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Università di Bologna, Italy

paolo.ciaccia@unibo.it

Davide Martinenghi
Dipartimento di Elettronica, Informazione e

Bioingegneria (DEIB)
Politecnico di Milano, Italy

davide.martinenghi@polimi.it

ABSTRACT

Traditionally, skyline and ranking queries have been treated
separately as alternative ways of discovering interesting data
in potentially large datasets. While ranking queries adopt
a specific scoring function to rank tuples, skyline queries
return the set of non-dominated tuples and are independent
of attribute scales and scoring functions. Ranking queries
are thus less general, but usually cheaper to compute and
widely used in data management systems.

We propose a framework to seamlessly integrate these two
approaches by introducing the notion of restricted skyline
queries (R-skylines). We propose R-skyline operators that
generalize both skyline and ranking queries by applying the
notion of dominance to a set of scoring functions of interest.
Such sets can be characterized, e.g., by imposing constraints
on the function’s parameters, such as the weights in a linear
scoring function. We discuss the formal properties of these
new operators, show how to implement them efficiently, and
evaluate them on both synthetic and real datasets.

1. INTRODUCTION
When dealing with the problem of simultaneously opti-

mizing different criteria (such as those represented by the
different attributes of the objects in a dataset), a prob-
lem known as multi-objective optimization, three main ap-
proaches are commonly adopted [7] in all data-intensive con-
texts, including data mining and database systems. (1) The
ranking queries (or top-k) approach: the original multi-
objective problem is reduced to a single-objective problem
by using a so-called scoring function, in which parameters
such as weights are used to express the relative importance
of the different attributes and to adjust scales. (2) The
lexicographical approach: a strict priority among the at-
tributes is established. (3) The skyline approach: all the
non-dominated objects are returned to the user (object t
dominates object s iff t is no worse than s on all the at-
tributes, and strictly better on at least one). As argued in [7]
and virtually in all papers focusing on a specific approach,
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Table 1: Pros and cons of multi-objective optimization approaches.

Evaluation criteria ↓ Queries → Ranking Lexicographic Skyline
Simplicity of formulation No Yes Yes
Overall view of interesting results No No Yes
Control of result cardinality Yes Yes No
Trade-off among attributes Yes No No
Relative importance of attributes Yes Yes No

each of these methods has pros and cons (also refer to Ta-
ble 1). Ranking queries heavily depend on the particular
choice of weights in the scoring function, and thus fail to of-
fer an overall view of the dataset. This may require to repeat
the query several times with different choices of weights, or
to include in the scoring function other notions such as the
diversity of the result set, which have problems of their own.
The point of view of lexicographic queries is too narrow, in
that they enforce a linear priority between attributes, and
even the smallest difference in the most important attribute
can never be compensated by the other attributes. Skyline
queries provide a good overview of potentially interesting
tuples, but may contain too many objects.

With the aim of reducing the size of the result of a sky-
line query, [15] has introduced prioritized skyline (p-skyline)
queries, in which modalities 2 and 3 are combined together.
However this “mixed” approach inherits the basic problem
of lexicographic queries, in that it allows no trade-off be-
tween attributes. Furthermore, still no explicit control on
the result cardinality is possible.

In this paper we introduce an original framework that
combines the approaches 1 and 3 described above. In par-
ticular, based on the concepts of scoring functions and sky-
line, we introduce the notion of restricted skyline (R-skyline)
queries. Similarly to p-skylines, R-skylines can take into
account the different importance that different attributes
might have. However, unlike p-skylines, in which a strict
priority between attributes is assumed, R-skylines may be
used to model priority by means of arbitrary constraints on
the space of the weights, thus allowing for more flexibility.
Furthermore, R-skylines may consider arbitrary families of
scoring functions. Overall, this leads to the novel concept of
F-dominance, in which a tuple t F-dominates tuple s when
t is always better than or equal to s according to all the
scoring functions in F (and strictly better for at least one
scoring function in F).

We present two R-skyline operators: nd, characterizing
the set of non-F-dominated tuples; po, referring to the tu-
ples that are potentially optimal, i.e., best according to some
function in F . While nd and po coincide and capture the
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Table 2: The UsedCars relation (shown column-wise).

CarID C1 C2 C3 C4 C5 C6 C7
Price (×103) 10 18 20 20 25 35 40

Mileage (×103) 35 25 30 15 20 10 5

traditional skyline when F is the family of all monotone scor-
ing functions, their behaviors differ when subsets thereof are
considered. R-skylines indeed capture in a single framework
all the practically relevant approaches to multi-objective op-
timization, traditionally dealt with separately, and enable
the study of other scenarios of practical interest. For exam-
ple, in multicriteria analysis, decision makers may encounter
objectives in which the model parameters lack completeness
or confidence, and are characterized by complex preferences
between, e.g., attribute weights, such as “attribute C is
more important than attribute A, but no more than twice as
important” [18]. Other complex constraints characterizing
the objective might come from preference elicitation from a
crowd (see, e.g., [5] and references therein for strategies for
collecting preferences between tuples).

Example 1. For the relation UsedCars(ID,Price,Mileage)

in Table 2, a skyline query over the attributes Price and
Mileage (both to be minimized) will return cars C1, C2,
C4, C6, and C7. Now assume that your preferences con-
sider Price more important than Mileage (in which case a
p-skyline query would just return car C1, since it has the
minimum price). By considering the family of scoring func-
tions F = {wP Price + wMMileage | wP ≥ wM}, nd, i.e.,
the set of non-F-dominated cars, includes C1, C2, and C4,
with only C1 and C4 being also part of po. Although in the
skyline, both C6 and C7 are F-dominated by C4, which is
reasonable since they both have a relatively high price. How-
ever, car C2 is non-F-dominated, yet there is no combina-
tion of weights values making it a top-1 result.

The main contributions of this paper are as follows.
1. We introduce two operators, called R-skylines, gener-

alizing both skyline and ranking queries.
2. We study the properties of R-skylines and in particular

their relationship with skyline and top-1 queries, as well
as their behavior as the set F of scoring functions under
consideration varies.

3. We study the application of R-skylines when the scor-
ing functions in F are Lp norms or, generally, functions that
are linear in the weights (or monotonic transforms thereof).

4. We discuss two alternative approaches to computing
R-skylines based on Linear Programming, one addressing a
direct F-dominance test between tuples, the other charac-
terizing the “dominance region” wrt. F of a tuple.

5. We evaluate the effectiveness of R-skylines (i.e., their
ability to restrict the set of tuples of interest) in a number
of different experimental settings including synthetic as well
as real datasets; we also discuss different implementations
of the operators and test their efficiency.

Related work. Due to the limits that each of the basic
methods for multi-objective optimization exhibits, several
approaches have been attempted to help in more easily find-
ing interesting results in large datasets.

Several techniques have been proposed for reducing the
skyline size, a recent survey of which can be found in [12].
Among them, distance-based representative skylines [21] aim

to determine the k tuples in the skyline for which the max-
imum distance to the excluded skyline points is minimized.
Since this problem is NP-hard, only approximate solutions
can be provided. Furthermore, the method is also sensitive
to the specific metric used to measure distance between tu-
ples. Another approach to select a limited subset of skyline
tuples is to assign to each of them a measure of interesting-
ness based on some specific properties. Top-k Representa-
tive Skyline Points (RSP) [11] are the k skyline points that
together dominate the maximum number of (non-skyline)
points. Computing top-k RSP is NP-hard for three or more
dimensions, thus approximate solutions are adopted in prac-
tice. Top-k dominating queries [22] return the k tuples that
dominate the highest number of tuples in the dataset, i.e.,
they rank tuples according to the number of other tuples
they dominate. Besides the high computational cost in-
curred by this approach if the input dataset is not indexed, a
major drawback is that the score of a tuple depends on how
worse tuples are distributed, a problem that this method
shares with top-k RSP.

Among the methods that only rely on the order proper-
ties of skylines, i.e., without any reference to the actual un-
derlying attribute domains (which can consequently also be
categorical), we mention p-skylines and trade-off skylines.
P-skyline (or Prioritized skyline) queries [15] are a gener-
alization of skyline queries in which the user can specify
that some attributes are more important than others, by re-
specting the syntax of so-called p-expressions. In practice, a
p-expression over d attributes will have fewer than d “most
important” attributes. Since these ultimately determine the
size of the result, p-skylines usually contain many fewer tu-
ples than skylines. P-skylines can be efficiently computed
by taking advantage of the reduced cardinality of the result,
i.e., with an output-sensitive algorithm [14]. The idea of
trade-off skylines [13] is similar to the one we adopt in this
paper. However, while we consider numerical domains and
consequently numerical trade-offs, [13] adopts the view of
qualitative trade-offs. Although the latter has the advan-
tage of being also applicable to categorical attributes, the
price to be paid is increased computational complexity.

Somehow related to what we study in this paper are those
works on top-k queries in which the scoring function is not
univocally defined, e.g., [24, 16]. Along these lines, [20]
studies representative orderings (such as the most proba-
ble ordering) and their stability wrt. a change of parameter
values, by assuming that the set of parameters (weights) is
a random variable with a uniform distribution.

2. PRELIMINARIES
Consider a relational schema R(A1, . . . , Ad), with d ≥ 1.

Without loss of generality, we assume that the domain of
each attribute Ai is [0, 1], since each numeric domain could
be normalized in this interval. In this paper, we consider
lower values to be better than higher ones, but the opposite
convention would of course also be possible. A tuple t over
R is a function that associates a value vi in [0, 1] with each
attribute Ai; t is also written as 〈v1, . . . , vd〉, and each vi may
be denoted by t[Ai]. Given the geometric interpretation of
a tuple in this context, in the following we sometimes also
call it a point. An instance over R is a set of tuples over R.
In the following, we refer to an instance r over R.

Definition 1 (Dominance and skyline). Let s, t be
tuples over R. Then, t dominates s, written t ≺ s, if
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(i) ∀i. 1 ≤ i ≤ d → t[Ai] ≤ s[Ai], and (ii) ∃j. 1 ≤ j ≤
d ∧ t[Aj ] < s[Aj ]. The skyline of r (Sky(r)) is defined as:

Sky(r) = {t ∈ r | ∄s ∈ r. s ≺ t}. (1)

Equivalent definitions of skyline may be derived by resort-
ing to the notion of monotone scoring functions, i.e., those
monotone functions that can be applied to tuples over R to
obtain a non-negative value representing a score.

Definition 2 (Monotone scoring function). A
scoring function f is a function f : [0, 1]d → R+. For
a tuple t = 〈v1, . . . , vd〉 over R, the value f(v1, . . . , vd)
is called the score of t, also written f(t). Function f is
monotone if, for any tuples t, s over R, the following holds:

(∀i ∈ {1, . . . , d}. t[Ai] ≤ s[Ai]) → f(t) ≤ f(s). (2)

The (infinite) set of all monotone scoring functions is de-
noted by M.

Note that, as a consequence of our preference for lower at-
tribute values, lower score values are also preferred over
higher ones. Intuitively, scoring functions could be thought
of as measuring a sort of distance from the “origin” tuple
〈0, . . . , 0〉, and we prefer tuples closer to the origin.

It is well known [3] that, for every tuple t in the skyline,
there exists a monotone scoring function such that t mini-
mizes that scoring function. Therefore, the skyline of r can
be equivalently specified as:

Sky(r)={t∈r | ∃f ∈M. ∀s∈r. s 6= t→f(t)<f(s)}. (3)

The previous expressions emphasize two possible ways to
regard a skyline: (i) as the set of all non-dominated tuples
(Equation (1)), or (ii) as the set of potentially optimal tu-
ples, i.e., those that are better than all the others according
to at least one monotone scoring function (Equation (3)).
While the former view is typically adopted for skylines, the
latter is commonly applied to “top-k” queries (here with
k = 1), i.e., those queries whose goal is to return the k best
tuples according to a given scoring function. As we shall see
in Section 3, although these two views coincide here, their
underlying concepts are different.

3. RESTRICTED SKYLINES
We now adopt the two different views of skylines to intro-

duce two corresponding operators, called restricted skyline
operators (R-skylines), whose behavior is the same as Sky,
but applied to a limited set of monotone scoring functions
F ⊆ M. In the following, we always assume F to be non-
empty. In order to precisely characterize the notions to be
presented in this paper, we introduce the following property
regarding sets of scoring functions.

Definition 3. A set F of scoring functions is said to be
tuple-distinguishing if the following holds:

∀t, s ∈ [0, 1]d. t 6= s → (∃f ∈ F . f(t) 6= f(s)) . (4)

Intuitively, F satisfies Equation (4) if F is “rich enough” to
distinguish between any two different tuples, i.e., if there is
at least a function in F associating two different scores to
two different tuples. Most interesting cases of sets of mono-
tone scoring functions are tuple-distinguishing. However,
there are a few notable exceptions, among which the case
of sets of one single function, or the case of sets of func-
tions independent of an attribute. All of these cases are also

captured by our framework. However, in order to simplify
the presentation, we shall henceforth only consider tuple-
distinguishing sets of functions, and implicitly assume this
property in the rest of the paper.

We now extend the notion of dominance introduced in
Definition 1 so as to take into account the set of scoring
functions under consideration.

Definition 4 (F-Dominance). Let F be a set of mono-
tone scoring functions. A tuple t F-dominates another tuple
s 6= t, denoted by t ≺F s, iff ∀f ∈ F . f(t) ≤ f(s).

Example 2. Consider the tuples t = 〈0.5, 0.5〉, s = 〈0, 1〉,
the monotone scoring functions f1(x, y) = x+y and f2(x, y)
= x+ 2y, and the set F = {f1, f2}. We have t ≺F s, since
f1(t) = f1(s) = 1 and f2(t) = 1.5 < f2(s) = 2, and therefore
the condition of Definition 4 holds.

However, t 6≺M s, since M includes, among others,
f3(x, y) = 2x+y, for which f3(t) = 1.5 > f3(s) = 1, thereby
violating the condition of Definition 4.

With Definition 4 at hand, we can now introduce the first
R-skyline operator, called non-dominated restricted skyline,
which consists of the set of non-F-dominated tuples in r.

Definition 5 (nd). Let F ⊆ M be a set of monotone
scoring functions. The non-dominated restricted skyline of
r with respect to F , denoted by nd(r;F), is defined as the
following set of tuples:

nd(r;F) = {t ∈ r | ∄s ∈ r. s ≺F t}. (5)

Note that the right-hand side of Equation (5) is similar to
that of Equation (1), where ≺ has been replaced by ≺F .
Observe that, clearly, ≺M coincides with ≺.

The second R-skyline operator, called potentially optimal
restricted skyline, returns the tuples that are best (i.e., top
1) according to some scoring function in F .

Definition 6 (po). Let F ⊆ M be a set of monotone
scoring functions. The potentially optimal restricted skyline
of r with respect to F , denoted by po(r;F), is defined as:

po(r;F)={t∈r | ∃f ∈F . ∀s∈r. s 6= t→f(t)<f(s)}. (6)

Note that the right-hand side of Equation (6) is similar to
that of Equation (3), where M has been replaced by F .
In the remainder of the paper we discuss the main prop-

erties of these operators and study how to compute them
efficiently, thus addressing Problem 1 below.

Problem 1. To efficiently compute nd(r;F) and
po(r;F) for any given instance r and set of monotone
scoring functions F .

3.1 Basic Properties
In the following we present basic facts about nd and po,

and further investigate their relationship with Sky.
As a direct consequence of the definitions, we observe that,

when the set F of scoring functions under consideration co-
incides with M, it is po(r;M) = nd(r;M) = Sky(r). In
general, though, there is a containment relationship, as in-
dicated in Proposition 1 below.1

Proposition 1. For any set F of monotone scoring
functions, it is po(r;F) ⊆ nd(r;F) ⊆ Sky(r).

1All proofs are omitted in the interest of space.
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(a) Tuples from Example 3 in

[0, 1]d, d = 2. F-dominance re-
gions in gray.
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(b) Region of normalized
weights such that w1 ≥ w2 (in
gray).

Figure 1: Example 3 – tuples and weights in [0, 1]d, d = 2, C = {w1 ≥

w2}, F = LC

1
, where L1 is the set of monotone scoring functions that

are weighted sums of attribute values.

We also observe that nd and po are monotone operators
with respect to the set of scoring functions, as specified in
Proposition 2 below.

Proposition 2. For any two sets F1 and F2 of mono-
tone scoring functions such that F1 ⊆ F2, it is:

nd(r;F1) ⊆ nd(r;F2), po(r;F1) ⊆ po(r;F2). (7)

A case of practical relevance is when one starts with a set
F of scoring functions and adds some constraints on the
way they are defined. A notable example is that of func-
tions characterized by parameters such as weights. To this
end, let W be the set of all normalized weight vectors, i.e.,
W ⊆ [0, 1]d and, for each W = (w1, . . . , wd) ∈ W, we have
∑d

i=1 wi = 1. Let C be a, possibly empty, set of (linear)
constraints on weights, and denote with W(C) the subset of
W that satisfies C, i.e.,: W(C) = {W ∈ W | C(W ) = true}.
If F is a set of functions with parameters w1, . . . , wd, we
denote by FC the set of functions obtained from set F by
imposing the set of constraints C. Henceforth, we always
assume that C is not contradictory, i.e., W(C) 6= ∅, and that
the application of C leads to a non-empty set FC 6= ∅.

Corollary 1. For any set F of monotone functions and
sets of constraints C1 and C2 such that W(C1) ⊆ W(C2), it is:

nd(r;FC1) ⊆ nd(r;FC2), po(r;FC1) ⊆ po(r;FC2). (8)

We now define the F-dominance region of a tuple t.

Definition 7. The F-dominance region DR(t;F) of a
tuple t under a set F of monotone scoring functions is the
set of all points in [0, 1]d that are F-dominated by t:

DR(t;F) = {s ∈ [0, 1]d | t ≺F s}. (9)

A consequence of Definition 7 is that the F-dominance re-
gion grows larger for smaller sets of functions, as specified
in Corollary 2 below.

Corollary 2. For any tuple t over R and any two sets
F1 and F2 of monotone scoring functions such that F1 ⊆ F2,
it is DR(t;F1) ⊇ DR(t;F2).

We now illustrate Proposition 1 and Definition 7 with the
following Example.

Example 3. Let L1 be the set of all the linear scoring
functions of the form f(x, y) = w1x+ w2y and let F = LC

1 ,
where C = {w1 ≥ w2}. Consider tuples t1 = 〈0.3, 0.6〉,
t2 = 〈0.4, 0.45〉, t3 = 〈0.5, 0.2〉, t4 = 〈0.6, 0.15〉, and instance
r = {t1, t2, t3, t4}, shown in Figure 1a. We have po(r;F) =
{t1, t3} ⊆ nd(r;F) = {t1, t2, t3} ⊆ Sky(r) = r.

To see this, first observe that no tuple in r dominates any
other tuple in r, and therefore Sky(r) = r. However, we
note that t3 ≺F t4: indeed, checking whether f(t3) ≤ f(t4)
amounts to checking whether w1(0.5−0.6) ≤ w2(0.15−0.2),
which is always true in F , since w1 ≥ w2. Therefore t4 /∈
nd(r;F). To further emphasize this, Figure 1a shows in gray
the region of [0, 1]d whose points (including tuple t4) are F-
dominated by some tuple in r, i.e., ∪t∈rDR(t;F), whereas
Figure 1b shows in gray the region of normalized weights
such that w1 ≥ w2. The computation of such regions will be
studied in depth in Section 4.1.

Finally, with linear scoring functions, as is well
known [20], top-1 tuples can only lie in the boundary of the
convex hull of the F-dominated region, thus t2 /∈ po(r;F).
Indeed, there is no function f ∈ F for which both f(t2) <
f(t1) and f(t2) < f(t3), as there are no w1, w2 such that
w1(0.4−0.3) < w2(0.6−0.45), w1(0.4−0.5) < w2(0.2−0.45),
and w1 ≥ w2 all hold.

4. RSKYLINES AND LP NORMS
A practically relevant case to consider is that of the

weighted Lp norms, defined as follows, where W =
(w1, . . . , wd) ∈ W is a normalized weight vector:

LW
p (t) =

(

d
∑

i=1

wit[Ai]
p

)1/p

, p ∈ N. (10)

We therefore turn our attention to the case in which the set
of monotone scoring functions coincides with the family Lp

of weighted Lp norms:

Lp = {LW
p | W ∈ W}, p ∈ N. (11)

The behaviors of nd and po are very different under Lp.

Theorem 4. For every value of p and every r,
nd(r;Lp) = Sky(r).

Thus, any Lp family is “powerful enough” to reveal all sky-
line points with nd. However, this does not hold for po, as
indicated in the following theorems.

Theorem 5. Let p < p′, with p, p′ ∈ N. Then, for every
r, po(r;Lp) ⊆ po(r;Lp′).

Theorem 6. For each p ∈ N, there exists a relation r
such that po(r;Lp) ⊂ Sky(r).

The results of Theorems 4, 5 and 6, together with the
observation of Corollary 2, suggest that, by imposing some
constraints C on the weights, one can use any Lp family to
smoothly move from the full skyline (when C = ∅) to top-1
queries (when W(C) amounts to a single weight vector).

4.1 Checking FDominance for Lp norms
In order to better understand the notion of F-dominance,

we focus on the case F = LC
p , where C are linear constraints

on the weights, and show that the problem is in PTIME and
that its time complexity is independent of p.
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Theorem 7 (F-dominance test). Let p be a finite
positive integer and C = {C1, . . . , Cc} a set of linear con-

straints on weights, where Cj =
∑d

i=1 ajiwi ≤ kj (for
j ∈ {1, . . . , c}). Then, t ≺LC

p
s iff the following linear pro-

gramming problem (LP) in the unknowns W = (w1, . . . , wd)
has a non-negative solution:

minimize
∑d

i=1 wi(s[Ai]
p − t[Ai]

p) (12)

subject to wi ∈ [0, 1] i ∈ {1, . . . , d}
∑d

i=1 wi = 1
∑d

i=1 ajiwi ≤ kj j ∈ {1, . . . , c}.

Note that Theorem 7 has a validity that goes far beyond
LC

p families, since it applies to any set F whose functions are
weighted sums of monotone functions of single attributes,
e.g.,

∑

i wi log(1+ t[Ai]), and even monotonic transforms of
those, e.g., exp(

∑

i wit[Ai]).
Computing nd(r;F) using Theorem 7 is likely to be time-

consuming, since a different LP problem needs to be solved
for each F-dominance test. An alternative approach is to
explicitly compute the F-dominance regions of tuples, and
then discard those tuples that belong to at least one of such
regions. The advantage of this approach is that the com-
putation of the F-dominance region of a tuple t can be
performed just once, thus independently of how many F-
dominance tests involve t. Furthermore, as shown below,
the cost of the most expensive component (i.e., vertex enu-
meration of a polytope) of the calculation of F-dominance
regions has to be paid just once for all tuples.

In order to compute DR(t;LC
p), a fundamental observa-

tion is that, for any set C of linear constraints on weights,
W(C) is a convex polytope contained in the standard (or
unit) (d− 1)-simplex.2 We have the following major result.

Theorem 8 (F-dominance region). Let p ∈ N and
C = {C1, . . . , Cc} be a set of linear constraints on weights,

where Cj =
∑d

i=1 ajiwi ≤ kj (j ∈ {1, . . . , c}). Let

W (1), . . . ,W (q) be the vertices of W(C). The dominance re-
gion DR(t;LC

p) of a tuple t under LC
p is the locus of points

s defined by the q inequalities:

d
∑

i=1

w
(ℓ)
i s[Ai]

p ≥
d
∑

i=1

w
(ℓ)
i t[Ai]

p, ℓ ∈ {1, . . . , q}. (13)

As a consequence of Definition 7, DR(t;F) is a closed region.

Example 9. Let d = 2, p = 1, and consider tuples t1 =
〈0.3, 0.6〉, t3 = 〈0.5, 0.2〉, t4 = 〈0.6, 0.15〉 from Example 3.
For C = {w1 ≥ w2} and considering that w1 + w2 = 1 and

0 ≤ w1, w2 ≤ 1, the vertices of W(C) are W (1) = (1, 0) and

W (2) = (0.5, 0.5). Figure 1a shows the tuples along with
their LC

1 -dominance regions, while Figure 1b shows W(C).
By Theorem 8, DR(t3;L

C
1 ) is characterized by the system of

inequalities:

{s[A1] ≥ 0.5, s[A1] + s[A2] ≥ 0.7}. (14)

Tuple t4 satisfies (14) and thus t3 ≺LC
1

t4. For tuple t1, the

system becomes:

{s[A1] ≥ 0.3, s[A1] + s[A2] ≥ 0.9}. (15)

Here, t4 does not satisfy (15) and therefore t1 6≺LC
1

t4.

2Note that the standard (d − 1)-simplex is a (d − 1)-
dimensional region in Rd.

(a) F-dominance region
DR(t,F).

(b) W(C) (in gray) on the 2-
simplex.

Figure 2: Example 10 – tuples and weights in [0, 1]d, d = 3, C =

{w1 + w2 ≥ w3}, F = LC

2
.

As Example 9, Figure 1a and Inequalities (13) suggest, the
“shape” of DR(t;LC

p) (modulo cropping in the [0, 1]d hy-
percube) is independent of t, since the left-hand sides are
the same and the right-hand sides are, for any given t, a
constant.

Example 10. For a non-linear example, let d = 3, p =
2, and C = {w1 + w2 ≥ w3}. The vertices of W(C) are:

W (1) = 〈1, 0, 0〉, W (2) = 〈0, 1, 0〉, W (3) = 〈0.5, 0, 0.5〉, and

W (4) = 〈0, 0.5, 0.5〉. For t = 〈0.5, 0.5, 0.5〉, DR(t;LC
2 ) is

characterized by:

{ s[A1]
2 ≥ 0.25, s[A2]

2 ≥ 0.25,

s[A1]
2 + s[A3]

2 ≥ 0.5, s[A2]
2 + s[A3]

2 ≥ 0.5 }. (16)

Therefore, tuple t′ = 〈0.7, 0.5, 0.3〉 is not LC
2 -dominated by

t, as the last inequality in (16) is not satisfied. See Figure 2
for a graphical representation.

The only significant overhead introduced by this approach
is the enumeration of the vertices of W(C). However, due to
the above observation, this has to be done just once.

As with Theorem 7, even Theorem 8 also holds for the
family of linear functions wrt. the weights.

4.2 Computing potentially optimal tuples
We observe that, for any set F , po(r;F) can be computed

starting from nd(r;F) by retaining only the tuples that are
not F-dominated by any “virtual” tuple obtained by com-
bining other tuples in nd(r;F). When F belongs to the
LC

p family with linear constraints C, this can be done again
efficiently by solving an LP problem.

Theorem 11 (Potential optimality test). Let p
be a finite positive integer, C a set of linear constraints on
weights. Let W (1), . . . ,W (q) be the vertices of W(C) and
let nd(r;LC

p) = {t1, t2, . . . , tσ, t}. Then, t ∈ po(r;LC
p) iff

there is no convex combination s of t1, . . . , tσ such that
s ≺LC

p
t, i.e., iff the following linear system in the unknowns

α = (α1, . . . , ασ) is unsatisfiable:
∑d

i=1 w
(ℓ)
i (
∑σ

j=1 αjtj [Ai]
p) ≤

∑d
i=1 w

(ℓ)
i t[Ai]

p

ℓ ∈ {1, . . . , q} (17)

αj ∈ [0, 1] j ∈ {1, . . . , σ}
∑σ

j=1 αj = 1.

As with Theorems 7 and 8, even Theorem 11 also holds
for any set F whose functions are weighted sums of mono-
tone functions of single attributes and monotonic transforms
thereof.
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Algorithm 1: SLP2 and SVE2 for nd.

Input: relation r, constraints C, family F = LC
p . Output: nd(r;F).

1. Prepare

2. let S := Sky(r) // phase one
3. for each s in S // candidate F-dominated tuple

4. if SVE2 then compute left-hand sides of Inequalities (13)

5. for each t in ND // candidate F-dominant tuple

6. if t ≺F s then continue to line 3

7. let ND := ND ∪ {s}
8. return ND

Subprocedure: Prepare

9. let W (1), . . . ,W (q) be the vertices of W(C)
10. sort r using the coordinates of the centroid of W(C) as weights
11. let ND := ∅

Algorithm 2: SVE1 for nd.

Input: relation r, constraints C, family F = LC
p . Output: nd(r;F).

1. Prepare // same as in Algorithm 1
2. for each s in r // candidate F-dominated tuple

3. for each t in ND // candidate F-dominant tuple

4. if t ≺ s then continue to line 2

5. compute left-hand sides of Inequalities (13)

6. for each t in ND // candidate F-dominant tuple

7. if t ≺F s then continue to line 2

8. let ND := ND ∪ {s}
9. return ND

5. ALGORITHMS
Based on different options for computing nd and po, we

consider several algorithmic alternatives.

5.1 Computing nd
Sorting. The first option regards whether to sort the

dataset beforehand to produce a topological sort with re-
spect to the F-dominance relation, similarly to what the
SFS algorithm [4] does to compute Sky. The sorting func-
tion we adopt is a weighted sum using as weights the coor-
dinates of the centroid of the polytope W(C) determined by
the constraints in the space of weights. This choice guaran-
tees that if tuple t precedes tuples s in the sorted relation,
then s 6≺F t. In the following, the letter “S” in the algo-
rithm’s name will indicate that sorting is used, “U” that the
dataset is unsorted.

F-dominance. Another option regards the F-dominance
test. The alternatives for testing whether s ≺F t are:
i) solving an LP problem as in Theorem 7 (indicated by “LP”
in the algorithm’s name); ii) checking whether t ∈ DR(s;F)
(i.e., the F-dominance region of s) as in Theorem 8 through
vertex enumeration of the polytope (“VE” in the name).

Phases. We can also choose whether the computa-
tion of nd should be applied after computing Sky (i.e., in
two phases, indicated by “2” in the algorithm’s name) or
whether dominance and F-dominance tests should be inte-
grated (i.e., in one phase, “1” in the algorithm’s name).
So far, there are 8 alternatives. We start by describing

the 4 2-phase alternatives (ULP2, UVE2, SLP2, SVE2).
The pseudocode for the sorted variants SLP2 and SVE2

is shown in Algorithm 1: the main idea is to scan the tu-
ples sortedly and to populate a current window ND of non-
dominated tuples among those that are in Sky(r); Sky(r) is
computed via the SFS algorithm, since the dataset is sorted.
Thanks to sorting, no tuple will ever be removed from ND

Algorithm 3: SVE1F for nd.

Input: relation r, constraints C, family F = LC
p . Output: nd(r;F).

1. Prepare // same as in Algorithm 1
2. for each s in r // candidate F-dominated tuple

3. compute left-hand sides of Inequalities (13)

4. for each t in ND // candidate F-dominant tuple

5. if t ≺ s ∨ t ≺F s then continue to line 2

6. let ND := ND ∪ {s}
7. return ND

(no tuple can be F-dominated by a tuple found later in
the sorted relation). The vertices of the polytope W(C) are
computed just once (line 9). We enumerate sortedly ev-
ery candidate F-dominated tuple s (line 3) and compare it
against every candidate F-dominant tuple t (line 6) to de-
cide whether s should be added to ND. The F-dominance test
of line 6 is done via Theorem 7 for SLP2 and via Theorem 8
for SVE2. In the latter case, it is useful to precompute the
left-hand sides of Inequality (13) already at line 4.

The unsorted counterparts ULP2 and UVE2 are similar, but,
without sorting, i) we cannot compute Sky(r) via SFS, and
thus use the classical BNL algorithm [1], and ii) when a tuple
s is added to ND, other tuples in ND may be F-dominated
by s, and thus need to be removed (also the second phase
of ULP2 behaves essentially as BNL, but with F-dominance
instead of dominance tests).

Since the above described algorithms adopt in the first
phase either SFS or BNL for computing Sky(r), it follows
that: i) for the unsorted variants ULP2 and UVE2, multiple
passes over the datasets may be required depending on the
available memory space, as in BNL; ii) for the sorted vari-
ants SLP2 and SVE2, multiple passes are needed only if the
size of Sky exceeds the memory space, as in SFS.

As will be shown in Section 6.2, S strategies are faster than
U strategies (except perhaps for small datasets), and VE is
orders of magnitude faster than LP. Therefore, we shall con-
sider 1-phase counterparts for SVE2 only. The pseudocode
of SVE1 is shown in Algorithm 2. Instead of first comput-
ing Sky and then carving nd out of it, SVE1 first tries to
discard the candidate F-dominated tuple s by using only
the easier dominance tests (lines 3–4) against the non-F-
dominated tuples in ND; only if all such tests fail, the harder
F-dominance (lines 6–7) tests are executed.

The last 1-phase alternative we consider (Algorithm 3) in-
terleaves dominance and F-dominance tests, thus perform-
ing, for each new tuple s, a single pass over ND (and is thus
denoted SVE1F since F-dominance is checked first, before
moving to the next tuple in ND). The rationale behind SVE1F

is that, for those cases in which F-dominance is much more
effective in pruning tuples than simple dominance, this ap-
proach can lead to saving many dominance tests wrt. SVE1,
although perhaps attempting more F-dominance tests.

Note that both SVE1 and SVE1F require multiple passes
over the dataset only if nd does not fit in main memory.

5.2 Computing po
For the computation of po(r;F), we start from the tu-

ples in nd(r;F) and, by Theorem 11, we discard any tu-
ple t that is F-dominated by a convex combination of
tuples in nd(r;F) \ {t}. However, directly checking F-
dominance via (17) may be prohibitively time consuming
when σ = |nd(r;F)| − 1 is large. We therefore try, in Algo-
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Algorithm 4: POND for po.

Input: relation r, constraints C, family F = LC
p . Output: po(r;F).

1. let PO := nd(r;F) // including Prepare as in Algorithm 1
2. let σ̃ := 2; let lastRound := false

3. while(¬lastRound)

4. if σ̃ ≥ |PO| − 1 then lastRound := true

5. for each t in PO in reverse order // candidate F-dominated tuple

6. if ∃s. s ≺F t, s is convex comb. of the first min(σ̃, |PO| − 1)

tuples in PO \ {t} then let PO := PO \ {t}

7. let σ̃ := σ̃ · 2
8. return PO

Table 3: Time complexity of algorithms for computing nd and po.

algorithm first phase second phase

ULP2 O(N2) O(|Sky|2 · lp(c, d))
UVE2 O(N2) O(ve(c) + |Sky|2 · q)
SLP2 O(N · (logN + |Sky|)) O(|Sky| · |nd| · lp(c, d)))
SVE2 O(N · (logN + |Sky|)) O(ve(c) + |Sky| · |nd| · q)

SVE1, SVE1F O(ve(c) +N · (logN + |nd| · q))
POND O(|nd| · log |nd| · lp(q, |nd|))

rithm 4 (POND, i.e. po via nd), to reduce as early as possi-
ble the set of candidate potentially optimal tuples (PO) by
adopting the following heuristics: i) we start with a con-
vex combination of only σ̃ = 2 tuples (line 2), which will
give rise to smaller, faster-to-solve systems (17) for testing
F-dominance; as long as σ̃ < |PO| − 1, this condition is only
sufficient for pruning, but not necessary; after each round,
we double σ̃ (line 7); ii) we sortedly enumerate candidate
F-dominated tuples from PO in reverse order (line 5), as
the worst tuples wrt. the ordering are the most likely to
be F-dominated; iii) using linear system (17), we check the
existence of a convex combination of the first σ̃ tuples in
PO (line 6), as they are the best wrt. the ordering and thus
more likely to F-dominate other tuples. After this early
pruning, in the last round (enabled by line 4) all the re-
maining tuples are checked against a convex combination of
all the other tuples still in po, which is now a necessary and
sufficient condition for pruning, as in Theorem 11.

5.3 Considerations about complexity
We provide details about the input-output worst-case

complexity of our algorithms when both the number of tu-
ples N and the number of constraints c vary. In order
to remain parametric wrt. auxiliary problems we have to
solve, namely vertex enumeration and F-dominance via lin-
ear programming, we consider that they will be solved by
algorithms whose worst-case complexity is in O(ve(c)) and
O(lp(x, y)), respectively, where x is the number of LP in-
equalities and y is the number of variables in the LP prob-
lem. The vertex enumeration problem is NP-hard in gen-
eral and it is not known whether for the special case of
bounded polytopes (like W(C)) an algorithm exists with
PTIME input-output complexity. We also observe that, for
any fixed value of d, the number of vertices q is at most
O(c⌊d/2⌋) (see [10] and references therein).

Table 3 summarizes our results. For brevity, we only dis-
cuss ULP2, SVE2, SVE1, SVE1F, and POND. For the 2-phase
algorithms, the complexity of the first phase is that of the
corresponding skyline algorithm [9]. In the second phase,
ULP2 performs at most O(|Sky|2) F-dominance tests, each
of which costs O(lp(c, d)). On the other hand, SVE2 first enu-

merates the vertices ofW(C), which costsO(ve(c)), and then
will perform at most |Sky| · |nd| F-dominance tests using
Theorem 8, each of which costs O(q), where q is the num-
ber of vertices of W(C). The worst-case complexity of SVE1
and SVE1F is the same, since, besides enumerating vertices
of W(C) and sorting the dataset, both execute O(N · |nd|)
F-dominance tests. From the comparison between SVE2 and
SVE1 (and SVE1F), we argue that the larger the skyline, the
more SVE2 will be penalized.

The POND algorithm will execute the loop at most
⌈log2 |nd|⌉ times, which happens in the very unlikely case
in which most of the tuples in nd \ po appear before those
in po in the ordering; at each iteration, POND will execute at
most |nd| F-dominance tests, the cost of which is bounded
by O(lp(q, |nd|)), from which the result follows.
In terms of space, besides that needed by the 2-phase

approaches to store the intermediate result Sky, and that
required by the nd window, the only additional overhead
is introduced by the specific procedures used to enumerate
vertices and test F-dominance by LP. Notice that the input
to vertex enumeration is a set of c constraints, whereas the
output is a set of q vertices. On the other hand, the largest
LP problem (corresponding to the last round of the POND

algorithm) will be a matrix of size at most q × (|nd| − 1).

6. EXPERIMENTS
In this section we aim to assess the efficiency of the var-

ious algorithmic alternatives for computing R-skylines, and
to understand how R-skylines compare to both skylines and
ranking queries. For a comprehensive analysis, we measure
efficiency and effectiveness in a number of different scenar-
ios, and study in particular how they are affected by i) data
distribution, ii) dataset size, iii) number of dimensions, and
iv) number of constraints. The relevant parameters are
shown in Table 4, with defaults in bold.

Table 4: Operating parameters for performance evaluation (defaults,
when available, are in bold).

Full name Tested value
Distribution synthetic: ANT, UNI; real: NBA, HOU
Synthetic dataset size (N) 10K, 50K, 100K, 500K, 1M
# of dimensions (d) 2, 4, 6, 8, 10
# of constraints (c) 1, 2, 3, 4, 5 (default: d/2)
Parameter of Lp norm (p) 1, 2, 3, 4, 5

6.1 Datasets and constraints
We use two families of datasets: synthetic datasets and

real datasets. Synthetic datasets are generated by the stan-
dard data generation tool used in [1]. For any value of d and
N mentioned in Table 4, we produced two d-dimensional
datasets of size N with values in the [0, 1] interval; one
of these datasets (UNI) has values distributed uniformly in
[0, 1], while the other (ANT) has values anti-correlated across
different dimensions – informally, points that are good in
one dimension are bad in one or all of the other dimensions.
In the interest of space, we do not include correlated syn-
thetic datasets in our study, as they are the least challenging
when it comes to computing skyline points.

The real datasets analyzed here are two well-known
datasets used in the context of skylines.
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The first one (NBA), reports statistics for each player in
each game regarding NBA seasons from 2008 to 2015. 3 We
selected 10 attributes with a clear numeric semantics for our
experiments, including offensive rating, defensive rating and
other measures of players’ performance. Although irrelevant
to the experiments, for coherence with the conventions used
in this paper, all these values have been normalized in the
[0, 1] interval, 0 being the best value. After cleaning entries
with null values, the dataset consisted of 190862 points. Fig-
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Figure 3: NBA dataset, d = 2, w1 ≥ w2: Sky, nd and po.

ure 3 offers a representation of the notions of R-skylines on
the NBA dataset when offensive and defensive ratings are the
only dimensions and there is a constraint stating that the
former weighs more than the latter: the skyline consists of
ten tuples (C. Anthony occurs for two different games), three
of which are potentially optimal (shown as green diamonds,
including NBA superstar LeBron James), and four of which
are non-F-dominated but not potentially optimal (orange
triangles); the F-dominance regions are shown in gray and
the slope of the diagonal lines on their border is −45◦.

The second dataset (HOU) consists of 127931 6-dimensional
points regarding household data scraped from www.ipums.

org. The HOU dataset shows a higher correlation and has a
limited number of dimensions; being less challenging than
the other datasets, we shall only report results about HOU in
the text, but not in the figures.

R-skylines are based on the notion of F-dominance, which
requires the definition of a set of monotone scoring functions
F . In the previous sections, we discussed how to characterize
F by means of constraints on the space of weights applied to
the family Lp of weighted Lp norms. For our experiments,
we consider one of the most common types of constraints
on weights: weak rankings (see, e.g., [6] for an overview
of useful constraints). In particular, for any number c of
constraints mentioned in Table 4 (with c < d), we considered
the following set: {wi ≥ wi+1|i ∈ {1, . . . , c}}. We omit the
results concerning other types of common constraints, as
they show trends similar to weak rankings. Moreover, we
study the effect of varying p on weighted Lp norms.

6.2 Results on efficiency
We assess efficiency of the different algorithms for com-

puting nd by measuring, in a number of different scenar-
ios, i) execution time (as measured on a machine sporting
a 2.2 GHz Intel Core i7 with 16 GB of RAM), ii) num-
ber of dominance tests, iii) number of F-dominance tests.
For computing po, we only report the execution time. The
“windows” storing partial results were implemented as plain
arrays, with no particular indexing structure built on the fly.

3Available at http://www.quantifan.com.
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(b) Anti-correlated distribution.

Figure 4: Performance of 2-phase algorithms for nd on smaller-scale
datasets as the size N varies.

All LP problems were solved by integrating our system
with the linear programming tool lp solve.4 In the worst-
case scenario (d = 10, c = 5), solving the LP problems in
Theorem 7 required 0.24ms on average. In the same sce-
nario, it took 3.7ms on average to check F-dominance with
respect to a convex combination of tuples (as in line 6 of
Algorithm 4); in the worst case, the convex combination in-
cluded 2198 variables (i.e., tuples), requiring 39ms. By mon-
itoring actual occupation, we observed that lp solve never
required more than 32 MB of memory.

Vertex enumeration, relevant for Theorem 8, was per-
formed with the lrs tool,5 which never required more than
18ms to complete; in all the polytopes analyzed in our ex-
periments, there were never more than 10 vertices. Observe
that vertex enumeration needs to be done only once during
the entire computation of nd. The memory footprint of lrs
never exceeded 44 MB.

As a common trend to all the analyzed variants, execution
times increase as N and/or d grow. Also, times decrease as
c grows, because more constraints make it more likely to
discard a tuple quickly and thus to reduce the problem size.

Computing nd. We first assess all 2-phase variants
(ULP2, UVE2, SLP2, SVE2) for smaller-scale synthetic datasets
with varying size up to 100K tuples. Figure 4 shows that
ULP2 and SLP2 are clearly outperformed by UVE2 and SVE2

by at least two orders of magnitude. This supports the in-
tuition that led us to Theorem 8, since the high number of
F-dominance tests highly penalizes both ULP2 and SLP2; for
instance, when N = 105, SLP2 performs up to 5.8 million
tests on ANT, each requiring to solve a different LP problem.

Although comparable for less challenging datasets (UNI,
Figure 4a), SVE2 prevails over UVE2 in the more difficult cases
(ANT, Figure 4b). This is in line with what other observed
when comparing sorted (i.e., SFS) vs. unsorted (i.e., BNL)
skyline algorithms, which are used in the first phase of SVE2
and UVE2, respectively. As to the second phase, we observe
that UVE2 requires many more F-dominance tests than SVE2

(up to 6 times more tests on ANT). Furthermore, since sorting
enables the application of the heuristics used for computing
po (Algorithm 4), in the following we therefore only consider
SVE2 and its 1-phase counterparts SVE1 and SVE1F.

In the next set of experiments, we varied the dataset size
N up to 1M tuples (see Figures 5a and 5d). Execution times
of SVE2, SVE1 and SVE1F are almost the same on the sim-
pler UNI datasets, whereas, when data are anti-correlated,
SVE1F performs much better than SVE1 (second-best) and
SVE2 (last). In order to understand this phenomenon, we
analyze the number of dominance and F-dominance tests
executed by the algorithms, shown in Figures 6a and 6b for
the ANT dataset. We observe that SVE1F performs at least

4http://lpsolve.sourceforge.net.
5http://cgm.cs.mcgill.ca/~avis/C/lrs.html.
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(a) UNI: dataset size N varies.
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(b) UNI: # of constraints c varies.
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(c) UNI: # of dimensions d varies.
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(d) ANT: dataset size N varies.
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(e) ANT: # of constraints c varies.
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(f) ANT: # of dimensions d varies.

Figure 5: Performance for computing nd. Distribution: UNI in (a)–(c); ANT in (d)–(f).
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(a) ANT: dataset size N varies.
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(b) ANT: dataset size N varies.

Figure 6: Dominance (a) and F-dominance (b) tests for computing
nd on ANT.
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(a) NBA: # of constraints c varies.
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(b) NBA: # of dimensions d varies.

Figure 7: Performance for computing nd on the real dataset NBA.

ten times less dominance tests than SVE1 and SVE2, while
doing only a little more F-dominance tests. The additional
pruning capability of F-dominance is tightly correlated to
the constraints. To this end, for the default values N = 105

and d = 6, in Figures 5b and 5e we vary the number of
constraints from c = 1 to c = 5. As the figures show, the
relative performance of SVE1F monotonically improves as c
grows, whereas with fewer constraints, i.e., smaller pruning,
the number of additional F-dominance tests is so high that
the relatively small overhead incurred by SVE1F in anticipat-
ing (unsuccessful) F-dominance tests becomes the heaviest
factor in overall performance, and hence SVE1F is not the
best choice for ANT when c = 1 and for UNI when c ∈ {1, 2}.

The behavior of the algorithms as the number of dimen-
sions d grows is shown in Figures 5c and 5f. The relative per-
formance of the algorithms remains unchanged, with SVE1F

being, again, the most efficient regardless of d. Both 1-phase
variants prevail over SVE2, since they do not have the burden
of computing Sky as an intermediate step, which heavily in-
creases its size as d grows (as an example, 75% of the tuples
in ANT are in the skyline when d = 10, N = 105, and around
25% in UNI).

The experiments on the real NBA dataset confirm the pre-
vious observations. In particular, Figure 7a shows that, on
NBA, the algorithms’ trend is similar to that on UNI, i.e.,
SVE1F tends to improve its relative performance as the num-
ber of constraints grows. It is confirmed that SVE1F still
incurs fewer dominance tests than the other alternatives;
however the difference is smaller than in synthetic datasets,
so SVE1F only prevails when c = 5. Since the relative size of
nd(NBA;F) wrt. Sky(NBA) is larger than for the synthetic
datasets (see Table 5), the effectiveness of F-dominance
tests reduces (and consequently the relative effectiveness of
SVE1F), which also favors the 2-phase SVE2 approach. This
is made evident in Figure 7b, where performance of all ap-
proaches is similar for low dimensionalities (d ≤ 6), and the
1-phase approach SVE1 pays off only for the more challenging
cases with d ∈ {8, 10}.

Table 5: Cardinalities of Sky, nd, po with default values; in brackets,
the ratio with the cardinality of Sky.

Dataset Sky nd po
ANT 26637 2616 (9.8%) 271 (1%)
UNI 2626 445 (16.9%) 122 (4.6%)
NBA 1137 264 (23.2%) 32 (2.8%)
HOU 49 26 (53%) 19 (41.3%)

Computing po. We measure the overall execution time
incurred by POND for the different datasets when nd is com-
puted via SVE1F. Given the intrinsic higher complexity of
computing po wrt. nd, from Figure 8 it can be argued that
times are always acceptable for the UNI and NBA datasets
(less than 10s in all cases but d ≥ 8); ANT is harder to deal
with when the problem size gets larger, because the starting
nd set contains more tuples; execution times remain around
10s or less with default parameter values or easier combina-
tions, i.e., N ≤ 100K, c ≥ 3 and d ≤ 6.
The sufficient condition used by POND for early pruning

proves very effective. For instance, in the ANT dataset with
default parameter values, nd consists of 2616 tuples, 271 of
which are in po; POND removes 96% of the non-potentially-
optimal tuples before the last round, and 43% in the first five
(very quick) rounds, where combinations of at most 32 tu-
ples are considered; once it gets to the last of 9 rounds, there
are only 367 tuples left (14% of |nd|). Note that a single F-
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dominance test with a combination of 2615 tuples takes on
average approximately 26 times as much as a test with 366
tuples, therefore the gains are conspicuous. Overall, POND
completes in 11s, whereas directly computing po using LP
problem (17) requires 45s. Similar effects are measurable
with the UNI (resp., NBA) dataset: with default parameter
values, 89% (resp., 98%) of the non-potentially-optimal tu-
ples are removed before the last round.

6.3 Comparison with skyline queries
In order to better understand the behavior of nd and po,

we first characterize them in terms of user results by consid-
ering how much they are able to reduce the size of the re-
sult as compared to standard skyline queries. In particular,
we compute the ratio of points retained by these operators
among those in the skyline (see also Table 5).

Figure 9 shows this ratio in several scenarios for the ANT,
UNI and NBA datasets. The results indicate that R-skylines
are always much more effective than skylines, and po is more
effective than nd, as expected. Table 5 shows that, for de-
fault values of the parameters, the effectiveness of R-skylines
is already remarkable, with the largest reductions in ANT

(9.8% of the skyline points are in nd and only 1% in po).
Figures 9a and 9d show that the reduction of points in-

creases as the size N of the dataset grows, the highest prun-
ing being obtained in the ANT dataset with N = 1M points;
in this setting, the skyline has 99181 points, 6407 of which
(6.5%) are retained by nd, and only 462 (0.46%) by po.
Although we observed this reduction increase in all our ex-
periments, an analytic explanation is still missing and we
expect this to be difficult to provide, as already for stan-
dard skylines the size estimation problem is open [8].

Figures 9b, 9e, and 9h show that the effectiveness of R-
skylines steadily improves as the number of constraints c in-
creases. This is mainly due to the fact that each constraint
reduces the space of weights, and thus the set F of functions
to consider for F-dominance; the number of retained tuples
decreases as a consequence of Proposition 2. The experi-
ments also show that po proves very effective even with few
constraints, with the most dramatic improvement wrt. nd in
the NBA dataset with 1 constraint, where the ratio decreases
from 88.6% for nd to 6.2% for po. The figures suggest a
possible correlation between the reduction of the space of
weights caused by constraints and the reduction of tuples
caused by R-skylines. Figure 10 confirms a clear correlation
between the ratio of points in nd and the ratio of preserved
weight volume, i.e., the ratio between the (hyper-)volume of
the polytope W(C) determined by the |C| = c constraints in
the space of weights and the volume of the (d− 1)-simplex.

Significant reduction is also observed when varying the
number of dimensions, as shown in Figures 9c, 9f, and 9i.
In all the scenarios with d > 2, the ratio of skyline points in
nd is always below 35%, and much less in many cases, while
for po the ratio never exceeds 10% in these cases, reaching
an impressive 0.38% when d = 10 for the NBA dataset.

Finally, Figure 9g shows the effect of parameter p of Lp

norms (10) on NBA (the trends for the other datasets are
similar and thus not reported). As p grows, the ratio grows
slightly but steadily, although the effectiveness remains sig-
nificant (in the worst case, the ratio is 35.2% for nd and
13.3% for po when p = 5). This follows by observing that,
for any tuple t and constraints C 6= ∅, the dominance region
DR(t;LC

p) strictly includes DR(t;LC
p′) for p

′ > p.

Dataset Sky by SFS nd by SVE1F po by POND

ANT 11.17 (98%) 1.54 12.69
UNI 0.34 (94%) 0.36 1.41
NBA 0.58 (98%) 0.65 1.74

Table 6: Execution times (in seconds) of Sky, nd, po with default
values; in brackets, the percentage wrt. the execution time of SVE2.

We now compare R-skylines and skylines in terms of exe-
cution times. Table 6 shows such times for default parameter
values. It can be seen that computing Sky using SFS es-
sentially requires the same time as computing nd with the
2-phase SVE2 approach (i.e., most of the time is spent in the
first phase of the algorithm), a fact we observed in all the
scenarios we tested. Therefore, computing Sky and nd via
a 1-phase algorithm (like SVE1F) is in most cases in favor of
the latter, possibly requiring even much less time, as can be
seen in Table 6 for the ANT case.
Overall, we conclude that R-skylines are highly effective

in reducing the size of the result without introducing any
notable overhead wrt. the computation of standard skylines.

6.4 Comparison with ranking queries
After having quantitatively analyzed the relationship be-

tween results of R-skylines and skylines, for which it is true
that former ones are included in the latter, for complete-
ness, we now turn to compare results yielded by our op-
erators and those of ranking (top-k) queries. To this end,
we consider the classical precision and recall measures. Let
Tk(r; f) indicate the set of top-k tuples in relation r wrt. a
scoring function f . The precision of Tk(r; f) wrt. a set S
is defined as pre(S) = |S ∩ Tk(r; f)|/k, whereas the recall
is rec(S) = |S ∩ Tk(r; f)|/|S|. Notice that, in our context,
where S ∈ {Sky,nd, po}, high precision would indicate that
most of the top-k tuples are also in S, whereas a high recall
would mean that most of the tuples in S are also top-k tu-
ples. We first remark that, to the best of our knowledge, a
detailed comparative analysis between the results of top-k
and skyline queries has never been attempted before, and
indeed it would be worth investigating to better understand
how tuples of a dataset are distributed. Indeed, if there is a
small overlap between top-k and skyline results, we expect
a similar or smaller overlap with R-skylines. Moreover, the
overlap will largely depend on the specific scoring function
f , and, in the case of R-skylines, also on the family of scor-
ing functions F . Intuitively, the more f is “dissimilar” to
F , the more R-skyline and top-k query results will differ.

Figure 11 shows precision and recall when f is a weighted
sum with the centroid of the polytope W(C) as weight
vector. This choice guarantees that f ∈ F and ensures
that f is, in some sense, the most representative function
in F . Clearly, recall values grow with k, while precision
values decrease. For every value of k and all datasets,
pre(po) ≤ pre(nd) ≤ pre(Sky), i.e., a top-k query will
more easily retrieve skyline tuples than non-F-dominated
and potentially optimal tuples. For instance, among the top-
50 tuples in UNI, 47 are also in Sky, while 36 are in nd and
only 13 in po. As expected, pre(nd) and pre(po) some-
how depend on pre(Sky) and thus on data distribution.
As for recall, when k equals the number of tuples returned
by an R-skyline operator (and thus precision and recall are
equal), we have that the range of rec(nd) is between 38%
(for UNI) and 50% (for ANT), while such values drop to 18%–
38% for rec(po). Note that, for retrieving all the 264 tuples
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(b) # of constraints c varies.
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(c) # of dimensions d varies.

Figure 8: Performance for computing po with the POND algorithm.
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(a) ANT: dataset size N varies.
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(b) ANT: # of constraints c varies.
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(c) ANT: # of dimensions d varies.
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(d) UNI: dataset size N varies.
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(e) UNI: # of constraints c varies.
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(f) UNI: # of dimensions d varies.
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(g) NBA: parameter p of Lp norm varies.
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(h) NBA: # of constraints c varies.
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(i) NBA: # of dimensions d varies.

Figure 9: Cardinality ratio between R-skylines (po, nd) and Sky: UNI in (a)–(c); ANT in (d)–(f); NBA in (g)–(i).⨯⨯⨯⨯⨯
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Figure 10: Correlation between nd/Sky cardinality ratio and percentage of preserved volume in the space of weights as the number of constraints
c varies.
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(a) ANT dataset.
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(b) UNI dataset.
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(c) NBA dataset.

Figure 11: Precision and recall of top-k queries wrt. Sky, nd, and po. Centroid of the W(C) as weight vector; default parameter values.

1464



in nd(NBA;F) one should choose a value of k > 30000, and
the same holds for the 32 tuples in po(NBA;F); even larger
values of k are needed for ANT and UNI. As a further illustra-
tion of the difference of the results of R-skylines and top-k
queries, we examined the ANT dataset when d = 2: here, a
top-10 query retrieves only 4 out of the 8 tuples in nd, while
all the other tuples in nd occur after position 1000. Note
that the above results are the best possible for top-k queries,
since using for f a weight vector other than the centroid of
W(C) leads to lower precision as well as recall.

Similarly to skyline queries, R-skylines pay the increased
capability of returning interesting results at the price of a
higher computational overhead wrt. ranking queries. In all
our experiments, in which the top-k algorithm was imple-
mented using a max-heap along the lines described in [2],
ranking queries required only a fraction of the execution
time of SVE1F (between 0.1% and 7%), as expected.

7. DISCUSSION
In this paper, we have built a framework aiming to unify

skyline and ranking queries. We have done so by introducing
two R-skyline operators implementing the notions of non-
dominated (nd) and potentially optimal (po) tuples with
respect to a set of scoring functions F . The greater flexibility
of these operators captures not only standard skyline and
top-1 queries, but also constraints on the weights in the
scoring functions, which are highly relevant in practice.

It is well known that choosing the “right” weights for a
scoring function is a difficult task for users, since it is usu-
ally hard to predict the effects on ranking of changing one or
more parameters. Replacing precise values with constraints
on weights, as R-skylines do, is therefore a viable way to
alleviate the problem. Besides methods already evaluated
in the DB field (see, e.g., [23]), a large body of techniques
have been investigated in Multi-Attribute Decision Theory
(MADT), where the term “preference programming” has
been coined to this purpose [18]. In general, preference
programming methods deal with the problem of assisting
a decision maker when her preferences are incomplete. R-
skyline algorithms represent, as far as we know, the first suc-
cessful attempt to apply a preference programming method
on large datasets. It is remarkable that the only assump-
tion used by our algorithms is that the (family of) scoring
function(s) F is linear in the weight parameters. Besides
Lp norms, one could therefore use any function of the form

f(t) = τ(
∑d

i=1 wiui(t[Ai])), where ui is a monotone function
of Ai values representing the “marginal utility” of attribute
Ai and τ is a monotone transform.6 Methods for choosing
the “right” marginal utility functions abound in the MADT
field (see, e.g., [19]), and have also been incorporated in some
preference programming methods [18]. An interesting de-
velopment of our work would be that of extending R-skyline
algorithms to the more challenging scenario in which both
weights and marginal utilities are partially specified.

We have shown that both nd and po are very effective in
focusing on tuples of interest, even in very large datasets.
Overall, we have developed nine variants for efficiently com-
puting nd and shown how they behave in a variety of sce-
narios, including both synthetic and real datasets. From a
practical perspective, in most of these scenarios, computing

6With Lp norms, ui(t[Ai]) = t[Ai]
p and τ(x) = x1/p.

nd requires no more than a few seconds. For the more com-
plex problem of computing po, we have developed heuristics
that reduce the number of large LP problems to be solved.

Natural extensions of this framework include the notions
of top-k query and k-skyband, with k > 1 [17].

Acknowledgments. D. Martinenghi acknowledges sup-
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