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Reconfigurability and Reliability 
of Systolic/Wavefront Arrays 

Edwin Hsing-Mean Sha and Kenneth Steiglitz, Fellow, IEEE 

Abstruct- In this paper, we study fault-tolerant redundant 
structures for maintaining reliable arrays. In particular, we 
assume the desired array (application graph) is embedded in a 
certain class of regular, bounded-degree graphs called dynamic 
graphs. We define the degree of reconfigurability D R ,  and D R with 
distance D R d ,  of a redundant graph. When D R  (respectively, 
D R d )  is independent of the size of the application graph, we 
say the graph is finitely reconfigurable, F R  (respectively, locally 
reconfigurable, LR).  We show that D R  provides a natural lower 
bound on the time complexity of any distributed reconfiguration 
algorithm and that there is no difference between being F R  and 
L R  on dynamic graphs. We then show that if we wish to maintain 
both local reconfigurability and a fixed level of reliability, a 
dynamic graph must be of dimension at least one greater than the 
application graph. Thus, for example, a one-dimensional systolic 
array cannot be embedded in a one-dimensional dynamic graph 
without sacrificing either reliability or locality of reconfiguration. 

Index Terms- Dynamic graphs, fault tolerance, reconfigura- 
tion, reliability, systolic arrays, wavefront arrays. 

I. INTRODUC~ION 
IGHLY PARALLEL pipelined structures such as sys- H tolic or wavefront arrays are attractive architectures 

for achieving high throughput [9]. Examples of important 
potential applications include digital signal processing [2], 
[ 111, large-scale scientific computation on arrays for solving 
partial differential equations [12], and simulating lattice-gas 
automata [14]. As such array processors become larger, the 
reliability of the processing elements (PE’s) becomes a critical 
issue, and it is necessary to use fault tolerant techniques-both 
at the time of fabrication [15] and at run time. Defective PE’s 
must be located, and the architecture reconfigured to substitute 
good PE’s for bad. 

In certain run-time applications, such as avionics and space- 
flight, fault tolerant techniques must be able to restore proper 
operation as fast as possible after failures. For this purpose, 
distributed reconfiguration algorithms executed in parallel by 
the PE’s themselves have been studied in [13] and [17]. In 
[5] a fault tolerant multiprocessor is developed for space 
applications that also employs a distributed reconfiguration 
approach for the topology of a chordal skip-link ring. In this 
paper, we study the complexity of algorithms for reconfiguring 
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arrays after failures, and focus especially on run-time fault 
tolerance. 

In most literature on fault tolerance, faults are confined to 
processing elements only, and it is assumed that all switches 
and connections [l], [3], [lo], [18] are perfect. This is not 
valid when the number of switches and connections becomes 
large. In this paper we will use a graph model that takes into 
account failures of switches and interconnection wires as well 
as PE’s. PE’s and switches will be represented by nodes of 
the graph in the obvious way, and a connection between two 
elements in the computational structure will be represented 
by a node inserted in the edge between the appropriate two 
nodes in the graph model. Each node of the graph will have 
associated with it a probability of failure e .  

To achieve fault tolerance, we add redundancy to the 
system. After a failure the original working architecture is 
reconfigured by replacing some nodes that were being used by 
redundant nodes. A good fault tolerant structure is one where 
the number of nodes that need to be changed after failure is 
as small as possible. In this paper, we define a measure of this 
adaptability, the degree of reconfigurability ( D  R), and analyze 
this measure on a class of very regular graphs called dynamic 
graphs [6]-[8], [16]. We also analyze a stricter measure, called 
the degree of reconfigurability with distance, D Rd, which 
takes into account the total distance between original nodes 
and replacing nodes. Our goal is to investigate the relation 
between the structure of dynamic graphs, their reliability, and 
their fault tolerant capability as measured by their degree of 
reconfigurability . 

The case when D R  is independent of the size of the system 
is especially important because it represents the situation 
when the amount of change necessary to repair the system 
depends only on the number of failed nodes, but not on the 
size of the system. In this case, we say the graph is finitely 
reconfigurable. Similarly, if DRd,  the total distance cost of 
changes is independent of the size of system, we say that it 
is locally reconfigurable. 

Actually, in Section 111, we show if the redundant system is 
a dynamic graph, it is locally reconfigurable if and only if it is 
finitely reconfigurable. Given a desired working structure, we 
will discuss what types of redundant structures are possible 
or impossible to maintain at a fixed level of reliability, while 
at the same time being locally reconfigurable. In particular, 
our main result is that, if we wish to maintain both local 
reconfigurability and a fixed level of reliability, the dynamic 
graph must be of dimension at least one greater than the 
application graph, which is shown in Sections IV and V. 
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11. DEFINITIONS AND h4ATHEMATICAL FRAMEWORK 

A VLSI/wafer-scale-integration array architecture can be G:: n-node linear array 

represented as a graph G = (V, E ) .  Each node of the graph 

connection between two processors. We assume that the nodes 
fail independently, each with probability E. As mentioned 

or interprocessor connection. 
Real working architectures are considered to be a family of 

graphs, G,, called application graphs; G i  = (V: , E:) denotes 
the ith application graph of G,. For example, 0, can be a 

G can be regarded as a processor, and an edge of G is a 

earlier, a node in our graph model can represent a PE, a switch, 

_ _ _ _ _ _ _ _ _ _  
- _ _ _ _ _ _ - - -  

_ _ - - - - - - - -  
1 2 . 9 4  n-J n 

G;: n-triple-modular-redundancy (TMR) array 

Fig. 1. Example of 9, and 9,. 

Of linear arrays indexed by a number Of nodes, '0 is, E S ( G i )  = GI.  k t  -+ GI be the initial embedding 
function for the ith application graph GL. 

Definition 2.4: Given an embedding architecture, define the 
initial embedding, I E ,  to be a set of pi for all GL in the family. 

For the above example in Fig. 1, an initial embedding can 

GE is an n-node linear array. We always assume each G: 
is connected and that for each value of n ,  there exists a 
unique i. Since we need to add redundant nodes or edges 
to increase reliability, the embedding structures, E,, called 

Gi = (V:, E:) denotes the ith redundant graph of G,. Each 
pair of nodes in V: is associated with a value, distance , 
defined by a function Di: v: is the 

regarded as the physical distance between two nodes, or some 
cost, such as the communication cost. 

Given two graphs G I  = (VI ,  E l )  and G2 = (v2, E213 define 
the embedding function P :  v1 vj) E El 

iff (P(vi), d u j ) )  E Let Given 
an embedding function P: VI -+ v2, let the mapping set s ( P )  
be the set of pairs, { ( v , ~ ( v ) ) ~ v  E vi}. Thus, s ( p )  - s(cL') 
represents the difference between two embedding functions p 

redundant graphs, are represented as a Of graphs; be a set of & such that each node of G i  maps to the bottom 
node of each module of 

Given an embedding architecture for a Gi,  after k nodes 
have failed, obviously there may be many different embedding 

s(p;) should be as small as possible for the purpose of 
real-time fault tolerance. 

Suppose that the number of nodes in G i  is n.  Given 
EA, I E ,  and that k 5 F T ( G i )  nodes have failed, let the 
cost of reconfiguration of G",, A(k, n),  be the minimum of 
IS(&) - S(pi ) l  Over all the possible embedding functions 
p i ,  that is, 

v: -+ N ,  where 
set of natural numbers; Di(a,  a )  = 0. This &stance can be functions pk's .  However, the difference between ,"(pi) and 

v2 such that 
be the image Of 

and p'. A(k, n)  = mtn IS(PZb> - S(Pi)I. 
Given 9, and G,, the following function will determine pk - 

which graph in 9, will be the redundant graph of the ith 
application graph. 

Definition 2.1: An embedding strategy for 6, and 4,. is a 
function ES:  G, -+ G,, that is, if ES(Gb) = G i , G i  is the 
redundant graph for GL. 

If ES(GL) = G i ,  and k nodes of Gi have failed, the failed 
nodes and all the edges incident to them wjll be removed and 
Gi  becomes a new subgraph Gi  = (Vj, ,  E!) .  The procedure 
of finding a new embedding function p i :  V: -+ Vj is called 
reconfiguration. 

Definition 2.2: Given G,, G,, and ES, the maximum fault 
tolerance of G i ,  M F T ( G i ) ,  is the maximum number of 
nodes that can be allowed to fail arbitrarily in ES(G",) such 
that ES(G:)  can still find a subgraph isomorphic to G i .  
In addition, FT(Gi )  is given, which is some fixed number 
5 M F T ( G i )  for each i. 

Definition 2.3: Given G,, G,, ES, and fault tolerance 
F T ( G i )  5 iMFT(GL) for each i, the quadruple (G,, G,, ES, 
FT)  is called an embedding architecture, EA. 

For example, in Fig. 1, G, is a family of linear arrays, 
and 9, is a family of triple-modular-redundancy (TMR) arrays 
obtained by triplicating each node of a linear array to be three 
nodes, called a module. Let G; = ES(GE) be the n-module 
array, and let its corresponding FT(GE) be 2 for all n. 

For simplicity, if the context is clear, we will always assume 
the ith application graph maps to the ith redundant graph, that 

When there is no p i ,  A(k, n)  = 00. We also want to measure 
the total distance between original nodes and replacing nodes 
after reconfiguration. The total distance cost of reconfiguration 
for G i  , Ad ( k ,  n),  is similarly defined to be the following: 

When there is no p i , A d ( k , n )  = 00. Under a given E A  
and I E ,  let DR(k,  n) ,  the degree of reconfigurability for G i ,  
be the maximum of A(k ,n )  over all possible k failures in 
G i , k  5 FT(G;),  that is 

D R ( k , n )  = max A(k,n) .  
failures of k nodes 

k < F T ( G : )  

The degree of reconfigurability with distance, D Rd ( k  , n)  , 
is defined similarly (change A to be Ad in the preceding 
equation). 

Return to the example in Fig. 1. Let the distance between 
two nodes in the same module be one, and the distance 
between two nodes, one in module i and the other in module j ,  
be li-jl+ 1. In this case DR(k,  n)  and DRd(k, n)  for GE are 
both k ,  since for any k 5 FT(GE) = 2 faults, we need only 
change k nodes in the same modules as the k faulty nodes, and 
the distance between two nodes in the same module is one. 
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Fig. 2. Hayes’ 4-FT single loop. 

Definition 2.5: An embedding architecture, E A ,  is finitely 
reconfigurable (resp. locally reconfigurable), if there exists an 
initial embedding, I E ,  such that for all the G6 E G,, DR(lc, n )  
[resp. DRd(k, n)], can be bounded from above by a function 
of IC but not n. 

For example, the embedding architecture for linear arrays 
in the preceding example is both L R  and F R ,  since for each 
G i , D R ( k , n )  = DRd(k ,n )  5 k .  

We show in the following lemma that Hayes’ h - F T  (n+  h)- 
node single loop [4], which is an h-fault-tolerant graph for an 
n-node loop application graph, is not finitely reconfigurable. 

The nth application graph GE is an n-node single loop, and 
the embedding strategy is to map Gb to its so-called Hayes’ 
h - F T  ( n  + h)-node single loop. Thus, G: is defined by the 
following procedure, where we assume for this example that 
h is even. 

1. Form a single-loop graph Cn+h with n + h nodes. 
2. Join every node xi of Cn+h to all nodes at index distance 

j from xi, for all j satisfying 2 5 j 5 ( h / 2 )  + 1. 
The resulting graph GF is an h - F T  (n + h)-node single- 

loop graph. Hayes [4] shows that is M F T ( G t )  = h. Let the 
distance between node xi and x i  be li - j l  mod n + h. All the 
computations in the proof are based on indices mod n+ h,  and 
all the indices are in G,. The graph in Fig. 2 is an example 
for n = 8,n = 4. 

Lemma 2.1: The preceding embedding architecture with 
FT = MFT = h,  mapping the n-node single loop to Hayes’ 
h - F T  (n + h)-node single-loop graph, is neither FR nor L R  
if h is O(n1/2). 

Proof: We assume there is an adversary A who always 
tries best to select failures that show that DR(k ,n )  is not 
bounded by a function of IC only. No matter what the initial pg 
is, n working nodes must be distributed among the n +  h nodes 
of G:. Define a segment S to be a sequence of consecutively 
numbered working nodes (xi, xi+l, e . + , xj) in G:, where 
xi-1 and xj+l are nonworking redundant nodes. Denote the 
length of the segment S by Z(S) = j - i + 1, and suppose 
the h nonworking nodes, ordered by their indices, form the 
sequence (xil, x i 2 ,  . . . , x ih ) .  For each xi, there is a segment 
Sj (it may be null) starting from xi,+1. Thus, 

The adversary can choose the middle node Xd of segment 
S* to be faulty, that is, d = [n/2hl. Choose a reconfiguration 
that is optimal in the sense that the fewest possible number of 
nodes in G:+h are changed. Let m be the number of nodes in 
S* which are changed in this reconfiguration. Let C be such 
a sequence of m nodes (xjl,  xj,, . . . , xj,) ordered by their 
indices. We know xd must be replaced by one node, say x:, 
and if x& is a working node, it must be replaced by another 
node. Thus, there is a sequence C of working nodes in S* 
in this sequence of replacements, starting with xd and ending 
at a working node that is replaced by the first node x, outside 
S*. First, we divide S* into many small subsegments with 
length w, where w = 2[(h/2) + 11, and represent them as a 
sequence (s; , e . . , si) .  Let xd be in subsegment s:. Without 
loss of generality, assume that the index of x, is larger than 
the largest index of a node in C; that is, r > j,. 

We claim that there must exist at least one node in C in 
the subsegment S i  or S;. Suppose not. Let x, replace xi 
in C and let a and b be the two nodes connected to xi in 
the initial working subgraph. Since connections must be of 
length at most (h/2) + 1 and the distance between xi and the 
last node in S* (and also the first node in S*) is > w, we 
know a and b must be in S*. If a or b is not in C, say a, 
because a is not replaced, x, must be connected to a after the 
reconfiguration. But we know that i 5 j ,  and r > Z(S*) from 
the assumption, so it is impossible that x, is connected to a. 
Thus, we know that a and b are in C, say that a is replaced 
by a’. Denote the sequence of original working nodes starting 
from xi toward one direction in the original working subgraph 
by {xi, a, a l ,  a2, . ’ .}, and the sequence after reconfiguration 
by {xr, a’, a i ,  a i ,  . .}. If a’ E S*,  because a‘ replaces a,  a’ 
must be in C. Since the index of a’ is 5 j,, it is impossible 
for a’ to be connected to 2,. Thus, a‘ is not in S* . In summary, 
we know that if xi E C and x, $! S*, then a is in C and a‘ is 
not in S*. Repeating the argument, using a instead of x; and 
a‘ instead of x,, we can get the result that a1 is in C and ai  is 
not in S* . Continuing in this way, it follows that all the nodes 
a ,a l ,a2 , . . .  are in C and nodes a’,a\,ai,... are not in S*, 
but this is impossible, since there are only a finite number of 
nodes in C. Thus, our claim is correct. 

We claim next that in each pair of the subsegments 
(S;, where 1 = 1,. . e ,i, there exists at least one 
node in C. We have proved that it is true for the first pair of 
subsegments (Sf,S,*). Assume it is true for all the pairs of 
subsegments from Z = 1 to k - j ,  and i < j .  We represent 
C’ = {xjlxj E C, xj not in S;, . . . , S i - j ,  and S;+l,. . , S i } .  
Since xd E c’, from the way that x, is chosen, we know 
there must exist one node in C’ which is replaced by a node 
outside of C’. If, in S;-j+l and Sj*, there does not exist a 
node in C’, the same argument as above results in the same 
contradiction. Thus, in each pair of subsegments in S*, there 
is at least one node that has been replaced. The number of 
nodes in C must therefore be at least n/2hw = O(n/h2). If 
h = o(n1/2), a number of nodes that is an unbounded function 
of n need to be changed. Thus, DR(k, n )  is not bounded by a 
function of k only, under any initial embedding function p:, 
and therefore the Hayes’ embedding architecture is not finitely 
reconfigurable. It is obvious that the total distance between 

e( l (s j )  + 1) = n + h. 

There must exist a segment S* such that Z(S*)+l 2 (n+h)/h; 
that is, l(S*) 2 n/h.  Without loss of generality, assume that 
S* is from node x1 to node xZ(p ) .  

j=1  
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1 2 3  n n+l  n+h 

Initial embedding 

1 e' 3 n n+l  n t h  

After reconfiguration 

G;: (n + h)-node complete graph 

Fig. 3. Example that is F R  but not LR. 

original nodes and their replacing nodes is also an increasing 
function of n, so it is not LR either. 0 

Our next example is an embedding architecture that is 
finitely reconfigurable, but not locally reconfigurable. Choose 
9, as in Fig. 1 to be a family of linear arrays, and 9, as in Fig. 
3 to be a family of complete graphs on a row. Let ES map 
GE to G:+" and let FT(G2) = h, for each GF in 9,. The 
distance between node i and node j is defined to be li - jl. 
After one node has failed, say node 2, we can take any spare 
node to replace it, say node n + 1 ,  as shown in Fig. 3.  

Lemma 2.2: If h is O ( n ) ,  the preceding embedding archi- 
tecture is FR, but not LR. 

Pro08 It is obvious that such an E A  is finitely recon- 
figurable, since any spare node can replace any other node, 
so that only k faulty nodes need to be changed after k nodes 
fail. Considering GE and GFth, under any initial embedding, 
there must exist a sequence of working nodes in G:th with 
consecutive indices of length 2 n / ( h  + 1)) by the same 
argument as in Lemma 2.1. Choosing the middle node of such 
a path to be faulty, the distance between any spare node and 
the faulty node must be 2 n/(2(h  + 1 ) ) .  Since h = O(n) ,  
the distance is an increasing function of n. Thus, this E A  is 
not locally reconfigurable. 0 

111. DEGREE OF RECONFIGURAEHLITY FOR DYNAMIC GRAPHS 

In applications we are interested in graphs that are very 
regular and of bounded degree. A n  interesting and useful 
class of such graphs are called dynamic graphs [6]-[8], [16], 
which model regular systolic and wavefront arrays in a natural 
way. A n  undirected k-dimensional dynamic graph Gk  = 
( V k l  E k ,  T k )  is defined by a finite digraph Go = (Vo,  Eo) ,  
called the static graph, and a k-dimensional labeling of edges 
T k :  Eo + Zk. The vertex set V, is a copy of V o  at the 
integer lattice point x and V k  is the union of all V,, where 
x E Z k .  Let a,  be the copy of node a E Vo in the vertex set 
V, and let by be the copy of node b E V o  in the vertex set 
V,. Nodes a, and by are connected if (a, b)  E Eo, and the 
difference between the two lattice points y and x is equal to 
the labeling T k  (a ,  b ) .  Therefore, the dynamic graph is a locally 
finite, infinite graph consisting of repetitions of the basic cell 
V o  interconnected by edges determined by the labeling T" In 
Fig. 4, we show an example of a 2-D static graph Go and its 
corresponding dynamic graph G 2 .  

Fig. 4. Example of Go and the corresponding dynamic graph G2 

Fig. 5. Cell-dynamic graph Gc of G2.  

For x ,y  E Z k ,  let E,,, = {(a,,6,)~(a16) E Eo}. The 
graph with vertex set V, and edges with both endpoints 
only in V, is called the xth cell of G k ,  C, = (V,, E,,,). 
Given a dynamic graph, we can contract all the nodes in the 
same cell to one node and delete the edges totally within the 
cell. This contracted graph is called the cell-dynamic graph, 
G ,  = (Vc, E"),  where V, = 2' and E" = U,+, Ex,y .  We 
give an example in Fig. 5, which is the cell-dynamic graph 
corresponding to G2 in Fig. 4. 

Given a static graph Go, we define Fj to be the finite 
subgraph of Gk such that each dimension of Fj has j cells, that 
is, Fj = (U, V,,U,,, E,,,), where z = ( ~ 1 ~ x 2 ,  . * . , x k ) ,  1 I 
xi 5 j ,  and y = ( y 1 , y 2 , . . . , y k ) , l  5 yi 5 j .  We define the 
family F of k-dimensional dynamic graphs to be the set of 
Fj, where j 2 1. 

There are different ways to define distance in dynamic 
graphs. For example, one resonable definition of the distance 
function D is to define the distance between two nodes, one in 
vertex set V, and the other in V,, to be the Euclidean distance 
in k -dimensional space between point x and point y if x and 
y are in different cells, and one if they are in the same cell. We 
say that a distance function D satisfies property v (triangle 
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inequality), if the distance between nodes a and b is less than 
or equal to the total distance of any path from a to b. Of 
course, Euclidean distance satisfies V. The following lemma 
will show that when the set of redundant graphs G, is a family 
of dynamic graphs and the distance function satisfies 7, then 
any embedding architecture is LR if and only if it is FR.  In 
the rest of this paper, we assume that D satisfies property V. 

Lemma 3.1: When 6, is a family of dynamic graphs and 
its distance function satisfies 0, the embedding architecture is 
locally reconfigurable if and only if it is finitely reconfigurable. 

Proof: Given an EA,  if this E A  is LR, we know by 
definition that the total distance cost of any k failures can be 
expressed as a function f(k), where f is a function of k only. 
We know the distance between any two nodes is at least one, 
so the number of nodes changed must be 5 f(k). Thus, this 
E A  is also FR.  

Suppose that it is FR.  We know that for each GE E Gal 
after k nodes have failed, at most a function of k ,  say, f (k ) ,  
nodes must be changed in the original working subgraph. Let 
a1 be the node in GE such that the distance in G3 between 
pL(u1) and pg(a1) is the maximum over all the nodes in Vz .  

Because there are at most f ( k )  nodes that are changed by 
p:, there exists a path in the application graph GE with at 
most f(k) edges from a1 to an unchanged node a2, that is, 
pg(a2) = pZ(a2). Let c be the maximum distance between 
any two nodes connected by an edge, which is a constant 
independent of k and n by definition. The distance D between 
node pg(a1) and pg(a2) is at most c + f ( k )  by property 
V, the triangle inequality. Similarly, the distance between 
node pL(a1) and node pi(a2) is at most c . f(k). Since 
pz(a2) = &(a2),  the distance between pg(u1) and &("I) is 
at most 2c f (k) .  Therefore the total distance of the f(k) 
changed nodes is at most 2c . f ( k ) 2  because there are at 
most f ( k )  pairs that are changed. E A  is therefore locally 

Finite reconfigurability is desirable in practice, especially for 
real-time fault tolerance, because it shows that after k nodes 
have failed, at most a function of k nodes need to be changed, 
independent of the size of the application graph. Lemma 3.2 
will show that the degree of reconfigurability D R  provides 
a lower bound on the time complexity of any distributed 
reconfiguration algorithm, and shows one reason this measure 
D R  is important. We assume in what follows that it takes one 
time step to send a message through an edge. 

Lemma 3.2: When Gb is an n-node application graph and 
8, is a family of d-dimensional dynamic graphs, the time 
complexity of any distributed reconfiguration algorithm is 
s2[(DR/k)'ld], where k is the number of nodes that have 
failed. 

Proof: After k nodes have failed, we must change at least 
D R  nodes to reconfigure. We can assume that a distributed 
reconfiguration algorithm is initiated by a neighbor node, 
called a source node, of each faulty node after this neighbor 
node has detected the failure. We need to inform at least D R  
nodes in Gt that they are assigned different nodes in G i .  Thus, 
the time to broadcast this fault information is a lower bound 
on the time complexity of any distributed reconfiguration 
algorithm. 

reconfigurable from the definition. 0 

Let the corresponding static graph be Go = (Vo,  Eo) ,  and 
its labeling be Td .  The maximum edge distance c in one 
dimension is the max (Itill(tl,...,ti,...,td) E T d ( e ) , e  E 
EO}. Let m be equal to (lVol x 2 ~ ) ~ .  We can always contract 
the nodes of Gd into groups of at most m nodes to obtain 
a d-dimensional reduced graph GL = (Vi, EL), such that 
Vi = Z d  and EL = {(x,y)Ix,y E Vi,x # y,y - x = 
(e l ,  . . . , ei, . . . , ed) where ei = 0 or 1) .  Each node of Vi, 
called a class here, represents at most m nodes of the dynamic 
graph. Note that m is a constant by definition. 

After t time steps, one source node can inform at most 
( 2 t ) d  classes in a d-dimensional reduced graph, so at most 
(2t)dm nodes have been reached. Since there are at most clk 
source nodes, where c1 is the maximum degree in G, , the total 
number of nodes that can be informed after t time steps is at 
most (2 t )dmk.  There are D R  nodes that need to be informed, 

0 so t should be at least s2[ (DR/k)1 /d] .  

Iv. IMPOSSIBILITY OF AN LR-RELIABLE EMBEDDING 
OF DYNAMIC GRAPHS FROM DIMENSION d TO d 

In this section, we restrict attention to dynamic graphs, 
and consider the relationship between reconfigurability and 
reliability. In particular, we ask whether a given embedding 
architecture can be finite and locally reconfigurable, and at 
the same time maintain a given level of reliability. Without 
the constraint of being F R  or LR, we can simply construct a 
redundant graph to be many replications of the application 
graph, achieving high reliability, but at the price of using 
large amounts of hardware and being difficult to reconfigure. 
Our main result is Theorem 4.5: when mapping from d- 
dimensions to d-dimensions, we cannot maintain both local 
reconfigurability and reliability simultaneously. 

As Lemma 3.1 shows, there is no difference beween local 
and finite reconfigurability for dynamic graphs, and thus we 
consider only local reconfigurability, without loss of gener- 
ality. We define LR reliability in our framework as follows. 
Given an E A  which is LR, the probability, for each i, that 
Gt contains an isomorphic image of GL is 

FT 

P ( G i )  = ~ ' ( 1  - E ) ~ - '  
k=O 

where n = IV,"l. The following definition replaces Definition 
2.5 in the statistical case. 

Definition 4.1: An embedding architecture is LR reliable 
with reliability p, if P(Gb) 2 p for all the G i  E 9,. 

The following lemma is useful in what follows. 
Lemma4.1: Given G,,G,, and ES,  for each i, let 

M F T ( G i )  be the maximum number of failures that allows the 
corresponding E A  to be LR. If this MFT is upper-bounded 
by a constant as n -+ m, there exists a constant p such that 
E A  cannot be LR reliable with reliability p. 

Proof: Let the upper bound on MFT be c. By the 
definition of MFT in the hypothesis of the lemma, there exist 
c+ 1 nodes in the redundant graph Gt such that after they have 
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failed, for any I E ,  E A  cannot be LR. 

c+l  

P(Gi )  < ~ ' ( 1  - 
k=O 

859 

We know n can be chosen large enough to make c + 1 < En, 
so the term corresponding to IC = c + 1 is the largest in 
the summation. Thus, the probability P(GL) < ( c  + 1)(1 - 

( 9 1) 5 nc+l/(c + l)!, it is obvious that when n goes 

to co, P(Gd) goes to 0. Thus, for some i ,  we always can 
pick a p > P(Gb). Therefore, such an embedding architecture 

0 
We want to study some properties of dynamic graphs if 

we insist on local reconfigurability after some nodes have 
failed, since local reconfigurability is desirable in practical 
implementations. The following lemma tells us that one- 
dimensional dynamic graphs cannot be LR reliable when the 
application graphs are linear arrays. 

Lemma 4.2: When Ga is a family of one-dimensional linear 
arrays and 9, is a family of one-dimensional dynamic graphs, 
there exists a constant p such that no embedding architecture 
is LR reliable with reliability p. 

Proof: As in the proof of Lemma 3.2, we can always 
build a reduced graph G', = (VL, EL) by contracting sets of 
size at most m nodes in G: to produce a one-dimensional 
linear array. Each node of G', now represents a class of a 
finite number of nodes. Note that m is a constant number, 
since Go is a finite graph by definition. 

For any initial embedding, the n nodes of GE are distributed 
into at least n/m contiguous classes in G',. If the adversary 
chooses all the nodes in the middle class of the preceding n/m 
classes to be faulty, the initial working subgraph is separated 
into two halves. We must shift at least half of the GE and, 
therefore, change O(n) nodes to get a new working subgraph. 
Thus, if an embedding architecture is locally reconfigurable, 
its FT must be bounded by a constant m. From Lemma 4.1, 
we know there exists a constant p, such that E A  cannot be 

0 
To generalize Lemma 4.2, we define an nd-node d - 

dimensional web to be a d-dimensional graph Gl = (K, El) 
such that K = {x = (x1 ,x2 , . . . , 2d ) (  where xi = 
O,...,n - 1) and El = {(x ,y ) (z ,y  E K , x  # y,y - x = 
( e l , . . . , e ; , . . . , e d )  where ei = 0 or 1). Thus, we connect 
all adjacent points in the d-dimensional Euclidean space. For 
example, Fig. 6 shows a 2-D 16-node web. The family of 
d-dimensional webs is indexed by n. 

Theorem 4.3: If 8, is a family of d-dimensional webs and 
Gr is a family of d-dimensional dynamic graphs, there exists a 
constant p such that no embedding architecture is LR reliable 
with reliability p. 

Proof: We can always find a d-dimensional reduced 
graph G', = (VL, EL) by contracting the dynamic graph G: as 
we did in the proof of Lemma 3.2. Without loss of generality, 
we consider the most general case with all possible edges 
present, where VL c Zd and EL = {(x,y)lx,y E VL,z # 

cannot be LR reliable with reliability 0. 

LR reliable with reliability ,f3. 

Fig. 6. Example of a 2-D 16-node web. 

T"' 0'. .; ... ..... 
. .  . '. . .  . . .  . .  

U 

...... 

0 .,, 
v 3 

(0x0) ........................... w?).. ............... (?:!?or.. . ??.. 

Fig. 7. n paths in the proof of Theorem 4.3. 

y , y - x  = (el, . . .  ,e i ,  . . .  ,ed) where e; = 0 or 1).  Each node 
of VL represents a class of m modes of G:, where m is the 
constant in the proof of Lemma 3.2. 

First, we prove that there cannot be an embedding strategy 
that maps a d-dimensional web to a (d - 1)-dimensional 
dynamic graph. Suppose first an n x n 2-D lattice is projected 
to a one-dimensional dynamic graph. Among the n2 nodes in 
the web, the vertices on the path from vertex (0,O) to (0, n- 1) 
must be projected to at most n consecutive classes. Similarly, 
each of the n paths horizontally from (0, 0) through ( i , 0 )  
and vertically to the diagonal vertices ( i l n  - 1 - i) where 
0 5 i 5 n - 1 also must be projected to at most n consecutive 
classes. We show these n paths in Fig. 7. Thus, all the n2/2 
nodes on the paths must be in at most 2n classes, and there 
must exist one class to which at least n/4 nodes are mapped. 
This is impossible, since each class only has a finite number 
of nodes. The same argument can be generalized easily to 
d-dimensional lattices. Thus, we can restrict attention to the 
possibility of mapping a d-dimensional web to a d-dimensional 
dynamic graph. 

We say a class in GL is empty if there is no working node 
in it. In the application graph the nodes that are adjacent must 
be mapped to one or adjacent classes. It is not difficult to see 
that in the initial embedding there cannot be an empty class 
surrounded by nonempty classes. Consider a line of 2 n nodes 
in the nd-node d-dimensional web, as in the proof of Lemma 
4.2. For any initial embedding these n nodes are distributed 
into at least n/m classes that are linearly connected in G',. 
These images of lines may zig-zag in G',, but must map to 
at least n/m contiguous classes. Therefore, there is a well- 
defined inner central class which is O(n/m) classes away 
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a line between an inner central node and the border; 
there are 2 linea passing through it 0 :dw 

. . . . . . . vertical line Lza 

. .  vertical line L Z I  

.~ .. I , .  .. . .. . .~ 

Fig. 10. Image of vertical lines Lao and Lzi .  an image of a line along tbe x dimension in a Z d  web 

- - _ _  an image of a line along the y dimension in a 2-d web 

Fig. 8. Inner central class in the proof of Theorem 4.3. 

/ - - - - - - - 7  
\ 

I I interior of the image 
L - - - - - - - - - - - J  

Fig. 9. Pseudohole. 

from the border in the image of the web, as shown in Fig. 
8. Note that a line between the inner central class and the 
border may not be the image of a line along one dimension 
in the web, but the line must contain R(n) nodes in the web, 
as Fig. 8 shows. 

If the adversary chooses all the nodes, at most m, in 
the inner central class to be faulty, the original working 
subgraph has a central inner hole. We must change R(n) 
nodes in one direction to get a new isomorphic subgraph in 
Gp . Therefore, to maintain local reconfigurability, for any 
embedding architecture, FT must be upper-bounded by m. 
From Lemma 4.1, we then know there exists a constant 0, 
such that E A  cannot be L R  reliable with reliability /?. 

We next modify the application graph so that each node x = 
(x1,x2,. . . , zd) is connected only to nodes y = ( X I ,  . . . , xi f 
1,. . . , zd), i = 1, . . . , d. We call such a d -dimensional graph a 
d-dimensional orthogonal lattice. To develop intuition for the 
general case of d-dimensional dynamic graphs, the following 
lemma extends Theorem 4.3 to 2-D orthogonal lattices. 

Lemma 4.4: If G, is a family of 2-D orthogonal lattices and 
9, is a family of 2-D dynamic graphs, there exists a constant 
p such that no embedding architecture is L R  reliable with 
reliability p. 

Proof: As in the proof of Theorem 4.3, we know that a 
2-D orthogonal lattice cannot be embedded in a one- 
dimensional dynamic graph (we made no use of diagonal edges 
in that proof). Without diagonal edges, however, the rest of the 
proof is a bit more complicated. 

An image of an application graph can be regarded as a 
polygon. We say an embedding in G', has a hole of size k, 
if there exist k consecutive empty classes in a line along one 
dimension which are inside the polygon and surrounded by 
nonempty classes. Thus, the example in Fig. 9 is excluded 
from our definition of hole. 

We claim that after any embedding of a 2-D orthogonal 
lattice in a 2-D dynamic graph, it is impossible that there is a 
hole of size 2. Assume our claim is false, and denote the empty 
classes in a hole of size 2 by A and B. Index the nodes in the 
2-D orthgonal lattice G, by xij. For notational convenience, 
choose the origin so that 200 is a particular node which is 
mapped to the nonempty class immediately above A in G',. 
We will refer to the vertical line in G, passing through x;j 
as the vertical line Lxi. 

We have the following observations about the images in GL 
of vertical lines in the orthogonal lattice G,. First, the images 
of the vertical lines Lxi and Lx;+l cannot be more than one 
class apart along one dimension. Because the image of each 
pair of nodes xij and x;+l,j is in the same class or adjacent 
classes, this follows by induction on j .  Second, the vertical 
lines LZO and Lxl (respectively, LXO and Lx-1) must pass 
on the same side of A and B ,  as in Fig. 10, since there is no 
edge passing between A and B. According to the preceding 
two observations, by induction on i, all the vertical lines Lxi 
must be on the same side of A and B (either left or right), 
so A and B cannot be in the interior of the image of G,. 
This contradiction proves that it is impossible to have a hole 
of size 2. As we did in Theorem 4.3, the adversary can choose 
the two inner central classes in one dimension to be faulty, 
and, as before, there is no way to reconfigure G, so that those 
two faulty classes are surrounded by nonempty classes. Thus, 
we must change n(n) nodes in one dimension to get a new 

Finally, we can extend this result to d dimensions. The line 
containing classes A and B will be replaced by a (d - 1)- 
dimensional hyperplane in a d-dimensional dynamic graph. 

Theorem 4.5: If G, and E, are families of d-dimensional 
dynamic graphs, there exists a constant p such that no embed- 
ding architecture can be L R  reliable with reliability /?. 

Proof: Given an application graph G,, which is a dy- 
namic graph, a reduced graph can be built as before. Since 
the application graph is connected and a class is connected 
only to its neighboring classes, there exists at least one 
edge along each dimension from one class to its neighboring 
class. Therefore, any d-dimensional reduced graph contains 
a subgraph that is isomorphic to a d-dimensional orthogonal 
lattice . We, therefore, need only prove the theorem for the 
case of the application graph being a family of d-dimensional 
orthogonal lattices. Again, the proof of Theorem 4.3 shows 
that d-dimensional orthogonal lattices cannot be embedded 
in (d - 1)-dimensional dynamic graphs. 

working subgraph. 0 

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 11, 2009 at 16:50 from IEEE Xplore.  Restrictions apply.



SHA AND STEIGLITZ: RECONFIGURABILITY AND RELIABILITY OF ARRAYS 86 I 

.................................. ct7" ....... 

.................................. ....... 

.................................. ....... 

.................................. 8 ....... (OJ) 

(021) 

We claim that it is impossible that there exist a hole of 
size 2d-1 in one hyperplane H along (d - 1) dimensions 
(one coordinate is fixed) in the reduced graph. Assume our 
claim is false. Call the preceding 2d-1 classes an obstacle 0. 
The obstacle is composed of two empty classes along each 
of the (d - 1) dimensions in H .  Call the fixed dimension of 
H "vertical." By the same reasoning as in Lemma 4.4, no 
vertical lines can pass through the obstacle 0, and the images 
of any two adjacent vertical lines must lie on the same side of 
the obstacle 0 in the reduced graph. Therefore, the obstacle 
cannot be in the interior of the reduced graph, so our claim 
is correct. The adversary then chooses the inner central 2d-1 
classes in H to be faulty. There is no way to reconfigure the 
redundant graph such that those faulty classes are surrounded 
by nonempty classes. Thus, we must change O(n) nodes in 

0 one dimension to get a new isomorphic subgraph. 

v. POSSIBILITY OF AN LR-RELIABLE EMBEDDING OF 
DYNAMIC GRAPHS FROM DIMENSION d TO d + 1 

Finally, we want to show that we really can embed d- 
dimensional dynamic graphs in (d + 1)-dimensional dynamic 
graphs, while maintaining any desired high reliability and local 
reconfigurability. We begin with the one-dimensional case. 

Lemma 5.1: When 6, is a family of linear arrays, there 
exists an embedding architecture where 6, is a family of 2-D 
dynamic graphs, which can be LR reliable with any given p. 

Proof: We prove this by constructing a redundant graph 
Gf for an n-node linear array G," as shown in Fig. 11. Gf has 
n columns and each column has s nodes. Let FT(GE) < s. 

The initial embedding allocates each node of G," to a distinct 
column of GF, that is, let the initial isomorphic subgraph be 
the sequence ( O , O ) , ( l , O ) , ~ . ~ , ( n , O ) .  If one node ( i , O )  has 
failed, we choose (i, 1) as the replacing node, and if nodes 
( i , O )  and ( i , l )  have failed, we use (i - 1, l ) , ( i ,2) ,  and 
(i + 1 , l )  to replace nodes (i - 1,0) ,  ( i , O ) ,  and (i + 1,O). 
By using the preceding reconfiguration procedure, we change 
at most 2k - 1 nodes after any k < s nodes have failed. Since 
DR(k,  n)  = O ( k ) ,  GE with respect to such an E A  and I E  
is locally reconfigurable. 

We now want to show that given e, we can find an s and 
Gf with the desired properties. Let G: be a square piece of 
G:, an n x n. dynamic graph. Let p(n) be the probability that 
Gf contains G,". We form a vertical pile of s /n  such blocks 
to obtain s x n such dynamic graphs as in Fig. 12. After we 
connect each two adjacent squares, the resulting graph is the 
same as G:. 

n 

Fig. 12. Pile of GF for the proof of Lemma 5.1. 

I I I I  
I I I I  

I I  
I I  

lo#) (LO) (%O) (3 0)  

Dynamic graph construction for Corollary 5.3. Fig. 13. 

Since connections between two squares can only increase 
the reliability, the probability that there does not exist a 
working linear array in this big graph is < (1 - ~ ( n ) ) ~ / ~ .  
For any c, if s > cn log n / ( -  log (1 - p ( n ) ) ) ,  the preceding 
probability will be < l /nc .  Therefore, for any reliability p, 
we can find a sufficiently large s to achieve reliability p. 0 

We can now prove the main result in this section. 
Theorem 5.2: When Ga is a family of d-dimensional dy- 

namic graphs, there exists an embedding architecture where 
9, is a family of (d + 1)-dimensional dynamic graphs, which 
can be LR reliable with any given p. 

Proof: As earlier, we construct a reduced graph from the 
given dynamic application graph G,. The most general form 
of a reduced graph is a web. Thus, without loss of generality, 
we need only prove the theorem for the case of the application 
graph being a family of d-dimensional webs. We can use the 
same construction and reconfiguration method as we did in the 

From the preceding reconfiguration method, after k 5 
FT(GE) nodes have failed, we need to change at most 2k 
nodes. The following corollary shows that when d = 1, we 
can reduce this to exactly k nodes. 

Corollary 5.3: When 6, is a family of linear arrays, there 
exists an embedding architecture where 6, is a family of 2-D 
dynamic graphs with edge degree 4m + 2, where m is any 
constant 2 2, such that after any k 5 FT(GE) nodes have 
failed, we only need to change k nodes. 

Proof: First construct the dynamic graph as shown in 
Fig. 13, where there are s nodes in each column: each node 
(i, j )  connects to ( i  + 1, j + m), (i + 1, j + m - 1) ..... (i + 
I , j ) , . .  .. (i + 1, j  - m + I ) ,  ( i  + 1, j  - m). 

The reconfiguration method is the same as in Lemma 5.1. 
Let FT(GE) < s for each GE in the family, and allocate 
nodes of G," to different columns as earlier. The number of 
nodes that need to be changed after k nodes in one column 
have failed is at most [ k / m l  x 2 - 1. This is the worst case, 
so DR(k ,n )  = max( rk /m]  x 2 - 1, k )  = k ,  if m 2 2. 0 

previous lemma. 0 
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Similar constructions work for d dimensions. 

\’I. CONCLUSIONS AND OPEN PROBLEMS 

Our main result is that it is difficult for dynamic graphs 
to maintain both local reconfigurability and a fixed level of 
reliability. More precisely, the dynamic graph must be of 
dimension at least one greater than the application graph to 
have both properties. 

The problem of considering the tradeoffs among the size 
of redundant graphs (the number of edges), reconfigurability, 
and reliability needs to be studied further. A class of simple 
layered graphs with a logarithmic number of redundant edges 
is proposed in [19] which can maintain both finite reconfig- 
urability and a fixed level of reliability for a wide class of 
application graphs. By sacrificing finite reconfigurability, they 
also construct highly reliable structures with the asymptotically 
optimal number of edges for one-dimensional and treelike 
array architectures. However, the redundant graphs resulting 
from the constructions are not dynamic graphs. It would be 
interesting to consider the construction of redundant graphs 
that are restricted to be dynamic graphs, which are more easily 
implemented than less regular graphs. 
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