−1 (∼1 kT ) per heavy-atom contact, and 3 kcal mol−1 (∼5 kT ) per hydrogen

bond.13
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Figure 4: Estimates of the unfolding (closed-to-open state) free energy contributions (in units
kT ) originating from heavy-atom contacts βc · 〈Nc〉i, versus hydrogen bonding βh · 〈Nh〉i for
each residue i, according to the MAP predictor of ln PFi.
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Part II. Restraint-biased simulation and construction of multi-ensemble

MSMs for apoMb

From our work above, we now have in hand a reasonably accurate function, ln PFi(X) =

βc〈Nc〉i(X)+βh〈Nh〉i(X)+β0, that yields a prediction of ln PFi for residue i, given a molecular

conformation X. According to the maximum entropy approach of Pitera and Chodera,19

the least-biased potential to restrain protection factor observables in a molecular simulation

is expressed as a modified potential U ′(X) = U(X) +
∑

i αi(ln PFi(X)). This would require

performing an unfeasible number of simulations to explore the full parameter space of all αi.

Instead, we propose a simplification to this scheme, in which a single restraint bias

potential (with a single parameter α), is applied to multiple protein residues, so as to generate

structural ensembles with different extents of solvent exposure and amide hydrogen bonding.

Later (as we describe below), the ensembles will be evaluated using the BICePs algorithm

to determine which is most consistent with the experimental data.

Apomyoglobin. As a specific system on which to test this approach, we consider apomyo-

globin (apoMb), a protein whose folding has been well-studied by NMR and x-ray crystallog-

raphy.28,29 Myoglobin is a 152-residue heme protein with eight helices labeled A through H

(Figure 5). In the absence of heme at pH 6, apomyoglobin adopts a holoprotein-like confor-

mation, although the F helix and C-terminal portion of the H helix becomes disordered.30,31

This conformation is known as the native (N) state of apoMb. At pH 4.0, apomyoglobin

becomes more highly disordered; this acid-denatured state (M) is similar to a kinetic in-

termediate in the refolding of apoMb, as characterized by quench-flow amide proton H/D

exchange pulse labeling and stopped-flow spectroscopy.32–36

Here, we focus on generating simulated ensembles of apoMb that best represent the N

state of apoMb. Our primary goal is to reconcile the ensembles against protection factors

for apomyoglobin at pH 6.0 and pH 4.0 measured by Nishimura et al.37 and NMR chemical

shifts measured by Eliezer and Wright.30
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Figure 5: (Left) NMR structure of apomyoglobin at neutral pH shows disordered F and H
helices (Lecomte 1999, personal communication). (Right) Holo-myoglobin (PDB:1JP6) was
the starting conformation of the restraint-bias molecular simulations.

Molecular simulation. Molecular simulations of apomyoglobin were prepared and per-

formed using the GROMACS 5.0.1 simulation package on TACC Stampede supercomputer.

NVT simulations were performed using a stochastic (Langevin) integrator with step size 2 fs.

The AMBER ff99SB-ildn-nmr force field and TIP3P water model were used with cubic pe-

riodic box of volume (6.743 nm)3 containing 30072 atoms, which included the protein, 9194

water molecules, 18 Na+ ions, and 20 Cl− ions (approximately 100 mM salt concentration).

The starting conformation of the protein was taken from holomyoglobin (PDB:1JP6).

Protonation states at pH 7 were chosen according to the pKa values measured by Geier-

stanger et al.32

Restraint bias potentials to encourage solvent exposure. To encourage the solvent-

exposure of specific residues, sigmoidal restraint bias potentials were included in the simula-

tions (Figure 6). The restraint biases were implemented using tabulated bonded interactions

(cubic spline potentials) in GROMACS, of the form Ubias(x) = k · f(x), where k is a force
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constant in units of energy, and f(x) is a function of interatomic distance x,

f(x) =
e−b(x−x0)

1 + e−b(x−x0)
, (8)

where x0 = 0.65 nm, and b = 5 nm−1.

0.0 0.5 1.0 1.5 2.0
x, distance (nm)

0.0

0.2

0.4

0.6

0.8

1.0
f(
x
)

b=5 nm−1

b=15 nm−1

Figure 6: The sigmoidal function f(x) used with the biasing potential Ubias(x) = k · f(x),
where k is a force constant in units of energy. The value of b was set to 5 nm−1.

Protection factors for apoMb measured by Nishimura et al.37 show that helix F and the

C-terminal region of helix H are more solvent-exposed for apoMb than the holo protein.

Therefore, bias restraints were added between the amide hydrogens of in helix F (residues

83-87, 89-95), and helix H (residues 140-152) and oxygens on all residues capable of making

hydrogen bonds; these included backbone carbonyl oxygens, as well as side chain oxygen

atoms on aspartic acid, glutamic acid, glutamine, serine, threonine and tyrosine (Figure 7).

Simulations were performed at temperatures 300, 330, 350, 370, 400 and 415 K. For each

temperature, simulations were performed using force constants of k = 0.5, 0.7, 1.0, 1.2, 1.5

and 2.0 kJ, resulting in 36 simulations totalling 19 µs of aggregate simulation trajectory

data (Table 4), with snapshots saved every 100 ps.
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Figure 7: Visualization of protection factor restraints applied to selected residues of apoMb.

Table 4: A summary of molecular dynamics simulation trajectory data for apoMb.

trajectory length (in µs)

force constant (kJ) 300 K 330 K 350 K 370 K 400 K 415 K
0.0 15.7 6.2 5.9 5.6 6.2 6.0
0.5 1.0 1.0 1.0 0.8 0.08 0.08
0.7 1.0 1.0 1.0 0.8 0.08 0.08
1.0 1.0 1.0 1.0 0.07 0.08 0.08
1.2 1.0 1.0 1.0 0.7 0.08 0.08
1.5 1.0 1.0 1.0 0.08 0.08 0.08
2.0 0.6 1.0 1.0 0.08 0.08 0.08
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Construction of multi-ensemble MSMs from restraint-biased trajectory data

The simulation trajectory data obtained at multiple temperatures and restraint-bias poten-

tials were next used to construct multi-ensemble Markov Models (MEMMs). These models

can be thought of as a set of MSMs–one for each thermodynamic ensemble. The main ad-

vantage of MEMMs is that observed transitions sampled across all the ensembles can provide

information to estimate transition rates between states in each individual ensemble.

Projection of trajectory data to discrete metastable states. Discretization of the

trajectory data for MSM analysis was accomplished by first performing dimensionality re-

duction of the coordinate data, and then conformational clustering in the low-dimensional

projection to define metastable states.

Time-lagged independent component analysis (tICA)38,39 was used to determine the low-

dimensional subspace corresponding to the slowest motions of the protein. Similar to prin-

cipal component analysis (PCA), which finds the eigenvectors of a covariance matrix, the

tICA method solves a similar eigenvalue problem for a time-lagged correlation matrix to find

the degrees of freedom that capture the most time-correlated motions. As input coordinates,

we used all pairwise distances between Cα atoms. The tICA lag time used was 0.5 ns. The

entire set of trajectory data (all temperatures and force constants) was used as input to

tICA.

Next, the trajectory data were projected to the top 8 tICA components, and k-centers

clustering was performed in this subspace to identify 25 microstates with which MSMs (and

MEMMs) could be constructed (Figure 8). The number of microstates was chosen to fa-

cilitate sufficient overlap of metastable states to construct MEMMs (as described below).

Visualization of the trajectory data on tIC1 and tIC2 shows that the slowest motion (moving

left to right along tIC1) corresponds to the unstructuring of helix F and helix H. Microstate

16 (microstates are numbered using indices 0 through 24) on the left side of Figure 8a is the

state from which all trajectories were initiated, a holo-like structure with a folded F-helix
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and an rmsd of 0.25 nm to the native structure. On the right side of Figure 8a are a number

of microstates corresponding to conformational states lacking structure in helix F and H.

300 K 330 K

350 K 370 K

400 K 415 K

A B

Figure 8: Visualization of apoMb trajectory data on the tICA landscape. (A) A density
map of trajectory data from all temperatures and force constants projected to tIC1 and
tIC2. Red dots indicate the centers of the conformational clusters used as MSM metastable
states, labeled by microstate index. (B) Density maps of trajectory data for the six simulation
temperatures, shown separately on the same axes as panel A.

Construction of MEMMs. The TRAM (transition-based reweighting analysis method)

algorithm,20 as implemented in the PyEMMA software package,40 was used to construct

multi-ensemble Markov Models of apoMb from the simulation trajectory data. TRAM uses

information from a series of thermodynamic ensembles, labeled by index k, to infer both the

transition rates p
(k)
ij between states i and j in ensemble k and the conformational (reduced)

free energies f
(k)
i of each state i in ensemble k. This is achieved by maximization of a

joint likelihood function LTRAM that is the product of a reversible MSM estimator likelihood

function L
(k)
MSM, and a free energy estimator likelihood function L

(k)
LEQ:
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LTRAM =
K∏

k=1

(∏

i,j

(p
(k)
ij )c

(k)
ij

)

︸ ︷︷ ︸

L
(k)
MSM

( m∏

i=1

∏

x∈X
(k)
i

µ(x)ef
(k)
i −b(k)(x)

)

︸ ︷︷ ︸

L
(k)
LEQ

(9)

where c
(k)
ij are the number of transition counts between states i and j observed in ensemble

k, µ(x) is the normalized equilibrium probability (
∑

x µ(x) = 1) of each sample x, X
(k)
i is

the set of samples x drawn from the kth ensemble, and b(k)(x) is the (reduced) bias potential

acting on sample x in ensemble k.

Due to insufficient overlap of sampled conformational states across the simulated tem-

peratures, MEMMs were constructed for each temperature, using all simulation trajectory

data obtained at all viable restraint biases. For example, for simulations performed at 350 K,

a total of four restraint-biased ensembles were included in the TRAM estimation, for force

constant values of k = 0.5, 0.7, 1.0, and 1.2 kJ. The key quantity of interest resulting from

these calculations are the equilibrium populations of conformational states.

We projected the 350 K trajectory data from each microstate onto tIC1 after weight-

ing by its estimated population, to obtain a series of free energy profiles F (k)(tIC1) =

−kBT ln π(k)(tIC1) for each thermodynamic ensemble k. All free energy profiles show two

minima separated by a 2–4 kcal mol−1 barrier, with the global minimum shifting from struc-

tured conformations to unstructured conformations for helix F as the force constant increases

(Figure 9). This clearly shows how the restraint biases are able to achieve a range of con-

formational distributions which we can reconcile against experimental measurements.
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Figure 9: TRAM predictions of free energy profiles along tIC1 for ensembles at 350 K and
with biases of k = 0.5, 0.7, 1.0, and 1.2 kJ.

Part III: Reconciling multi-ensemble MSMs against experimental

HDX protection factor and chemical shifts data using BICePs

From the work described in the previous section (Part II), we now have in hand a series of

MSMs for each thermodynamic ensemble (defined by a particular temperature and restraint

bias), each yielding a prediction of equilibrium conformational populations. From the work

described in Part I, we also have in hand a predictor of the observable (ln PFi) for each

conformational state X,

ln PFi(X|λ) = βc〈Nc〉i(X|xc, b) + βh〈Nh〉i(X|xh, b) + β0, (10)

along with the full posterior P (λ) of nuisance parameters λ = (βc, βh, β0, xc, xh, b).

Using these two ingredients, we now proceed to reconcile each MSM against the experi-

mentally measured observables. Specifically, we wish to find the set of MSM-predicted confor-
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mational populations that best agrees with the experimental observables. To do accomplish

this task, we take a Bayesian inference approach, implemented through an algorithm we call

Bayesian Inference of Conformational Populations, or BICePs.

The BICePs algorithm

For a full discussion of the background and development of BICePs, please refer to our

previous work.21,22,41,42

The purpose of BICePs is to make unbiased estimates of conformational populations by

optimally combining information from theoretical predictions (here, all-atom simulations)

and ensemble-averaged experimental observables. The goal is to sample the posterior prob-

ability distribution of conformational states X, given some experimental data D. By Bayes’

Theorem,

P (X | D) ∝ P (D | X)P (X) (11)

where P (D | X) is a likelihood function representing experimental restraints, and P (X) is a

prior probability function, calculated from a theoretical model (in this case, from molecular

simulation). BICePs is similar to other Bayesian methods for the inference of structural

ensembles, including ISD,43 MELD,44 and Metainference.45

Nuisance parameters. One important feature of BICePs is the ability to infer how best

to balance the relative influence of experimental versus theoretical restraints. It does this

by modeling the (unknown) uncertainty of the experimental measurements and heterogene-

ity in the conformational ensemble using nuisance parameters σ, and sampling over these

parameters to estimate their posterior distribution as well, through

P (X, σ | D) ∝ P (D | X, σ)P (X)P (σ) (12)

where we assume some prior distribution P (σ).
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Reference potentials. Another important feature of BICePs is the use of reference poten-

tials. An experimental observable r(X) is a projection of a high-dimensional conformational

ensemble X to a single-valued function, and therefore the likelihood P (D | X, σ) of observing

a particular value r(X) must be expressed relative to some reference probability Pref(r(X))

of observing r(X) in the absence of any particular structure, according to

P (X, σ | D) ∝

[
P (r(X) | D, σ)

Pref(r(X))

]

P (X)P (σ) (13)

BICePs scores for unbiased model selection. As discussed by Ge et al.,22 another

advantage of BICePs is its ability to perform model selection. Given a set of conformational

populations predicted by an MSM, we wish to objectively evaluate the extent to which it

agrees with experimental observables, and be able to rank it against other models.

Suppose we are presented with a collection of competing models P (k)(X, σ | D), each

with a different theoretical prior P (k)(X) predicted from an MSM. The total evidence for

model P (k) can be expressed as

Z(k) =

∫

P (k)(X, σ | D)dXdσ =

∫

P (k)(X)Q(X)dX, (14)

where Q(X) =
∫
[P (r(X) | D, σ)/Pref(r(X))]P (σ)dσ represents the probability of X given

the experimental data. As can be seen by the last term in Equation (14), Z(k) is an overlap

integral that quantifies how well the theoretical P (k)(X) agrees with the experimental data.

To compare two different models P (1) and P (2), it is common to compute the ratio of

total evidences, Z(1)/Z(2), often called the Bayes factor. To facilitate the assignment of a

unique score to each model, we compute a Bayes factor where the second model is a “null”

model Z0 in which P (k)(X) is a uniform distribution of conformational states. In this way,

we define a quantity we call the BICePs score, f (k), for each model P (k),

f (k) = − ln
Z(k)

Z0

. (15)
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In practice, the calculation of the BICePs score f (k) can be performed using free energy

estimation techniques, and can be thought of as a “free energy” of each model P (k); the

lower the value of f (k), the better the model agrees with the experimental data. We can

thus use the BICePs score f (k) for objective model selection. We use the multistate Bennett

acceptance ratio (MBAR) method46 was used to calculate the BICePs scores f (k).

Reconciling conformational populations of apoMb against experimental observ-

ables using BICePs

Here, we use two kinds of experimental data with the BICePs algorithm: HDX protection

factors measured by Nishimura et al.,37 and NMR chemical shifts for H, Cα, and N atoms

measured by Eliezer andWright.30 Experimental protection factor data for apoMb, converted

to lnPF values, are listed in the Supporting Information (Table S3).

Protection factor restraints. For each residue i, we introduce a Gaussian function to

restrain the computed observable ri(X) = lnPFi(X), against the measured values r∗i ,

P (r∗i | X, λ, σPF) =
1

√

2πσ2
PF

exp(
−(r∗i − ln PFi(X | λ, σPF))

2

2σ2
PF

), (16)

where σPF represents the uncertainty in the experimental measurement, and λ = (βc, βh, β0, xc, xh, b).

As in previous BICePs calculations,21,42 we used exponential reference potentials Pref(ri(X))

for all residues i, and an uninformative Jeffreys prior P (σPF) ∼ σ−1
PF. The prior distribution

P (λ) comes from the posterior distribution of the nuisance parameters sampled in Part I

(see Figure 2).

Chemical shift restraints. For each residue i, we introduce a Gaussian function to re-

strain predicted chemical shift values δi(X) for each conformational state X, against the
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measured values δ∗i ,

P (δ∗i | X, σCS) =
1

√

2πσ2
CS

exp(
−(δ∗i − δi(X))2

2σ2
CS

), (17)

where σCS represents the uncertainty in the chemical shift measurement. Predictions of NMR

chemical shifts δi(X) for each conformational state X were calculated using the SHIFTX2

algorithm47 as implemented in MDTraj,48 using the default user-specified parameters of pH

7.0 and 298 K. The predicted chemical shifts δi(X) are the ensemble-averaged values of pre-

dictions of each trajectory snapshot belonging to state X. Exponential reference potentials

Pref(δi(X)) were used for all residues i, along with an uninformative Jeffreys prior for P (σCS).

Sampling the posterior distribution with BICePs. Taking together the protection

factor and chemical shift data, the full posterior function is proportional to the product a

prior P (X) (i.e. the predicted conformational state populations), all four likelihood func-

tions, and priors for all nuisance parameters:

P (X, λ, σPF, σ
(H)
CS , σ

(Cα)
CS , σ

(N)
CS | D) ∝ P (X)

∏

i

[
P (r∗i | X, λ, σPF)

Pref(ri(X))

]

P (λ)P (σPF)

·

[
P (δ

∗(H)
i | X, σ

(H)
CS )

Pref(δ
(H)
i (X))

]

P (σ
(H)
CS )

·

[
P (δ

∗(Cα)
i | X, σ

(Cα)
CS )

Pref(δ
(Cα)
i (X))

]

P (σ
(Cα)
CS )

·

[
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]

P (σ
(N)
CS ).

To sample this posterior probability function, 107 steps of Markov Chain Monte Carlo

(MCMC) was performed. We employed several strategies to make this sampling efficient.

First, a finite grid of possible values of λ, σPF, σ
(H)
CS , σ

(Cα)
CS , σ

(N)
CS were used, where the sums

of squared errors (SSE) were precomputed. Proposed MCMC moves were allowed to neigh-

boring values in the grid. Grid values for parameters with Jeffreys priors were log-scaled to
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enforce the prior and improve acceptance ratios.

The number of grid values for each nuisance parameter was chosen to keep the acceptance

ratio around 0.5. The dimensions of the array storing SSE values for λ = βc, βh, β0, xc, xh, b

was carried over from Part I. Although large (20×26×50×7×8×18 = 26.2 million values),

the array could be stored in memory.

BICePs scores quantify the conformational ensembles

that best agree with experimental data.

As mentioned above, quantitative comparison between different models can be performed

using the BICePs score. From the work in Part II, we have 31 models of the prior population

distribution P (k)(X) calculated using TRAM, each at different temperatures and different

restraint biases. For each of these, a BICePs calculation was performed to sample the

posterior distribution P (k)(X|D), where D is the experimental data, and the BICePs score

was computed to rank the model.

To evaluate the effects of including chemical shift data, these calculations were repeated

two-fold: once using only the protection factor (PF) experimental data, and once using both

the protection factor and chemical shift data (PF+CS) (Figure 10). The results show that for

each simulated temperature, there is a restraint bias for which the sampled conformational

ensemble achieves the best overlap with experimental restraints. In all cases, BICePs scores

calculated using PF+CS data are lower than for those calculated using PF data alone. This

indicates that the additional use of CS data yields models that agree better with experiment

than PF data alone.

When we examine the restraint bias corresponding to the best model for each temperature

(Figure 10, yellow stars), we find differences between the PF and PF+CS calculations. For

the PF BICePs calculations, a majority of the best models correspond to restraint bias of

1.2 kJ, while for the PF+CS calculations, a majority correspond to a restraint bias of 0.7 kJ.
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We believe this may be because a gentler restraint bias is needed to produce conformations

with intact secondary structure in better agreement with measured chemical shift data.
te
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Figure 10: A summary of the BICePs scores computed for MEMMs built at different tem-
peratures and restraint bias potentials, for BICePs calculations performed using (A) only
protection factor data (PF), and (B) protection factor and chemical shift data (PF+CS).
Each cell shows the computed BICePs score, with uncertainty estimates computed as stan-
dard deviations over 5 rounds of 107-step MCMC sampling. Blank cells indicate no models
for those restraint biases were constructed due to the lack of viable trajectory input for the
TRAM calculation. Cells with yellow stars mark the best model at each temperature.

A comparison of the best models at each temperature is shown in Figure 11. The model

with the lowest BICePs score is one corresponding to the 400 K simulations, using a restraint

bias of 0.7 kJ. For this model, we compared the populations predicted by BICePs using only

the experimental data (i.e. a uniform prior P (k)(X)) against BICePs predictions using both

the experimental data and the prior given by the TRAM calculation (Figure 12). We find

that, in each scenario, conformational state 18 has the dominant population. This state has

an intermediate extent of structure in helix F and H, located near the middle of the tICA

landscape (see Figure 8) The second-highest population, conformational state 21, has more

disorder in helix F and H and is located near the right side of the tICA landscape. Using
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experimental restraints alone, the population of state 21 is estimated at around 15%; the prior

given by the TRAM calculation, however, increases the predicted posterior population to

more than 30% (Figure 12b). Other states are predicted to contribute much less population

(under 1%).

The predicted state populations (Figure 12a) can be thought of as the marginal posterior

distribution P (X) sampled by BICePs. Marginal posterior distributions of nuisance param-

eters sampled by BICePs are shown in Figure 12c. For the σPF, σ
(H)
CS , σ

(Cα)
CS , σ

(N)
CS parameters,

the posterior distributions give estimates of the standard errors in comparing the experimen-

tal observables against the predictions. For example, the standard error when comparing

the lnPFi values against the experimental values is about two natural logarithm units. The

standard error when comparing experimental versus computed chemical shifts is about 0.5,

1.1, and 2.6 ppm for H, Cα and N chemical shifts, respectively. The sampled posterior dis-

tributions for the σPF, σ
(H)
CS , σ

(Cα)
CS , σ

(N)
CS parameters are nearly identical in the two cases when

only experimental restraints included (exp), and when both simulation and experimental

data is included (TRAM+exp). The sampled posterior distributions for the other nuisance

parameters λ = (βc, βh, β0, xc, xh, b) closely follow the posterior distributions sampled in Part

I.

Using the mixture of (TRAM+exp) populations sampled by BICePs, we calculated

ensemble-averaged predictions of protection factor and chemical shift observables, enabling

direct comparison to the experimental values as a function of residue index (Figure 13). The

results show excellent agreement with all experimental observables. The experimental and

simulated N, Cα and H chemical shifts have squared correlation coefficients of R2 = 0.84,

0.97 and 0.66, respectively. The good agreement is somewhat expected, as the chemical shift

deviations largely report secondary structure in the structured regions of helices A, B, C,

D, E and G, which is largely intact in our simulations. More remarkable is the agreement

between simulated and experimental protection factors: the squared correlation coefficient

for experimental and simulated values of ln PFi is R
2= 0.72, which rivals Persson and Halles
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Figure 11: A comparison of the best BICePs scores at each temperature, for BICePs calcu-
lations performed with only PF restraints (blue) and PF+CS restraints (red). Error bars are
standard deviations of BICePs scores computed over 5 rounds of 107-step MCMC sampling.

results for BPTI (R2 = 0.68).17

Discussion

Using the methodologies described in Parts I, II and III, we have constructed a number of

models of the apomyoglobin native state with different populations of conformational states,

and used Bayesian inference to interrogate how well each model predicts experimental HDX

protection factor and chemical shift observables. Our best model is dominated by a 70%-30%

mixture of two conformational states (18 and 21), the first of which has a partially disordered

yet compact helix F, and the second of which has a more disordered and solvent-exposed

helix F.

Experimentally, chemical shifts are not reported for helix F residues in the apoMb N-

state (pH 6.1).30 This is because of the slow chemical exchange of these residues, presumably

due to fluctuations between conformational substates. Our model, which describes multiple

populations of heterogeneous conformational states, is consistent with this picture.
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Figure 12: Posterior distributions of conformational populations and model parameters for
the best-scoring model (400 K, 0.7 kJ). (A) A comparison of posterior conformational state
populations pi predicted by BICePs in the absence of simulation information (exp, i.e. a
uniform prior of state populations), versus populations predicted by BICePs using both
experimental information and prior conformational state populations from the best-scoring
model (TRAM+exp). (B) Estimated populations of the two dominant conformational states
in the model. Error bars are standard deviations of BICePs scores over 5 rounds of 107-step
MCMC sampling. (C) Posterior distributions of all nuisance parameters sampled by BICePs,
for both exp and TRAM+exp scenarios.

While here we are focused on using the TRAMmethod to predict equilibrium populations,

this method can also be used to make predictions for the kinetics of interconversion between

states. Thus, the methods developed in this work offer a way to get information about
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F

Figure 13: Residue profiles of experimental and simulated protection factor and chemical
shift observables for apomylobin, using the conformational state populations of the best-
scoring BICePs model (400 K, 0.7 kJ).

conformational dynamics from thermodynamically averaged experimental observables.

Another way to infer kinetic information from models of conformational state populations

would be to (1) construct Markov model of dynamics in the absence of experimental informa-

tion, (2) use BICePs (or some other method) to estimate improved state populations given

ensemble-averaged experimental observables, and finally (3) use Maximum-Caliber method

to infer changes in the transition rates between the conformational states.49 These methods

could complement and improve existing methods such as augmented Markov models50 by

providing a fully Bayesian approach to inferring model parameters.
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Conclusion

In this work we have presented, in three parts, new and improved ways of reconciling simu-

lated ensembles of protein conformations against experimental observables and applied them

to modeling the N-state of apomyoglobin using HDX protection factor measurements. First,

we have parameterized a new empirical predictor of HDX protection factors based on struc-

tural observables from simulation trajectory data, and applied Bayesian inference to infer

the complete posterior distribution of nuisance parameters. Importantly, we show that the

posterior probability gives improved results, distinct from a simple “best-fit” model.

We have also presented a new way to use bias potentials in molecular simulations to

sample solvent-exposed conformations. We use this method to construct a series of multi-

ensemble Markov State Models of apomyoglobin, resulting in a number of candidate models

consisting of metastable conformational states and their populations.

Finally, we have used the BICePs algorithm to reconcile each model against experimental

protection factor and chemical shift observables, using BICePs scores to objectively select

the best model of the apomyoglobin N state. The best-scoring model is dominated by two

conformational substates: one with partially disordered and compact helix F, and another

with a more disordered and solvent-exposed helix F. This model agrees well with experimen-

tal protection factors (R2 = 0.72), and is consistent with the observation of slow chemical

exchange in the helix F region.

These tools offer new ways to refine conformational ensembles against protection factor

data, utilizing the framework of Bayesian inference.
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Supporting Information

Supporting Tables

Table S1: Experimental protection factors measured for ubiquitin taken from Craig et al.,23

converted to lnPF values.

residue number lnPF

GLN 2 6.210072

ILE 3 13.7372227

PHE 4 13.4839383

VAL 5 13.1523661

LYS 6 10.6909026

THR 7 10.4629467

LEU 8 0.67005226

THR 9 0

GLY 10 3.93511792

LYS 11 5.21075007

THR 12 3.2443424

ILE 13 11.0570136

THR 14 2.53514619

LEU 15 11.5336487

GLU 16 5.14167251

VAL 17 12.2405424

GLU 18 7.97845735

SER 20 3.82459384

ASP 21 12.9796722

THR 22 7.73438333
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Table S1 – continued from previous page

residue number lnPF

ILE 23 11.2135894

GLU 24 5.00581999

ASN 25 10.5550501

VAL 26 14.6214153

LYS 27 14.8539764

ALA 28 11.4806893

LYS 29 13.4517021

ILE 30 14.2483966

GLN 31 7.7689221

ASP 32 5.6229128

LYS 33 4.56602624

GLU 34 6.21467717

GLY 35 6.26763662

ILE 36 6.981438

ASP 39 1.64174317

GLN 40 6.45875119

GLN 41 8.26167531

ARG 42 9.13435506

LEU 43 6.56927527

ILE 44 12.6573103

PHE 45 6.49328996

ALA 46 0

GLY 47 4.1699816

LYS 48 7.86102551
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Table S1 – continued from previous page

residue number lnPF

GLN 49 3.80617316

LEU 50 8.45969763

GLU 51 5.41798272

ASP 52 2.73316851

GLY 53 3.31802512

ARG 54 9.9932193

THR 55 11.3494419

LEU 56 13.0211187

SER 57 6.68440452

ASP 58 6.84098031

TYR 59 10.9580025

ASN 60 5.11404149

ILE 61 8.54949845

GLN 62 8.27088565

LYS 63 3.09927954

GLU 64 6.37125295

SER 65 7.52484808

THR 66 6.1939539

LEU 67 7.75740918

HIS 68 8.49884158

LEU 69 7.95773408

VAL 70 9.09981629

LEU 71 3.0278994

ARG 72 2.5788953
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Table S1 – continued from previous page

residue number lnPF

LEU 73 0

ARG 74 0

GLY 75 0

GLY 76 0

Table S2: Experimental protection factors measured for BPTI taken from Persson et al.,17

converted to lnPF values.

residue number lnPF

CYS 5 8.52877518

LEU 6 7.43504727

GLU 7 8.229439

TYR 10 5.756463

GLY 12 3.840712

ALA 16 6.963017

ARG 17 1.752267

IIE 18 12.37639

IIE 19 2.256533

ALA 25 3.04632

GLY 28 7.676819

LEU 29 10.85899

CYS 30 3.677228

THR 32 5.701201

VAL 34 3.734793

TYR 35 11.23431
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Table S2 – continued from previous page

residue number lnPF

GLY 36 9.574149

GLY 37 11.43924

CYS 38 4.503856

LYS 41 6.988346

ARG 42 2.141404

ASN 43 5.125554

ASN 44 14.02274

SER 47 4.503856

ALA 48 2.403899

MET 52 11.02938

ARG 53 9.825131

THR 54 7.962339

CYS 55 12.1139

GLY 56 8.008391

Table S3: Experimental protection factors measured for apomyoglobin at pH 6, taken from
Nishimura et al.,37 and converted to lnPF values.

residue number lnPF

LEU 2 3.3387

SER 3 9.0552

GLU 4 2.1162

GLY 5 2.6101

GLU 6 8.3181

TRP 7 8.5457
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Table S3 – continued from previous page

residue number lnPF

GLN 8 9.4170

LEU 9 9.4915

VAL 10 8.0990

LEU 11 8.9169

HIS 12 6.7276

VAL 13 9.7889

TRP 14 9.1266

ALA 15 9.2542

LYS 16 10.1224

VAL 17 8.7396

GLU 18 8.2774

ALA 19 6.1741

VAL 21 0.5004

ALA 22 4.3512

GLY 23 8.1983

HIS 24 8.7599

GLN 26 9.3119

ILE 28 9.1152

LEU 29 8.6984

ILE 30 7.8670

ARG 31 9.9290

LEU 32 9.5716

PHE 33 8.9773

LYS 34 9.4717
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Table S3 – continued from previous page

residue number lnPF

SER 35 9.0890

HIS 36 5.6884

THR 39 7.0556

LEU 40 8.2188

GLU 41 5.1578

LYS 42 4.6338

PHE 46 4.3853

LYS 47 6.0469

LEU 49 3.6004

LYS 50 5.6584

THR 51 3.1733

GLU 52 7.5530

ALA 53 1.5526

GLU 54 7.9263

MET 55 8.3330

LYS 56 9.4799

ALA 57 9.7606

SER 58 10.3153

GLU 59 3.0033

LEU 61 6.8314

LYS 62 4.8015

LYS 63 9.8059

VAL 66 5.9719

VAL 68 7.8175
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Table S3 – continued from previous page

residue number lnPF

LEU 69 8.1635

THR 70 8.5773

ALA 71 6.4889

LEU 72 2.8538

GLY 73 6.7213

ALA 74 5.9142

ILE 75 9.0367

LEU 76 8.0870

LYS 77 8.0141

LYS 78 8.3490

LYS 79 8.7400

GLU 85 0.9784

LEU 86 1.3868

LYS 87 1.7472

LEU 89 0.7190

ILE 101 0.3748

LYS 102 2.3550

TYR 103 3.8462

LEU 104 4.4498

GLU 105 8.4099

PHE 106 4.1129

ILE 107 7.5292

SER 108 7.6937

GLU 109 8.3079
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Table S3 – continued from previous page

residue number lnPF

ALA 110 9.1859

ILE 111 8.3689

ILE 112 7.9042

HIS 113 10.8719

VAL 114 10.0759

LEU 115 9.4460

HIS 116 7.9725

SER 117 10.3608

HIS 119 4.5392

GLN 128 10.2523

ALA 130 9.8983

MET 131 9.2917

ASN 132 11.2423

LYS 133 10.1108

ALA 134 10.8549

LEU 135 11.0577

GLU 136 9.0395

LEU 137 7.8229

PHE 138 10.8617

ARG 139 9.8380

LYS 140 2.7987

ILE 142 5.5787

ALA 143 6.2290

ALA 144 7.6644
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Table S3 – continued from previous page

residue number lnPF

LYS 145 3.9210

LYS 147 3.2341

GLU 148 2.6429

LEU 149 2.3232

TYR 151 2.0006
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