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Abstract

While parallelism and multi-cores are receiving much
attention as a major scalability path, customization is
another, orthogonal and complementary, scalability path
which can target not easily parallelizable programs or pro-
gram sections. The key assets of customization are cost
and power efficiency. The key limitation of customization is
flexibility. However, we argue that there is no perfect bal-
ance between efficiency and flexibility, each system vendor
may want to strike a different such balance. In this arti-
cle, we present a method for achieving any desired balance
between flexibility and efficiency by automatically combin-
ing any set of individual customization circuits into a larger
compound circuit. This circuit is significantly more cost ef-
ficient than the simple union of all target circuits, and is
configurable to behave as any of the target circuits, while
avoiding the routing and configuration cost overhead of FP-
GAs. The more individual circuits are included, the larger
the number of applications which can potentially benefit
from this compound customization circuit, realizing flexi-
bility at a minimal cost. Moreover, we observe that the
compound circuit cost does not increase in proportion to
the number of target applications, due to the wide range of
common data-flow and control-flow patterns in programs.
Currently, the target individual circuits correspond to loops,
like most accelerators in embedded systems, but the aggre-
gation method can accommodate circuits of any size. Using
the UTDSP benchmarks and accelerators coupled with an
embedded PowerPC405 processor, we show that this ap-
proach can yield an average performance improvement of
2.97, while the corresponding synthesized aggregate accel-
erator is 3 time smaller than the sum of individual acceler-
ators for each target benchmark.

1 Introduction and Related Work

The current clock frequency limitations are forcing ar-
chitects to leverage additional transistors rather than faster

transistors, i.e., space rather than speed. With the current
focus on multi-cores, it is all too easy to forget that there
is at least one alternative scalability path to parallelization
capable of leveraging additional on-chip space/resources:
customization; and this scalability path deserves at least as
much attention as parallelization. Customization has sev-
eral strong assets: specialized circuits are significantly more
power efficient and significantly less costly (chip footprint)
than general-purpose processors for performing the same
task [8]. Furthermore, this scalability path is complemen-
tary to parallelization, not a competing option; after an ap-
plication has been parallelized, the behavior of each parallel
section, or remaining sequential sections can further benefit
from customization; this hybrid approach is typically used
in many high-performance embedded systems [18].

The real challenge of customization is flexibility. The
ultimate specialized circuit is the whole program mapped
to a chip, as proposed by Budiu et al. in [8], or Schreiber
et al. in [23]. Assuming there are enough resources for
whole-program mapping, this chip is very efficient but it
can only be used for a single fixed program. At the other
end of the flexibility spectrum lays the far less efficient
general-purpose processor. In-between, several approaches
attempt to strike the right balance between flexibility and ef-
ficiency. FPGAs are flexible but less efficient than special-
ized circuits, consuming more power [20, 24] and dedicat-
ing up to 90% of the on-chip space for the routing networks;
at the same time, they are difficult to program, requiring
steps akin to circuit synthesis, and increasingly come com-
bined with a general-purpose processor for higher ease of
use [3], especially in interacting with the rest of the system.
ASIPs (Application-Specific Integrated Processors) com-
bine general-purpose processors with manually designed
specialized circuits, because they recognize that many pro-
grams use similar, recurring patterns, and because they want
to achieve higher efficiency than FPGAs and do not neces-
sarily need their generality, especially for targeted domains.
ASIPs either target fine-grain acceleration such as Tensil-
ica [2] and FITS [9], or coarser loop-based acceleration
such as ARM OptiMODE [12] and other programmable



loop accelerators such as in [10, 19]; more recently,
Clark et al. [13] investigated such a loop-based accelerator
for a large range of benchmarks. TRIPS/GPAs [22] is an-
other efficiency/flexibility tradeoff which spatially expands
the program on a grid of ALUs, so that it is significantly
more power efficient than traditional general-purpose pro-
cessors, without sacrificing flexibility; it still remains sig-
nificantly less efficient though than specialized circuits.

The first premise of this study is that there is no such
thing as a right balance between flexibility and efficiency,
it is a vendor-specific issue which typically depends on the
target market. Therefore, in order to expand the reach of
customization, we rather focus on striking the desired (as
opposed to the right) balance between flexibility and effi-
ciency. The second premise of this study is that an approach
is scalable if it can almost seamlessly leverage additional
on-chip resources to improve flexibility and/or efficiency.

The degree of flexibility of a given customization/accele-
ration circuit can be measured by the number of applications
which can potentially benefit from that circuit. In order to
adjust this degree as needed, we focus on designing cus-
tomization circuits that can accomodate a variable, either
small or large, number of applications. For that purpose,
we build compound circuits which are aggregate of the in-
dividual customization circuits required for each of the tar-
get applications. The compound circuits are automatically
derived from the set of individual customization circuits.
However, these compound circuits are not simply the union
of the individual customization circuits: we leverage com-
mon data-flow and control-flow patterns among programs to
preserve the cost benefit of customization; in fact, the com-
pound circuits are significantly denser than the union of the
individual customization circuits thanks to these common-
ality properties. These circuits are configurable as config-
uration logic (muxes) are introduced when aggregating cir-
cuits. By properly configuring these muxes, it is possible
to make the compound circuit behave as any of the original
individual circuits. However, this configurable logic and the
additional links are kept to a minimum; as a result, there is
no generic routing network such as in traditional FPGA, or
in coarser grain configurable accelerator like in [11, 27, 5]
where all possible connections between operators have to
be implemented with an expensive network of switches or
multiplexers. Previous research proposed to merge more
than one hardware datapath to map several specialized in-
structions on the same hardware such as in [7, 28, 21] in
the context of ASIP design but none of them leverage both
data flow and control flow to allow full loop accelerator ag-
gregation. Furthermore, our approach includes state nodes
such as registers and memory buffers in the aggregate data
paths while other approaches essentially target reuse of op-
erators.

We illustrate our approach with a benchmark suite for

DSPs; we pick one core routine from each of 9 benchmarks
and automatically combine them all into a single circuit
which is 3 times (66%) smaller than the sum of all circuit
areas (0.3 mm2 vs. 0.9 mm2), and increases individual cir-
cuits critical path by a maximum 37% (6.08 ns vs. 4.41
ns). We also create several combinations of individual cir-
cuits, the average gain in area and increase in critical path
are respectively 43% and 21%.

Previous research has shown how to automatically con-
vert program parts into an intermediate representation
which can later be translated into a circuit [20, 13]. In this
article, we start from individual circuits already converted
from target program sections into an intermediate represen-
tation composed of a few elementary operators (ALUs, reg-
isters, memory buffers), and we focus on the creation of
compound circuits based on multiple different applications.
Like many accelerators for embedded systems, our circuits
are currently focused on program sections corresponding to
loops, but like [20], the generic nature of the intermediate
representation allows to target any code section. We give
particular attention to the interaction with memory in order
to ensure high throughput; in theory, the performance of
customization circuits should only be limited by the mem-
ory bandwidth.

While accelerators converted from programs are likely to
be significantly less efficient than manually tuned accelera-
tors, increasingly stringent time-to-market constraints, cou-
pled with a growing number of applications per embedded
system (e.g., smartphones) are calling for more streamlined
methods for deriving multi-objective accelerators. Such an
approach is in fact complementary with later manually tun-
ing accelerators or accelerator parts: for new embedded
systems, the key is to hit the market first; later on, as vol-
umes ramp up and the longer product lifespan is confirmed,
manual tuning for even greater cost and power efficiency
can take place. Finally, while this study is more targeted
towards embedded systems, the general-purpose market is
progressively warming up to the idea of adding specialized
features as a way to further improve and differentiate chips,
even at the cost of market fragmentation, as illustrated by
Intel’s future Larrabee chip.

2 Overview

Let us consider the example of an embedded processor
targeted to several signal processing tasks. Such tasks often
include computing-intensive kernels such as convolution fil-
ters, matrix operations and fast Fourier transform (FFT).
We want to create circuits (accelerators) for each such task
where the processor could offload the corresponding com-
putations in order to achieve performance and power gains.
Rather than individually building each circuit and imple-
menting them all on the processor, or using an FPGA co-



for (i = 0; i < AROW; i++)
for (j = 0; j < BCOL; j++)

sum = 0;
for (k = 0; k < BROW; ++k)

sum += A[i][k] * B[k][j];
C[i][j] = sum;

(a)
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term term
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node A stream 32
setn A nb_entry 8
setn A type stride
setn A rw read

node B stream 32
setn B nb_entry 1
setn B type stride
setn B rw read

node mult alu 32
setn mult op mul

node add alu 32
setn add op add

node sum reg 32

edge A.data_out mult.in:0 32
edge B.data_out mult.in:1 32
edge mult.out add.in:0 32
edge sum.out add.in:1 32
edge add.out sum.in 32

node pi pi 32

# write to reg when both
# streams have data

node and1 alu 1
setn and1 op and

edge A.ready_out and1.in:0 1
edge B.ready_out and1.in:1 1
edge and1.out sum.write 1
edge and1.out A.shift_data 1
edge and1.out B.shift_data 1

# stop when both streams
# are stopped

node and2 alu 1
setn and2 op and

edge A.stop and2.in:0 1
edge B.stop and2.in:1 1
edge and2.out pi.stop 1

(c)

Figure 1. (a) Matrix multiply dot product, (b) Circuit, (c) Intermediate representation.

processor with more than necessary operators and routing
network, we want to minimize chip real-estate without sac-
rificing performance or power by combining all three tasks
into a single compound circuit. A key point is to design a
systematic compounding process so that such circuits can
be quickly generated for any combination of tasks.

Consider first the dot-product circuit of Figure 1(b), cor-
responding to the source code of Figure 1(a), which is at
the core of many matrix operations. Using systematic code-
to-circuit conversion rules in the spirit of [8], the code of
Figure 1(a) is converted into our own circuit intermediate
representation as shown in Figure 1(c), which is similar
though simpler than traditional HDL languages. In this ex-
ample, ALU operations are simply mapped to ALU oper-
ators, the variable sum is replaced with a register, and the
two array references (A[i] [k] and B[k] [j]) are mapped to
input streams. The input streams are derived from Stream
Buffers [16] and serve multiple purposes: to buffer incom-
ing requests in order to feed the circuit with data up to every
cycle if memory bandwidth allows, and also, for address
generation and loop control. They are later described in
more details, together with the conversion rules for more
complex data-flow and control-flow constructs (e.g., indi-
rect or reference-based addressing, conditional loops, if
statements).
The aforementioned circuit elements correspond to the data-
flow part of the code. The control part of the code takes the
form of two 2-input 1-bit AND gates. One AND gate (&1)
triggers the register write (sum), and shifts the two input
streams (A, B) to the next data elements. The inputs of this
AND gate are 1-bit state signals from the two input streams
which indicate if the streams contain data; intuitively, this
signal is triggered at each iteration for the code of Fig-

ure 1(a). Another AND (&2) gate is a termination signal
sent back to the processor interface; the inputs are two 1-bit
end signals provided by counters embedded in the stream
control. The processor interface contains input latches to
simultaneously parameterize all circuit state elements (reg-
isters, stream parameters, counters), and output latches to
collect circuit results and control signals, e.g., the sum reg-
ister and the stop signal in this example. The input and
output streams interact with the memory bus through a ded-
icated memory interface which can process the interleaved
requests of multiple streams; the memory interface is later
described.

Figure 2(b) contains the circuit of the core computational
part of a lattice filter (the control part of the circuit and the
processor interface have been omitted), the code is shown
in Figure 2(a). While the lattice filter and dot-product codes
are not strictly identical, or contained within one another,
they share several data-flow and control-flow paths. For
instance, multiplier mul3 is similarly fed with data from
an input stream (coeff in), and the result itself fed to
an adder (add1); the common path is underlined in Fig-
ure 2(b). By adding 3 muxes and 3 wires as shown in the
figure, it is possible to add a data path identical to the dot-
product one (two input streams multiplied together, the re-
sult added with a register, and the new result fed back into
the register) as emphasized in Figure 2(c). The control bit of
the muxes acts as a toggle between a dot-product behavior
and a lattice filter behavior, and the muxes are then configu-
ration multiplexers; the resulting compound circuit contains
both original circuits.

This compound circuit has a cost of 0.144 mm2 using a
90nm TSMC library, while the lattice filter circuit has a cost
of 0.14 mm2, and the dot-product circuit a cost of 0.055 mm2;



for (i = 0; i < NPOINTS; i++)
top = data[i];
for (j = 1; j < ORDER; j++)

left = top;
right = state[j];
state[j] = botm;
top = ( (coef[j-1] * left)

- (coef[j] * right)
) >> prec;

botm = ( (coef[j-1] * right)
+ (coef[j] * left)
) >> prec;

state[ORDER] = botm;
state[ORDER+1] = top;
...
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Figure 2. (a) Lattice filter , (b) Circuit, (c) Compound circuit (MxM + lattice filter).

therefore the compound circuit is 27% cheaper than imple-
menting both circuits. At the same time, the multiplexers
add a delay of 0.89 ns to the lattice filter circuit, where the
critical path of the lattice filter is 4.21 ns, the critical path of
dot-product is 3.93 ns and the critical path of the compound
circuit is 5.1 ns, i.e., a 29% increase w.r.t the dot-product
and a 21% increase compared to the lattice filter.

Moreover, by considering the two circuits as graphs,
where operators and states are nodes, and wires are edges, it
is possible to use systematic graph mapping exploration to
map one circuit into another. At any stage during the explo-
ration, if mapping is deemed impossible, it is possible to add
new operators, configuration muxes and wires for achieving
compatibility, with the goal of finding the cheapest possible
solution. We later explain how to automate the process, and
further optimize it using evolutionary heuristics.

3 Aggregating Individual Circuits Into Com-
pound Circuits

3.1 Circuit representation and conversion

As mentioned before, circuits are described using an in-
termediate representation format akin to hardware descrip-
tion languages like Verilog (but simplified); in fact we later
automatically translate this format into Verilog for synthesis
evaluation (see Section 5). Circuits are composed of nodes
(operators, state elements, streams) and edges (wires). Fig-
ure 1(c) provides an example of a circuit description; node

and edge are self-explanatory, setn sets nodes character-
istics.

ALU, wire and register conversion rules are rather
straightforward. However, converting memory access and
control parts of the circuit is significantly more complex.
Budiu [8] proposed a set of systematic conversion rules
which have the merit of proposing an intuitive and direct
conversion from code to circuit. The benefit of an intuitive
approach is facilitating the translation automation, but the
downside is circuit performance, especially for load/store
accesses.

stride
end
begin

Memory

data address

(a) Input stride stream.

stride
end
begin

Memory

data address

(b) Output stride stream.

data address

Memory

(c) Input address stream.

Memory

AB

(d) B(A(i)) indirection.

Figure 3. Stride and address streams.

Memory access. While program-to-circuit conversion



yields significant power gains in [20], individual load ac-
cesses remain the main performance bottleneck. Like [13],
our focus is on achieving high performance for small but
key parts of a program, typically loop nests, rather than
mapping the whole application onto a circuit. Therefore,
we similarly replace references with FIFOs (exactly, stream
buffers in our case) which can buffer several memory re-
quests and keep the circuit busy. Unlike [13], we use stream
buffers rather than a separate address generation unit; ad-
dress generation is embedded within the stream. Address
generation takes two possible forms: either a counter for
stride streams where it is possible to specify the stride (for
any type of loop), start and end addresses (for fixed-bounds
loops), see Figure 3(a,b), or the address is provided as an in-
put for address streams (for indirect addressing or pointer-
based references to traverse lists), see Figure 3(c). The
stride streams enable the efficient implementation of most
array references within loops, and combine an address gen-
eration function with a loop control function. In order to
preserve the latency hiding benefits of streams for small
loops, we consider 1-loop, 2-loop and 3-loop streams, i.e.,
containing 1, 2 or 3 counters capable of characterizing up to
3-deep loops. However, for 2 and 3-loop streams, we only
implemented counters and control for fixed-bound loops at
the moment, i.e., inner loops with non-constant bounds can-
not benefit from multi-loop streams at the moment, this is
left for future work. The support for a 2-loop stream over a
1-loop stream corresponds to an additional cost of 0.00258
mm2, or 16.7% more for a stream with two 32-byte entry
(one entry is one memory block, see Section 4.2), and the
same for a 3-loop stream over a 2-loop stream.

The coupling of address streams with standard ALU op-
erators provides the same genericity as address generation
units. All address streams contain a FIFO for buffering
addresses, and a FIFO for buffering incoming or outgoing
memory requests for respectively read and write streams.
Indirect addressing is implemented by piping together a
stride and an address stream, as shown in Figure 3(d);
benchmark histogram (image histogram equalization)
contains an example such indirection.

Control. In [8], the program is directly translated into
a circuit, and so is the control: write signals of latches are
propagated along data in a pipeline fashion, through a hand-
shaking protocol. Since we resort to streams to achieve
more efficient memory access, we break this direct transla-
tion, i.e., there is no longer a one-to-one mapping between
program constructs and circuit elements (for instance loops
and array references are combined into streams, several ar-
ray references can use the same stream, etc). This makes the
use of a similar mirroring and local control more difficult.

Consider the two example codes of Figure 4(a,b) which
pick one element among two arrays, and either shift both
arrays, or only the array where the element was taken. Us-

for (i=0; i<N; i++)
if (a[i] > b[i])

c[i] = a[i];
else

c[i] = b[i];

(a)

while (k < N)
if (a[i] > b[j])

c[k] = a[i];
i++;

else
c[k] = b[j];
j++;

k++;

(b)

A B

> mux

C

(c)

A B

> mux

C

(d)

Figure 4. (a,b) Two example codes, (c,d) Cir-
cuits with identical data-flow parts.

ing direct translation, these two examples result in fairly
different circuits, especially for the address generation part.
Expressed with streams, they both correspond to a circuit
with the same data-flow part, see Figure 4(c,d), and the only
distinction lays in the shift control signal of the streams: ei-
ther true whenever both streams have data (Figure 4(a,c))
, or true when both streams have data and the stream was
selected (Figure 4(b,d)). While it is not impossible to au-
tomatically generate the control signals for such cases, it is
more difficult than the direct translation case, and we leave
it for future work.

At the same time, and unlike [13], we explicit the circuit
control, so that data-flow and control-flow parts are indiffer-
ently combined with other circuits during the compounding
process. Failing to do so, i.e., just compounding the data-
flow parts and later manually recreating the control parts
would not only become overly complex as the number and
size of circuits increase, but it would also break a key fea-
ture of our approach: the ability to quickly and efficiently
generate the compound circuits through an automatic pro-
cess.

Therefore, we take the intermediate approach of manu-
ally expliciting the control of each individual circuit, and
then automatically compounding these individual control
circuit parts. Note that not separating control and dataflow
parts in the compounding process has another advantage:
some control sub-circuits can be mapped to data-flow sub-
circuits. The reverse is usually not possible as control sub-
circuits are often 1-bit wide, while data-flow circuits are 1-



word wide.

3.2 Creating compound circuits

Once data-flow and control-flow parts are expressed in
the intermediate representation, they can also be considered
as graphs, and the problem of mapping one circuit C1 into
another circuit C2 is equivalent to deciding whether one
graph is contained within another, and it is an NP prob-
lem. However, recall that we do not only want to check
whether it is possible to map C1 into C2, but also to alter C2

(by adding operators, state nodes, configuration muxes and
wires) whenever mapping is not possible. Consider again
the example of Figure 2 where we want to map the dot-
product circuit into the lattice filter.

The process starts with a simple node types inspection. If
C2 does not contain a sufficient number of operators or state
nodes of a given type, it is first complemented with the nec-
essary and unconnected elements. Then, a randomly picked
node N1 from C1 is compared to all nodes from C2. The
first comparison is based on nodes properties (e.g., type,
width, number of input ports). For instance, a 2-input AND
can be mapped to a 3-input AND (at the cost of an addi-
tional mux for the unused entry), or a 2-input 1-bit AND
can be mapped to a 2-input 32-bit AND (same comment
for unused bits). Note that this process allows to explore
many mapping avenues in the future. For instance, we can
slightly modify the output data path of multipliers so they
can be used both as multipliers and adders, introduce more
complex operators like multiply-add and map sub-circuits
to a single operator, or even sub-circuits to sub-circuits, and
so on.

Once a compatible node N2 is found in C2, N1 and N2

are said to match if their input nodes and output nodes are
the same. This criterion, recursively applied to all nodes
converges if C1 is contained within C2. Therefore, the in-
put nodes of N1 are tentatively matched to all input nodes of
N2; note that all possible input combinations must be tried,
except for none-commutative operators (e.g., substraction)
where the input order matters. For instance, if N1 = add
from Figure 1(b) and N2 = add1 from Figure 2(b), the
matching will fail because the output of N1 is a register
sum, which cannot be mapped to the output of N2 which is
a shift operator srl2. That is also where our exploration
differs from a pure graph comparison process. While the
matching failed, the exploration then tries all other existing
nodes of N2 which are compatible with the output register
sum of N1. When it finds that bottom in C2 is compatible
with sum in C1, it adds a configuration mux connected to
the input of bottom, connects back the output of srl2 to
one of the inputs of the mux feeding bottom, and connects
the output of add1 to the other input of the configuration
mux, see Figure 2(c). Then, this sub-circuit of N1 and N2

match at the cost of one 32-bit wire and one 2x1 32-bit con-
figuration mux, and the exploration can resume. Therefore,
all possible merging possibilities are explored. The algo-
rithm is shown in Figure 5.

label_N1:
randomly pick unmatched node N1 of C1
label_N2:
randomly pick unmatched node N2 of C2

attempt to match N1 to N2:
if properties of N1 and N2 match
if each source of N1 matched or matchable

to a source of N2
match sucessful

else
if a source S1 of N1 is matchable to a

node S2 of C2 not a source of N2
connect S2 to N2,
add wires and configuration muxes as needed

if match successful
if was last unmatched N1, a solution is found
else go to label_N1

else
unmatch all sources
remove added wires and muxes
go to label_N2

Figure 5. Exploration algorithm.

The huge number of possibilities makes an exhaustive
exploration prohibitive beyond a few tens of nodes in ei-
ther circuit, which calls for the exploration heuristics de-
scribed in Section 6.1. At the same time, a first solution
can be quickly found since the principle is to complement
the circuit whenever mapping fails. This property is later
exploited for fast exploration heuristics.

3.3 Exploration cost function

As explained before, the first step of the exploration is to
complement C2 with whatever data or control nodes (oper-
ators, registers, streams) are missing in order to include C1.
Therefore, the exploration itself will not change the data
or control nodes cost, it will only have an impact on the
number of configuration muxes and wires which are added.
When few and small circuits are combined, this compound
overhead is small; however, it will exponentially grow with
the size and number of circuits, towards the extreme case
of FPGAs. Therefore, it is important to minimize this com-
pound overhead; it is the role of the exploration cost func-
tion to characterize the overhead.

The best way to evaluate the overhead is to use a syn-
thesis tool for each solution found in order to compute its
area cost. But that option would be prohibitively time-
consuming, and ultimately lead to poorer solutions because
only a much smaller fraction of the design space could be
explored. Therefore, we resort to a more simple cost func-
tion, which can capture the cost of the configuration muxes
and the wires: the total number of input ports of the configu-
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Figure 6. Correlation of fitness function and
compound circuit overhead.

ration muxes weighted by their bit width. This metric simul-
taneously accounts for the number of configuration muxes,
their size and the wires which had to be added. Figure 6
shows the nearly linear correlelation of the proposed metric
(fitness) with the actual overhead cost (mux area) for
multiple randomly chosen compound circuits, which aggre-
gate from 2 individual circuits (light gray) to 9 individual
circuits (dark gray).

Note that normally, the exploration should simultane-
ously attempt to minimize the circuit critical path (perfor-
mance) and the area (cost) in a pareto-optimal way. But, not
surprisingly, we found that both criteria are tightly related,
leading to similar best solutions, as reducing the number
and size of muxes usually yields the smallest critical paths.

4 System Integration of Compound Circuit

4.1 Processor Interface

The general architecture of the system is akin to pre-
viously proposed loop accelerators [13, 23] as shown in
Figure 8(a): the compound circuit directly interfaces with
the processor for initialization, configuration and value ex-
change operations, and with the system bus to access up-
per levels of the memory hierarchy. To start the accelera-
tor, the processor needs to communicate the configuration
to the accelerator (which circuit to execute) and the ini-
tialization values of the state nodes (typically initial values
for the registers, stride values, base addresses and streams
depths). Note that configuring the accelerator is straight-
forward: each circuit is given an ID, this ID is stored in a
configuration register CR which is directly used to set con-
figuration muxes.

In order to support the compound circuits, we added four
instructions to the baseline instruction set: CCINIT (Ini-
tialize), CCMTA (Move To Accelerator), CCSTART and
CCMFA (Move From Accelerator). The processor first ini-

tializes the accelerator with the circuit ID (CCINIT), the
circuit ID is stored in the configuration register CR of the
accelerator. Values to initialize state nodes (e.g., register
init values, stride streams counter values, register output
values) are then sent to the accelerator using the instruc-
tion CCMTA Rsrc, where Rsrc contains the value to send
to the accelerator. Then a start signal is sent to the acceler-
ator with the CCSTART instruction. An accelerator circuit
comes with a set of latches directly wired, as needed, to
state nodes in the circuit, see Figure 7. During execution,
the pipeline waits until it receives a STOP signal from the
accelerator. The pipeline can receive values directly from
the accelerator using the CCMFA Rdst instruction, the re-
sults are written in the processor regsiter Rdst.
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Figure 7. Processor interface.

4.2 Memory Interface

The role of streams is to minimize circuit stall cycles;
failing to achieve high circuit throughput would largely void
the performance advantage of using customized circuits in-
stead of a processor. In fact, circuit performance should
only be limited by the memory sub-system bandwidth; in
other words, the ultimate circuit performance goal is to sat-
urate the memory bandwidth.

A circuit consumes one data (word) at a time from
each stream, but in most cases, the processor memory con-
troler is designed to issue block fetch requests (e.g., cache
lines) to the interconnect (bus or NoC). The original Stream
Buffers [16] prefetch one cache line, and each buffer entry
is a single cache line. Our streams similarly have 1-memory
block (e.g., cache line) entries but they issue 1-word re-
quests to the memory interface; however, these requests are
filtered in such a way that only block fetch requests are sent
to the memory controler in the end

In order to cope with multiple simultaneous streams re-
quests, the memory interface keeps track of outstanding re-
quest and returns them to the propers streams. Because in-
coming requests may not come in order, requests are pre-
allocated in the streams and are stored in the proper order
when they return.



5 Methodology

Simulated Architecture. Our architecture is shown in
Figure 8(a) and consists of an IBM PowerPC405 [15] core,
a simple 32-bit embedded RISC-processor core including a
5-stage pipeline and 32 registers, but no floating-point units.
We consider a regular 90nm version running at a frequency
of 400MHz. The memory is an SDRAM with an observed
average latency of 20 cycles over our set of benchmarks. To
simulate this architecture, we used the UNISIM [6] infras-
tructure environment.
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control queue size 16

(b) Memory hierarchy parameters

Figure 8. Simulated architecture.

The memory sub-system is composed of two write-back L1
data and instruction caches and a main memory. Their pa-
rameters are described in Figure 8(b). The compound cir-
cuit, the processor interface and the memory interface com-
posing the accelerator are described in Sections 3, 4.1 and
4.2.

Synthesis infrastructure. As mentioned before, auto-
matically generating hardware representation from a source
code has been previously addressed in research and existing
industrial tools [4]. We developed a tool chain which auto-
matically creates compound circuits and generates Verilog
HDL based on our intermediate circuit representation. We
then synthesized all circuits using Synopsys Design Com-
piler [1] and TSMC 90nm standard library, with the high-
est mapping effort of the design compiler (-map effort
high -area effort high options).

Benchmarks. To evaluate the potential cost gains as
well as the speedups obtained using compound circuits, we
used 9 of the UTDSP benchmarks [17], which are small
signal-processing kernels, described in Table 1. Since we
do not implement floating point operators for now, all of
the target benchmarks where modified to support 12-bit
fixed point precision arithmetic; fixed-point arithmetic is
frequently used in embedded systems.

Benchmark #Calls to Description Area
accelerator (µm2)

compress 32768 Discrete Cosine Transform 54536.69
edgedetect 9 Convolution loop 17883.36
fft 1023 1024-point Complex FFT 219873.47
fir 1 256-tap FIR filter 54800.69
histogram 1 Image enhancement using histogram 62132.84

equalization (gray level mapping loop)
iir 64 4-cascaded IIR biquad filter processing 218793.06
latnrm 64 32nd-order Normalized Lattice filter 143522.36
lmsfir 64 32-tap LMS adaptive FIR filter 74849.71
mult 100 Matrix Multiplication 54557.17

Table 1. Benchmark description.

For each benchmark shown in Table 1, we derived the in-
termediate circuit representation, as described in Section 2.
Table 1 also indicates the area size of each accelerator, and
the number of times it is called.

6 Exploration and evaluation of compound
circuits

6.1 Evolutionary computation for com-
pound circuit aggregation

Using exhaustive exploration to aggregate many large
circuits into a single compound one is prohibitive in terms
of computation time, because exhaustive exploration im-
plies to find all possible ways of aggregating one circuit into
any other subset of circuits. In this section, we present a
strategy based on evolutionary computation principles [14]
that is more scalable w.r.t the number of circuits and is based
on the fact that finding a single solution for aggregating two
circuits is fast, even for large circuits.

Our evolutionary algorithm proceeds though successive
generations of a population of intermediate compound cir-
cuits and selection of population members based on their
cost function (see 3.3). Let us assume we want to aggre-
gate N circuits (referred below as the ancestor circuits) into
a single compound one. At generation 1, we build a popu-
lation composed of P circuits (P is a user-defined param-
eter) which is a subset (chosen at random) of the circuits
we want to aggregate (the ancestors). One circuit is then
chosen at random among this population and aggregated to
a randomly-chosen ancestor via a single randomly-chosen
exploration solution. This process is iterated E times (E is



a user-defined parameter), yielding a population of E non-
identical intermediate circuits, each of them aggregating 2
ancestors. Generation 2 is then obtained by picking up P
circuits among these E intermediate circuits. This selection
stage is carried out so that the probability that a given cir-
cuit is selected decays with increasing cost functions. The
steps above (creation of E circuits from the previous gener-
ation and cost-based selection of P of them) are iterated to
obtain successive generations until generation N , in which
each circuit has aggregated all the ancestor circuits. The
final compound circuit is the circuit of generation N with
smallest cost function.

With P = E = 1, the above algorithm corresponds to
a purely random search without optimization. Figure 9(a)
shows how the typical computation time scales with the
number of ancestor circuits in this case. Because the
algorithm depends on random realizations, each run of the
algorithm will need different computation times, but the
necessary computational effort remains very low. Even
with N = 9 ancestors, the typical computation time (on a
2.4 GHz AMD 64 Athlon processor) remains less than a
second. On the other hand, the cost of the final compound
circuit obtained by this non-optimized method grows
rapidly (and almost linearly) with the number of circuits
(Figure 9(b)).

In order to optimize the cost of the compound circuit,
we need to increase P and E. For instance using P = 3
and E = 6 (see Figure 9(b)) significantly improves the
cost/quality of the final compound. When up to 7 circuits
are merged and the computational time is less than 80 sec-
onds, the typical improvement brought by the optimized al-
gorithm ranges between 2.0 and 2.5, i.e., the cost of the final
compound circuit is typically less than half of that obtained
without the algorithm, within the same period of time. With
a larger number of circuits (8 or 9) and the same compu-
tational time, the improvement is lower but still significant
(1.2 to 1.7). The user is naturally free to set different com-
putational time/cost benefit tradeoffs at design time.

6.2 Compound circuits characteristics

As previously discussed, the major advantage of com-
pound circuits is their ability to reuse common data paths
hence avoiding paying the cost of accelerating each bench-
mark separately. Figure 10 shows the area (in µm2) of the
9 synthesized circuits (corresponding to the 9 target bench-
marks) as well as 12 compound circuits (where the number
of merged circuits are varied from 2 to 9 circuits), the gray
bars show the original area for single circuits and the sum
of the areas of the individual circuits for compound circuits,
and the black bars show the area of the compound circuits.
The percentages correspond to the area reduction. Figure 10
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sulting compound circuits.
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Figure 11. Critical path of individual and re-
sulting compound circuits.

shows an area saving of 66% when compounding all the
circuits, and an average saving of 40.9% across 2-circuit to
9-circuit compounds.

We also evaluate the overhead cost, and compare the
compound circuit cost to individual circuits. Synthesis re-
sults show that a 9-circuit compound is only 38% bigger
than the biggest individual circuit (fft). The 12 generated
compounds were, on average, 8% larger than the largest in-
dividual circuit included in the compound.

Impact on critical path. Figure 11 shows the impact of
compounding the circuits on the critical path. The critical
path is the minimum clock cycle time with which the circuit
could be synthesized without constraints violations. Natu-
rally, the critical path of the compound circuit is higher than
the critical path of each included individual circuit, due to
the configuration muxes overhead. Figure 11 shows an av-
erage increase of 21% of the critical path over the circuit
with the largest critical path, and a maximum increase of
37%.

In spite of the increase of the compound circuit criti-
cal path over the individual circuit critical path, the perfor-
mance of the compound circuit is still significantly higher
than the software version, as will be demonstrated in Sec-
tion 7. Moreover, there are several venues for further
compensating for the compound higher critical path la-
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Figure 9. Aggregation of increasing numbers of circuits. Each value is the median on 50 realizations
of the algorithm and the individual circuits are chosen at random among the benchmarks listed in
Table 1.

tency. First and foremost, these results correspond to non-
pipelined circuits, and the highly streamed nature of the cir-
cuits would largely benefit from pipelined versions. Sec-
ond, the critical path of most individual circuits contained
within the compound circuit is likely to be smaller than the
compound critical path (except for the individual circuits
using the compound critical path circuit), opening up the
possibility of clocking the compound circuit in a variable
way depending on which target circuit is being executed.
Both venues are left for future work.

7 Performance Evaluation

On average, the speedup of our circuit-based accelera-
tion approach, using the full 9-circuit compound, is 2.8,
as shown in Figure 12(a). Since the host processor runs
at 400MHz (2.5ns), and the compound circuit critical path
is 6.1ns, we report these speedups for a compound circuit
latency of 3 cycles. The better performance comes from a
combination of faster execution of sequences of ALU oper-
ations, and the latency hiding properties of streams.

Note that, depending on the target markets, fewer cir-
cuits may be bundled together, so that smaller compound
circuits could be used, with a correspondingly smaller crit-
ical path. For instance, if a comp+lmsfir compound is
used for these two circuits, the critical path at 4.9ns, see
Figure 11, would enable a 2-cycle latency, breeding higher
speedups. Figure 12(c) shows the speedup as a function of
the circuit latency for each benchmark. This latter figure
also shows that, as the processor clock frequency increases,
and thus the compound circuit cycle latency increases, the
speedup degrades logarithmically on average. With a 4-
cycle latency (corresponding to a 1.525ns clock cycle, i.e., a
655MHz processor), the average speedup is still 2.4, and 1.8
for a 7-cycle circuit latency (potentially corresponding to a

#iterations inner loop #calls (iterations outer loop) speedup
512 1 7.92
256 2 6.96
128 4 5.60
64 8 4.05
32 16 2.64
16 32 1.61
8 64 0.96
4 128 0.60
2 256 0.41
1 512 0.30

Table 2. FFT case study

1.14Ghz processor). Moreover, this is a pessimistic evalua-
tion of the speedup when the clock frequency increases, be-
cause the stream buffers are more capable to tolerate longer
memory latencies (due to higher processor clock frequency)
than a traditional cache hierarchy. Finally, Figure 12(c),
also hints at the potential performance benefit of pipelin-
ing the compound circuit. Even though the 1-cycle latency
is a performance upper-bound of the pipelined version, the
higher control circuit overhead should only moderately in-
crease the overall critical path latency. Combined with the
absence of pipeline hazards (other than memory stalls, al-
ready accounted for in the 1-cycle experiments), it sug-
gests that the pipelined version performance should be in-
between the present 1-cycle and 2-cycle latency speedups.

For benchmarks mult, edgedetect, iir, potential
performance benefits are impaired by small innermost loops
(10, 3 and 4 iterations respectively) when using only 1-loop
stride streams (see Section 3.1); for instance, one of iir in-
nermost loops has 4 iterations, while the outer loop has 64
iterations for a total of 4 × 64 = 256 innermost iterations
instances. Short inner loops require to pay the overhead of
calling and starting the circuit more frequently, and hamper
latency hiding capabilities of streams. In such cases, using
the slightly more costly multi-loop streams provide signifi-
cant performance benefits, as shown in Figure 12(b).



 0

 1

 2

 3

 4

 5

 6

 7

 8

m
ult

com
press

edge
fft fir histogram

latnrm

lm
sfir

iir average

sp
e

e
d

u
p

(a) Speedup using the 9-circuit compound (3-
cycle latency accelerators).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

m
ult

edgedetect

iir

sp
e

e
d

u
p

single-nested
multi-nested

(b) Multi-Nested loop circuits.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

m
ult

com
press

edge
fft fir histogram

latnrm

lm
sfir

iir average

sp
e

e
d

u
p

1
2
3
4
5
6
7

(c) Impact of circuit cycle latency.

Figure 12. Speedups.

However, for one program, fft, the performance im-
provement remains small. This program similarly suffers
from many instances of small innermost loops, with an av-
erage of 5.12 iterations for the inner loop. Table 2 decom-
poses one run of this benchmark and shows the speedup
obtained depending on the number of iterations of the inner
loop, reported in the first column. The speedup is high for a
large number of inner loop iterations and decreases quickly
with the inner loop size. Since this algorithm was imple-
mented with 1-loop streams, each instance of the inner loop
is a call to the accelerator, and, on average, the number of
iterations of the inner loop per call is quite small (5.12).
At the moment, our multi-loop streams only accomodate
fixed-bound loops, and it was not possible to implement the
triangular FFT loop using these streams, though there is no
fundamental implementation or cost issue, and we plan to
extend our streams to cope with such loops in the future.

8 Conclusion

In this article, we investigate how to create accelerators
which can benefit a variable number of target applications,
thereby reaching a given point between flexibility and ef-
ficiency. The potential markets for such approaches range
from the increasingly multi-purpose consumer electronics
devices to many low-volume high-margin embedded sys-
tems markets (defense, medical applications,. . . ) as well as
general-purpose processors seeking market differentiation.

For that purpose, we propose a systematic and low-
overhead method to combine several loop-accelerated cir-
cuits within the same compound accelerator. The com-
pounding processing is based on automatic graph explo-
ration and complementation, simultaneously considering
the data and control flow part of circuits. We show how
to make the process scale with the number of circuits by
replacing exhaustive exploration with a statistical, evolu-
tionary, process which makes it possible to find low-area
compound circuits in a small design time. We show that

compounding 9 circuits can reduce circuit area by a factor
of 3 compared to the traditional approach of implementing
one accelerator per target application, while increasing the
critical path by 37% only compared to individual circuits.
Without resorting to pipelined operators nor fine-tuning the
clocking of the compound circuit for each target circuit, we
already demonstrate an average speedup of 2.8 on a PPC405
host processor.

Compound circuits open up many challenges as well as
perspectives. Combining acceleration with parallelism will
enable the generation of more efficient compound circuits.
Furthermore, since the circuit mapping process works by
matching increasingly large sub-circuits, it can be used for
identifying frequently occurring sub-circuits, i.e., recurring
similar program patterns. Over time, these patterns can be
further manually optimized, yielding a library of fine-tuned
operators compatible/useful for a large range of programs.
Also more aggressive circuit exploration and matching can
be investigated to achieve more space/time tradeoffs, for
instance, matching an existing barrel shifter or a simple
adder to a multiply-by-two operator. Our approach can also
greatly benefit from bit-width analysis [25] and progressive
decomposition techniques [26] to optimize the arithmetic
operators of compound circuits.
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