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Decomposition Engine Design for

High-Throughput MIMO-OFDM Systems
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Abstract— Singular value decomposition (SVD) is an optimal
method to obtain spatial multiplexing gain in multi-input multi-
output (MIMO) channels. However, the high cost of imple-
mentation and high decomposing latency of the SVD restricts
its usage in current wireless communication applications. In
this paper, we present a complete adaptive SVD algorithm
and a reconfigurable architecture for high-throughput MIMO-
orthogonal frequency division multiplexing systems. There are
several proposed architectural design techniques: reconfigurable
scheme, division-free adaptive step size scheme, early termination
scheme, and data interleaving scheme. The reconfigurable scheme
can support all antenna configurations in a MIMO system. The
division-free adaptive step size and early termination schemes
are used to effectively reduce the decomposing latency and
improve hardware utilization. The data interleaving scheme helps
to deal with several channel matrices concurrently. Besides, we
propose an orthogonal reconstruction scheme to obtain more
accurate SVD outputs, and then the system performance will be
greatly enhanced. We apply our SVD design to the IEEE 802.11n
applications. This design is implemented and fabricated in
UMC 90 nm 1P9M CMOS technology. The maximum operating
frequency is measured to be at 101.2 MHz, and the corresponding
power dissipation is at 125 mW. The core size is 2.17 mm2 and

the die size occupies 4.93 mm2. The chip result shows that the
average latency is only 0.33% of the wireless local area network
coherence time. Hence, the proposed reconfigurable adaptive
SVD engine design is very suitable for high-throughput wireless
communication applications.

Index Terms— Adaptive array processing, multi-input
multi-output (MIMO), orthogonal frequency division
multiplexing (OFDM), reconfigurable architecture, singular value
decomposition (SVD).

I. INTRODUCTION

DUE to the rapid evolution of wireless communication and

the demand of high data rate for multi-media information

access in recent years, single-input single-output transmission

has become insufficient for use [1], [2]. Therefore, the research

about multi-input multi-output (MIMO) technology becomes

an important topic in many advanced wireless communica-

tion standards [3]–[5]. The advantage of a MIMO system is
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that it exploits the space dimension to improve the system

capacity and reliability. However, in a MIMO system, one

receiving antenna may suffer from the interference of other

transmitting antennas [6], [7]. This makes it hard for the

receiver to obtain correct data. By applying the singular value

decomposition (SVD) technique [8]–[10], the interference can

be totally eliminated. Hence, the throughput and coverage of a

MIMO system can be greatly enhanced. From an information-

theoretical viewpoint, the use of SVD can be claimed as an

optimal solution [11]–[13]. Besides, the advanced wireless

local area network (WLAN) standard, IEEE 802.11n [14]–

[16], has treated the SVD technique as an optional MIMO

signal processing technique to enhance system performance.

It is also shown that the application of the SVD technique

has the highest throughput compared with other MIMO signal

processing techniques in the IEEE 802.11n systems [17]. This

indicates that the SVD technique is very important for the

MIMO wireless communication systems.

Nowadays, there are several issues in applying the SVD

technique to the wireless communication systems. These issues

are discussed in detail as follows.

1) In many wireless communication standards, a MIMO

system is usually combined with orthogonal frequency

division multiplexing (OFDM) technology. The SVD

engine needs to deal with hundreds of channel matri-

ces of almost all subcarriers before data transmission.

Hence, it is important to effectively reduce the total

computational complexity.

2) In the WLAN environment, the coherence time over

which the channel is considered essentially time-

invariant is about 0.07 s [17], [18]. This indicates that

we should complete the SVD operations of all channel

matrices as soon as possible. Otherwise, the SVD results

cannot be used for the present channel condition.

3) Assume that an MIMO system consists of up to MT

transmitter antennas and MR receiver antennas. There

are possibly MR•MT antenna configurations as well as

channel matrix sizes. Hence, it is necessary to design

a reconfigurable SVD engine for all antenna configura-

tions. For example, in an 802.11n system, the number

of transmitter antennas or receiver antennas can be from

1 to 4. The SVD engine should be capable of dealing

with 16 antenna configurations.

In recent years, [19] proposed one ASIC realization of

the SVD without the need of CSI for WLAN applications.

1063-8210/$31.00 © 2012 IEEE
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However, the chip implements an adaptive blind-tracking

U� algorithm [20] which is not complete for SVD outputs,

and long convergence time is another disadvantage for

the high-throughput MIMO-OFDM applications. A matrix

decomposition architecture was proposed in [21] according to

the Golub-Kahan SVD (GK-SVD) algorithm [22]. It achieves

higher processing throughput than [19] with lower hardware

cost. Based on the matrix decomposition architecture in [21],

a hardware-efficient VLSI architecture was proposed in [23]

by modifying the GK-SVD algorithm and using a high-speed

Givens rotation design. To increase the processing speed, it

only computes V and � which are partial to SVD outputs.

Nevertheless, the above-mentioned SVD designs only support

4 × 4 (four transmitter and four receiver antennas) antenna

configuration which is not sufficient for dealing with different

antenna configurations.

In this paper, we propose a complete adaptive SVD algo-

rithm, as well as a reconfigurable architecture design, for

the high-throughput MIMO-OFDM systems. Some of its key

features are listed as follows.

1) Adaptive step size scheme, partial update scheme, and

subcarrier inherit scheme (SIS) to effectively reduce

the decomposing latency and increase the processing

throughput.

2) Reconfigurable architecture for all antenna configura-

tions in an MIMO system.

3) Early termination scheme to improve hardware utiliza-

tion without losing system performance.

4) Data interleaving scheme to deal with several channel

matrices simultaneously.

5) Orthogonal reconstruction (OR) scheme to enhance the

system performance.

We implement the proposed reconfigurable SVD engine for

the application of the IEEE 802.11n systems with up to four

transmitter antennas and four receiver antennas. This chip is

implemented using 90-nm CMOS technology with a core area

of 2.17 mm2. It can be measured at 101.2 MHz with 125 mW

power consumption. As compared with other related works,

this chip achieves the highest throughput and power efficiency

in the 4 × 4 SVD operations. In addition, the chip result

shows that for an 802.11n system, the average latency of our

SVD engine is only 0.33% of the WLAN coherence time.

Therefore, the proposed SVD engine is very suitable for the

high-throughput MIMO-OFDM systems.

The remainder of this paper is organized as follows. In

Section II, we introduce the SVD technique in an MIMO

system and review the adaptive blind-tracking U� algo-

rithm. In Section III, the proposed complete adaptive SVD

algorithm is presented. The proposed architectural design

techniques for reconfigurable SVD engine are demonstrated

in Section IV. The OR scheme is described in Section V.

Section VI demonstrates the simulation and implementation

results of the proposed SVD engine. Finally, we conclude this

paper in Section VII.

In this paper, the following notation will be adopted. We

use boldface capital letters to indicate matrices and boldface

lowercase letters to indicate vectors. The letter I denotes the

V

x' x

U
H

H

z

y y'

Fig. 1. MIMO system with the SVD technique.

identity matrix. (·)H denotes the complex conjugate transpose

of a vector or matrix. Expression tr(·) denotes the trace of

a matrix, || · || denotes the two-norm of a vector, R(:, k)

denotes the kth column of the matrix R〈a,b〉, is the Euclidean

inner product as bH a.Cp×1, denotes the set of p × 1 complex

vectors, and denotes the set of p × q complex matrices.

II. INTRODUCTION TO SVD TECHNIQUE

A. MIMO System Model and SVD

Consider a MIMO system with NT transmitter and NR

receiver antennas. The baseband, discrete-time equivalent

model is written by y = Hx + z, where H ∈ C
NR×NT is the

complex channel matrix, z ∈ CNR is the additive white com-

plex Gaussian noise vector, x ∈ CNT is the transmitted data

vector, and y ∈ CNR is the received data vector. If we decom-

pose the channel matrix H by the SVD technique, we have

H = U�VH (1)

where U and V are an NR × NR left singular matrix and an

NT × NT right singular matrix, respectively. Both U and V

are unitary matrices (i.e., UUH = I and VVH = I) and �

is an NR × NT matrix with only real and nonnegative main

diagonal entries. The entry (i , i) of � denotes the i th largest

value σi , with 1 ≤ i ≤ min(NR , NT ).

Let x′ ∈ CNT be the symbol vector such that x = Vx′ and

the received signal y is multiplied by UH as shown in Fig. 1.

The channel between x′ and y′ can be written as

y′ = UH y = UH (Hx + z) = UH HVx′ + z′ = �x′ + z′. (2)

Note that the distribution of z′ is invariant since U is unitary.

The MIMO channel can be treated as d = min(NR , NT )

independent parallel Gaussian subchannels. The i th subchan-

nel has the gain being σi . Hence, the transmitter can send

independent data streams across these parallel subchannels

without any interference from an antenna. Note that the

values σ1, σ2, . . ., σd are called the singular values of H.

The column vectors of V (i.e., v1, v2, . . . , vNT ) are the right

singular vectors of H, and the column vectors of U (i.e.,

u1, u2, . . . , uNR ) are the left singular vectors of H.

B. Review of Adaptive Blind-Tracking U� Algorithm

In [20], the authors proposed an adaptive blind-tracking

algorithm for U and � as shown in Algorithm 1. n denotes

the discrete time index. Without loss of generality, we omit

the time index n in this subsection for simplicity. The received

signal y is used to estimate the autocorrelation matrix . Hence

is the estimated autocorrelation matrix of Ky = E[yyH ].
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Algorithm 1 Pseudo-code of adaptive blind-tracking

U� algorithm [20]

UΣ LMS

Deflation

Antenna 1

UΣ LMS

Deflation

Antenna 2

UΣ LMS

Deflation

Antenna 3

UΣ LMS

Antenna 4

y1(n+1)

wi(n+1) = wi(n) + μi(n)·[yi(n+1)·yi(n+1)
H·wi(n) − λi(n)·wi(n)]

λi(n+1) = wi(n+1)
H·wi(n+1)

μi(n+1) = 0.05/λi(n+1) (i=1,2,3,4)

yi+1(n+1) = yi(n+1)−[wi(n+1)
H·yi(n+1)·wi(n+1)]/λi(n+1)

Fig. 2. Adaptive blind-tracking U� algorithm for 4×4 antenna system [19].

Hence K̂y is the estimated autocorrelation matrix of Ky .

β is the forgetting factor and its choice depends on the

stationary degree of the channel. d is the number of useful

subchannels. The algorithm is meant to perform LMS-based

estimation to find the pair (wi , λi ). The step size µi controls

the convergence speed and accuracy. The deflation process

cancels the information of the pair (wi , λi ) for the estimation

of next pair (wi+1, λi+1). The blind-tracking and deflation

process continues until all pairs are estimated. The singular

pairs (ui , σi ) of channel matrix H can be derived by the use

of the pairs (wi , λi ) as follows:

σi =
√

λi , ui = wi√
λi

, i = 1, 2, . . . , d. (3)

The adaptive blind-tracking U� algorithm for 4×4 antenna

system as shown in Fig. 2 was implemented in [19]. The

forgetting factor β is set to 1. Hence, the autocorrelation matrix

is estimated by using the instantaneous received signals only.

This reduces the computational complexity at the expense of

additional square root and division. The step size is adaptively

adjusted as 0.05/λi .

III. PROPOSED ADAPTIVE SVD ALGORITHM

In many MIMO OFDM-based communication standards,

the channel matrix H can be obtained through channel estima-

tion [23]–[25]. With this additional information, we propose a

complete adaptive SVD algorithm for high-throughput MIMO

OFDM-based applications. The BER performance may be

affected by imperfect channel estimation, H, and the degrada-

tion discussed in referenced works [23]–[25] about the channel

estimation which is beyond the scope of this paper.

A. Derivation of Matrix R1

In Algorithm 1, the positive semidefinite matrix R1 is

estimated by a moving average of the recent received signal

vectors. In many MIMO OFDM-based standards, the channel

matrix H is already known by channel estimation. Therefore,

we can utilize the information to evaluate accurate R1

R1 =
{

HH H, NR ≥ NT

HHH , NR < NT .
(4)

With this definition of R1, we can still use the same update

and deflation process to find the pairs (wi , λi ) sequentially. In

the i th update process, we have

wi (n + 1) = wi (n) + µi (Ri − λi (n)I) wi (n)

λi (n+1) = wi (n+1)H wi (n+1), i = 1, 2, . . . , (d − 1) (5)

where d is min(NR ,NT ), and the i th deflation process is given

by

Ri+1 = Ri − wi (n+1)wi(n+1)H , i = 1, 2, . . . , (d−1). (6)

After convergence, we have wi and λi with 1 ≤ i ≤ (d−1). We

can derive the singular values and the corresponding singular

vectors of H by using the pairs (wi , λi ). Since it is possible

to have NR ≥ NT or NR < NT , there are two cases to be

considered. For the case when NR ≥ NT , we have

σi =
√

λi , vi = wi√
λi

, ui = Hvi

σi

, i = 1, 2, . . . , (d − 1). (7)

On the other hand, when NR < NT , we only need to

interchange vi with ui , and H is changed to HH in (7).

B. Partial Update Scheme

In Algorithm 1, wd and λd are derived by applying the

update operation. From our observation, after the (d−1)-

time deflation, the positive semi-definite matrix Rd can be

expressed as

Rd = wd wH
d . (8)

Hence, the update operation for wd and λd is unnecessary. We

can directly find the dth singular value and the corresponding

singular vectors by some simple operations. For the case of

NR ≥ NT , we get

σd =
√

tr (Rd ), vd = Rd (:, 1)

‖Rd (:, 1)‖ , ud = Hvd

σd

. (9)

On the other hand, when NR < NT , we only need to

interchange vd with ud , and H is changed to HH in (9). The

advantage of applying partial update is to effectively reduce

the decomposing latency.

C. Adaptive Step Size Scheme

The step size µi is an important parameter for the con-

vergence speed and stability of the algorithms. As mentioned

in the Appendix, the objective function is a quartic function

which is complicated (also mentioned in [19]) to derive the

exact bound of the step size. We derive a loose bound by

approximating the objective function from a quartic function
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to quadratic function in Appendix. We have derived a conver-

gence region and a near-optimal step size as follows:

0 < µi <
1

λi

(10)

and

µi = 2

3λi − λi+1
>

2

3λi

. (11)

Hence, fixed step size is inefficient and not robust for all kinds

of channel matrices. In [19], the step size is adaptively adjusted

as 0.05/λi(n) which is too small for fast convergence purposes.

Therefore, for the goal of fast and stable convergence, the

proposed adaptive step size is given by

µi (n) = a

λi (n)
(12)

where a is a scaling factor. From (11), we suggest that

the value of a could be 0.75 or 0.5 for hardware-friendly

implementation.

D. SIS

In (5), we have to give the initial values of {w(n)}i=1
d−1

for each update process. Although the update equation in

(5) surely converges with arbitrary initial values, choosing

good initial values can help to speed up the update processes.

We denote wi (0) and wi (∞) as the initial and converged

values of wi (n). In a wireless MIMO-OFDM system, since

two adjacent subcarriers often have similar channel matrices,

one subcarrier’s converged information is useful to its adja-

cent subcarrier. Therefore, if one subcarrier’s {w(∞)}i=1
d−1 is

obtained, we can take the converged values as its adjacent

subcarrier’s initial values of {w(n)}i=1
d−1. It should be noted

that pilot and null subcarriers will be skipped since they do

not need SVD operations.

E. Gram–Schmidt Scheme for Nonsquare Matrix

Generally speaking, for an NR × NT channel matrix, we

need to find d singular values, NR left singular vectors, and NT

right singular vectors, where d = min(NR ,NT ). After applying

the above schemes, we can find d singular values, d left

singular vectors, and d right singular vectors. If the channel

matrix is square, it means that d = NR = NT . Therefore,

we can find all singular values and singular vectors. But for

the case of nonsquare channel matrix, assume that NR > NT ,

we have d = NT , there are still (NR − NT ) unsolved left

singular vectors (i.e., uNT +1, uNT +2, . . . , uNR ) after applying

the above schemes. On the other hand, when NR < NT ,

there are (NT − NR) unsolved right singular vectors (i.e.,

vNR+1, vNR+2, . . . , vNT ). Note that both the cases are similar.

To find these remaining vectors, recall that U and V are the

unitary matrices, the column vectors in U or V are orthonormal

to each other. That is
〈

ui , u j

〉

= 0, ∀i �= j (13)

and
〈

vi , v j

〉

= 0, ∀i �= j. (14)

Algorithm 2 Pseudo-code of the proposed adaptive SVD

algorithm

Therefore, the remaining vectors can be obtained by applying

the Gram–Schmidt technique [8]. First, we consider the case

of NR > NT . After applying the above schemes, we already

have u1, u2, . . ., and uNT . Then the remaining left singular

vectors can be obtained by

wd+k = ek −
d+k−1
∑

i=1

〈ek, ui 〉 · ui

ud+k = wd+k

‖wd+k‖
, k = 1, 2, . . . , (NR − NT ) (15)

where ek is orthonormal to e j with k �= j , and ek is unequal to

ui with 1 ≤ i ≤ (d+k−1). Note that for the case of NR < NT ,

we only need to replace ui with vi and to interchange NR

with NT in (15). The proposed adaptive SVD algorithm is

summarized in Algorithm 2.

IV. ARCHITECTURE DESIGN OF PROPOSED SVD ENGINE

The block diagram of the proposed reconfigurable adaptive

SVD engine is depicted in Fig. 3. There are two single-port

SRAM banks in the memory module, and four 16 entries × 80

bits memory banks in the H buffers. The detailed word length
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Zero

padding

unit

Singular

calculation

unit

Partial

update unit

Gram Schmidt

unit

Deflation

unit

Update

unit

ud, vd, σd

R1

λi
Data Out

Ri
wi

Rd

ui, vi, σi
i=1,2,…,d−1

remaining

singular vectors

Single-port

H buffer

16 entries

× 80 bits

De-

MUX

Single-port

Memory unit

Bank 1

U and V

256 entries

× 32 bits

Bank 2

Σ

64 entries

× 17 bits
16 entries

× 80 bits

16 entries

× 80 bits

16 entries

× 80 bits

Fig. 3. Block diagram of the proposed reconfigurable adaptive SVD engine.

Postmultiply

wi
Hwi

+
−

MUX REG

MUX

Ri

Ri+1

R1

To update unit

Fig. 4. Block diagram of deflation unit.

Zero

Padding

HNR×NT HMR×MT

( · )H

MUX

( · )H

R1
1

2

1

2

A

B

ABMatrix-Matrix Multiplier:

M-M

M-M

Fig. 5. Block diagram of zero padding unit.

consideration of the architecture and memory banks will be

discussed in Section VI-D. It consists of six functional units

which are zero padding unit, deflation unit, update unit, singu-

lar calculation unit, partial update unit, and simplified Gram–

Schmidt unit. We could implement deflation unit directly and

the block diagram of deflation unit derived from (6) is shown

in Fig. 4. The register REG is used to store all entries of the

positive semi-definite matrix. In the first update process, Ri =
R1. After the first update process, Ri+1 is derived from Ri .

In the remainder of this section, each unit will be described

in more detail.

A. Reconfigurable Design for Different Size of Channel Matrix

In a MIMO system, assume that the maximum number of

transmitter and receiver antennas is MR and MT , respectively.

This means that we have possibly MR•MT different sizes of

channel matrices (i.e., 1×1, 1×2, . . ., MR × MT ). Therefore,

we propose a reconfigurable scheme to support all antenna

configurations.

1) Zero Padding Scheme for Square and Nonsquare Chan-

nel Matrix: The maximum size of channel matrix is MR ×MT

in a MIMO system. Hence, it is intuitive to design an SVD

engine to support the maximum channel size. For the smaller

channel matrix, we can extend it to the maximum-size channel

matrix by inserting zeros. If the size of a given matrix is

λi
Square

root

wi divider
M-V

H

1
2

divider

σi

ui

vi

1

2

A

b

AbMatrix-Vector Multiplier:
M-V

( · )H

Zero

Padding

Fig. 6. Block diagram of singular calculation unit.

NR × NT , the extended channel matrix is

Hextended =
[

HNR×NT 0NR×(MT −NT )

0(MR−NR )×NT 0(MR−NR )×(MT −NT )

]

MR×MT

.

(16)

After extending the original channel matrix by inserting zeros,

the SVD operation of the original channel is exactly the same

as that of the maximum-size channel matrix. The extended

channel shown in the referenced works [19], [21], and [22]

support the antenna configurations after some modifications

based on their own SVD algorithms. Note that the value of d in

Algorithm 2 depends on the size of the original channel matrix.

Therefore, d is still equal to min(NR , NT ). Fig. 5 shows the

block diagram of zero padding unit. A given channel matrix

HNR×NT is extended to HMR×MT by inserting zeros, and

the multiplexer is used to construct the positive semi-definite

matrix R1 based on (4). We also apply the zero padding

scheme to singular calculation unit and partial update unit.

According to (7), Fig. 6 illustrates the architecture of singular

calculation unit. Three multiplexers is used to consider two

cases of NR ≥ NT and NR < NT . We employ (9) to realize

partial update unit as shown in Fig. 7.

2) Simplified Gram–Schmidt Scheme for Nonsquare Chan-

nel Matrix: In (15), we apply the Gram-Schmidt technique

to find the remaining vectors for the case of NR > NT . Due

to the fact that the entries of a channel matrix, as well as

the entries of its singular vectors, are always complex-valued,

we can define ek as a unit vector with the kth entry being 1.

With this setting, we can rewrite (15) into a more simplified
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Sum of

diagonal

entries

Find

the fist

column

M-V

2
divider

σdRd

Square

root

λd

Rd(:,1) Normalization

H

1

( · )H

ui

vi
Zero

Padding

Fig. 7. Block diagram of partial update unit.

[u1, u2, ... , ud+k−1] Zero

Padding

Zero

Padding

[u1,k, u2,k, ... , ud+k−1,k]
H

1

2

M-V

Gk

gk
ek

Normalization
wd+k ud+k

From memory unit

To memory unit

Fig. 8. Block diagram of Gram–Schmidt unit for the case of NR > NT .

Premultiply

wi(n+1)
H

λi(n+1)

REG

I

Ri

1/a

divider

REG

wi(n+1)

+
−

M-V

1 2
wi(n)

λi(n)

Fig. 9. Block diagram of the original update unit.

form

wd+k = ek −
d+k−1
∑

i=1

u∗
i,k · ui

= ek −
[

u1, u2, . . . , ud+k−1

][

u1,k, u2,k, . . . , ud+k−1,k

]H

= ek − Gkgk

ud+k = wd+k

‖wd+k‖
, k = 1, 2, . . . , (NR − NT ) (17)

where ui,k means the k-th element of u j . Note that for the

case of NR < NT , we only need to replace ui with vi and to

interchange NR with NT in (17). After this simplification, it

is easier to implement a reconfigurable Gram–Schmidt design

for different sizes of channel matrices. We can choose the

maximum size of ek , Gk , and gk in advance. In an MR × MT

MIMO system, the maximum size of ek , Gk , and gk is

L×1, L × (L − 1), and (L − 1) × 1 respectively, where

L = max(MR ,MT ). For smaller-size antenna configurations,

we just need to insert zeros in ek , Gk , and gk . The block

diagram of Gram–Schmidt unit is shown in Fig. 8 for the

case of NR > NT . Gram–Schmidt unit needs to be executed

(NR − NT ) times to find all remaining singular vectors.

Note that the computational complexity of simplified Gram–

Schmidt scheme is greatly smaller than that of original Gram–

Schmidt algorithm.

LSB

OR

OR

OR

OR

OR

XOR

XOR

XOR

XOR

XOR

XOR

1

MSB

LSB

MSB

OR OR gate

Exclusive-OR gate

λi(n+1)
2t

Fig. 10. Mapping circuit that transforms λi (n) into a number of powers of
two.

B. Architectural Design of Update Unit

The main computational time of our SVD architecture is in

the update unit. Fig. 9 shows the block diagram of the original

update unit based on (5) and (12). For the architectural design

of the update unit, we propose three schemes to reduce the

decomposing latency and enhance the hardware utilization.
1) Division-Free Adaptive Step Size Scheme: In order to

achieve fast convergent purpose, the step size µi (n) is adap-

tively adjusted with λi (n). Obviously, in Fig. 9, there is a

division at every iteration in the update unit. This will slow

down the operating speed. For this reason, we propose a

division-free adaptive step size scheme to avoid the division

in the update operation. Due to the property of the step size

[9], we do not need to calculate the exact value of µi (n).

From (12), the step size is in inverse proportion to λi (n), if

we transform λi (n) into a number of powers of two which is

the nearest to and greater than λi (n). Hence, the new step size

can be expressed as

µ′
i (n) = a

2t
(18)

where t is an integer, and its value depends on the word-length

of λi (n). Since the new step size is a number of the power of

2, a shift operation can be substituted for a division at every

iteration in the update operation. Fig. 10 shows the mapping

circuit that transforms λi (n) into a number of the power of

2, and the block diagram of the update unit with division-free

adaptive step size scheme is shown in Fig. 11. Also note that

0 < µ′
i (n) ≤ µi (n). (19)

The stability of convergence is still guaranteed. Although the

number of converged iterations increases, the required time at

every iteration can be reduced effectively. Hence, the overall

latency is reduced.
2) Early Termination Scheme: In (5), the correction vector

for wi (n + 1) is given by

�wi (n) = µi (R − λi (n)I) wi (n). (20)

For a floating-point view, �wi (n) is always nonzero. However,

for a fixed-point implementation, if every entry of �wi (n)

satisfies the following condition:
�wi,k(n) < 2−(Fractional Length of wi (n)) (21)

where �wi,k (n) is the kth element of �wi (n). Then �wi (n)

can be considered as a vector with all elements being zeros
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Fig. 11. Division-free adaptive step size scheme, early termination scheme,
and data interleaving scheme are applied to update unit.

if wi (n) is converged. Clearly, after wi (n) is converged, the

remaining iteration operation is redundant. In order to further

reduce decomposing latency and enhance hardware utilization,

we propose an early termination scheme as follows:
If µi (R − λi (n)I) wi (n) == 0

T erminate and go to the def lation operation

else

K eep i terative operation (22)

where 0 is an all-zero vector. The hardware design of early

termination scheme is illustrated in Fig. 12. The “flag” signal

is used to check that the terminated condition is met or not.

If “flag” equals bit 0, the entries of the correction vector

are all zeros and the update operation will be terminated.

The block diagram of the update unit with early termination

scheme is shown in Fig. 11. Note that the overall performance

with early termination is the same as that without early

termination.

3) Data Interleaving Scheme: For the MIMO OFDM-based

communication standards, there are tens or hundreds of sub-

carriers, and each subcarrier has its own channel matrix.

Hence, the SVD engine needs to deal with these channel

matrices before data transmission. Motivated from [19], [26],

we apply the concept of data-interleaving to our SVD engine

to deal with 16 channel matrices at the same time. The main

architectural change is in the update unit as shown in Fig. 11,

where Ri, j means the j th positive semi-definite matrix in the

i th update process, and (wi, j , λi, j ) is the i th update pair for

Ri, j . The critical path is in the update unit, therefore we use

data-interleaving scheme to insert 16 memory units (registers)

in each loop of the update unit to store wi, j and λi, j of each

channel matrix. Note that the data interleaving scheme must

be applied to deflation unit to store 16 positive semi-definite

matrices as shown in Fig. 13.

V. OR FOR FIXED-POINT IMPLEMENTATION

In (13) and (14), the orthogonal property among the singular

vectors is preserved in floating-point representation. However,

since all the elements are expressed in finite precision in

flag
OR

Δwi(n)

0

Fig. 12. Hardware design of the early termination scheme.

Postmultiply

wi,j
Hwi,j

+
−

MUX REG

MUX

Ri,j

Ri+1,j

R1,1

To update unitREG REG

16

R1,2 R1,16

Fig. 13. Data interleaving scheme is applied to deflation unit.

fixed-point implementation, the orthogonal property will be

destroyed. Applying the SVD operation to the channel matrix

H, we have

� = UH HV. (23)

The destruction of the orthogonal property will cause nonzero

values of the off-diagonal entries of the diagonal matrix �.

Such nonzero off-diagonal values will result in interference

among all antennas, and then the system performance will be

degraded. Hence, the destruction of the orthogonal property

should be carefully handled. In our SVD design, this property

is destroyed by quantization error and the inaccurate deflation

processes with finite precision. Especially, error propagation

induced by the deflation processes may cause a fatal error to

the orthogonal property. Take two left singular vectors as an

example
〈

ui , u j

〉

= ε, ∀i �= j. (24)

If ui and u j have perfect orthogonal property, ε should be

equal to zero. If the orthogonal property of ui and u j is

destroyed by quantization error, the value of ε is close to

the accuracy which fixed-point implementation can repre-

sent. Nevertheless, error propagation induced by the deflation

processes may lead ε to be hundred times of the system

accuracy. The destruction of the orthogonal property caused

by quantization error cannot be prevented. Therefore, we

propose an operation called OR to eliminate the destruction

caused by the deflation processes and improve the system

performance.

Assume that we already have the d left singular vectors u1,

u2, . . ., ud after the update and deflation processes. Note that

the first left singular vector u1 does not suffer from the errors

caused by the deflation process. For other left singular vectors

ui with i > 1, we eliminate the inaccurate remaining part from

u1 to ui−1 by applying Gram–Schmidt technique as follows:

uOr,1 = u1

ûi = ui −
∑i−1

j=1

〈

ûi , uOr , j

〉

· ûOr, j

uOr,i = ûi
∥

∥ûi

∥

∥

(25)

where i = 2, 3, . . ., d , and uOr,i is the i th left singular vector

after the OR process. Note that for right singular vectors, we
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Fig. 15. Convergence rate of different step sizes in the first update process.

only need to replace ui with vi in (25). After applying OR to

all singular vectors, most interference caused by the inaccurate

deflation processes can be eliminated.

For the architecture of OR, we have to modify Gram–

Schmidt unit in Fig. 8. We rewrite the second equation in

(25) into a more compacted form

ûi =
[

ui uOr ,1 · · · uOr ,i−1

]

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

uH
i

−uH
Or ,1
...

−uH
Or ,i−1

⎤

⎥

⎥

⎥

⎦

ui

⎞

⎟

⎟

⎟

⎠

. (26)

The operation in (26) can be executed by two successive

matrix-vector multipliers. Based on (17), (25), and (26),

Fig. 14 shows the block diagram of Gram–Schmidt unit with

some modification. The multiplexer is used for consider-

ing two cases of nonsquare channel matrix and orthogonal

reconstruction. Compared with Figs. 4, 8, 9, 11, 13, and 14

are structures with data interleaving scheme for throughput

enhancement in hardware consideration.

VI. PERFORMANCE EVALUATION AND IMPLEMENTATION

RESULTS

A. Convergence Rate of Different Adaptive Step Sizes

Using larger step size may cause unstable problem, and

the system may fail due to the nonconvergence problem.

Therefore, we have derived a near-optimal adaptive step size

in (10) and (11) according to the Appendix. The proposed

adaptive step size makes the iterative updating have both

fast and stable convergence. We compare four step sizes:

TABLE I

AVERAGED REQUIRED ITERATIONS IN UPDATING EACH PAIR (Wi , λi )

FOR µi (n) = 0.5/λi(n) WITH AND WITHOUT THE SIS

µi (n) =
0.5/λi (n)

(w1, λ1) (w2, λ2) (w3, λ3)
Total

iterations
Savings

SIS
excluded

26.5 19.7 14.1 60.3 -

SIS
included

20.4 16.3 12.1 48.8 19.1%

TABLE II

AVERAGED REQUIRED ITERATIONS IN UPDATING EACH PAIR (Wi , λi )

FOR µi (n) = 0.75/λi(n) WITH AND WITHOUT THE SIS

µi (n) =
0.75/λi (n)

(w1, λ1) (w2, λ2) (w3, λ3)
Total

iterations
Savings

SIS
excluded

18.8 15.2 13.4 47.4 -

SIS
included

14.4 12.3 10.5 37.2 21.5%

1) µi (n) = 0.05/λi(n) in [19]; 2) the proposed µi (n) =
0.5/λi(n); 3) the proposed µi (n) = 0.75/λi(n); and 4) the

near-optimal step size in (11). Assume that the entries of

a channel matrix H are independent and identically distrib-

uted (i.i.d.) according to CN (0, 1), where CN (0, 1) denotes

the complex Gaussian distribution with independent real and

imaginary parts distributed according to N (0, 1). We define

the instantaneous error e(n) as

e(n) =
∥

∥

∥
w1(n) − w1,opt

∥

∥

∥
(27)

where w1,opt is the optimal vector of H in the first update

process. We only consider the first update process since the

subsequence update processes have similar results. Fig. 15

compares the convergence rate of different step sizes over 1000

independent channel realizations. The proposed adaptive step

size is not only guaranteed to have stable convergence rate but

also much faster than the step size 0.05/λi(n) in [19]. Note

that at the early stage of total iterations, the proposed step size

has faster convergence rate than the near-optimal step size.

It is reasonable since the near-optimal step size has optimal

convergence speed only when the current vector is close to

the optimal vector.

B. Effect of the SIS

We apply the proposed reconfigurable adaptive SVD engine

to the IEEE 802.11n applications. To determine the word-

lengths in our design, we performed extensive floating point

simulation and dynamic range analysis. We list the word-

lengths of some key signals used in the fixed-point simulation

and chip implementation are shown in the form (integer,

fractional). The word-length of real part or imaginary part of

each entry of H, Ri , wi , λi , ui , vi , and σ i is (3, 7), (6, 14),

(4, 12), (6, 26), (1, 7), (1, 7), and (4, 13), respectively.

To observe the effect of the SIS, we consider the channel

model E [17], [27] in a 128-subcarrier 4×4 system. Assume

that the division-free adaptive step size with the early termina-

tion scheme is applied. When the SIS has been included and
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Fig. 17. System performance comparison at 16-QAM.

excluded, Tables I and II show the averaged required iteration

number in updating each pair (wi , λi ) for µi (n) = 0.5/λi (n)

and µi (n) = 0.75/λi(n), respectively. Note that with the partial

update scheme, updating the last pair (w4, λ4) is unnecessary.

As this shows, utilizing the SIS has the significant effect of

reducing the total iterations by 19.1% and 21.5% for µi (n) =
0.5/λi (n) and µi (n) = 0.75/λi(n), respectively.

C. System Simulation

Before the system simulation, we have to determine the

maximum iteration number in the update process. In Tables I

and II, the first update process requires more iterations. If

µi (n) = 0.5/λi(n), the mean and the standard deviation of

the required iteration numbers in the first update process are

26.5 and 9.5. Therefore, in order to guarantee that almost

all pairs (wi , λi ) are converged, we choose the maximum

iteration number in each update process as 64 which is roughly

equal to the sum of the mean and the four-times standard

deviation. Then, the proposed SVD engine is applied to the

IEEE 802.11n PHY system [17]. The performance metric is

bit error rate (BER). The simulation environment settings are

listed as follows.
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Fig. 18. System performance comparison at 64-QAM.

1) AWGN, Ch E (nLOS) channels [27], four spatial

streams.

2) Assume perfect channel state information is obtained.

3) MIMO Technique: SVD.

4) Signal constellation: 4-QAM, 16-QAM, and 64-QAM.

5) FFT (IFFT) size: 128.

6) Code rate 1/2 convolutional code with constraint length

7, generator polynomials [133 171] [28].

7) Block interleaving is used.

The simulation result is shown in Figs. 16–18. Our target

BER is 10−5. In the floating-point view, the proposed SVD

design has no performance loss compared with the ideal SVD.

Without orthogonal compensation, the proposed SVD fixed-

point design only works well at 4-QAM with a performance

loss of 0.4 dB compared with the ideal SVD. If OR is applied

to our SVD fixed-point design, there is no performance loss at

4-QAM and 16-QAM. Besides, in the signal constellation of

64-QAM, our SVD fixed-point design has little performance

loss of 0.6dB compared with the ideal SVD.

D. Chip Implementation

For a baseline design, we adopt µi (n) = 0.5/λi(n) and

the SIS is not applied. The memory banks of the channel

matrices and SVD results are describe as follow. Assume

10-bit precision of each real or imaginary number in the

channel matrix H is given, 320 bits are required for storing one

4×4 complex matrix. To avoid memory access collision, total

storages of 16 channel matrices are divided into 4 single-port

memory banks. The columns of one channel matrix are stored

in 4 different memory banks so that we are able to access one

complete channel matrix per cycle. In summary, 416 entries ×
80 bits memory banks are required as channel matrix storage

in our design.

There are two memory banks in the memory unit in Fig. 3

to store the elements of U, V, and �. Bank 1 is designed for U

and V. We use 16-bit precision for each element in U and V.

Two elements are stored in each entry of memory bank 1.

Total entries required for bank 1 is 256, 16 elements × 16

matrices, and the overall size is 256 entries × 32 bits. Bank 2 is

designed for storing �, the singular values, and the wordlength
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TABLE III

CHIP SUMMARY

Technology UMC 90nm 1P9M Low-K Process

IO/core VDD 3.3V/1.0V

Core area 1.475 mm × 1.475 mm

Die area 2.22 mm × 2.22 mm

Gate count 543.9k

Frequency 101.2 MHz (max)

Power consumption 125mW @101.2 MHz

of each singular value is 17 bits. Total entries required for

bank 2 is 64, 4 elements × 16 matrices, and the overall

size is 64 entries × 17 bits. In addition, the matrix-to-matrix

multiplication is performed by the matrix-to-vector multiplier

in 4 cycles.

The chip is fabricated in UMC 90 nm 1P9M Low-K CMOS

technology and measured with Tektronix pattern generator

TLA 715 and logic analyzer TLA 5203. Fig. 19 shows the

die photo of the fabricated chip design. The chip feature

is summarized in Table III. The core size is 1.475 mm ×
1.475 mm. The number of total gate counts is 543.9k. The die

size is 2.22 mm × 2.22 mm giving a total area of 4.93 mm2.

The maximum operating frequency is measured 101.2 MHz

and the total power consumption is measured 125 mW for

the 4×4 SVD operations. In order to consider reduction of

power consumption, we can reduce the core supply voltage

to 0.65V as shown in Fig. 20. The corresponding maximum

operating frequency and power consumption are 43.48 MHz

and 22.1 mW, respectively.

For comparison, we use two performance indices. First, the

throughput is defined by the number of channel matrices that

the SVD engine can deal with per second

Throughput = Number of processed channel matrices

Time (s)
.

(28)

In the worst updating cases of proposed SVD operation,

there are 64 iterations for each singular pair updating without

early termination scheme and do not have to update the last

singular pair. We need 64 iteration per singular pair × (4-1)

singular pairs × 16 matrices = 3072 cycles, and extra 308

cycles for other operations. The equivalent throughput is
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Fig. 20. Measured frequency and power of the chip design.

TABLE IV

COMPARISON TABLE

derived as 16/[3380 cycles × (1/101.2 MHz)] = 479.05k-

matrices/sec. For 16 mxm channel matrices, the total cycles

required are [16 × 64 × (m-1) + 308] cycles. There are

308, 1332, 2356, and 3380 cycles required when processing

16 1×1, 2×2, 3×3, and 4×4 matrices respectively. In other

words, the equivalent throughputs are 5.3 M, 1.2 M, 687 k,

and 479 k matrices/sec for 1 × 1, 2 × 2, 3 × 3, and 4 × 4

matrices, respectively.

Then the power efficiency can be expressed as

Power Efficiency = Throughput (k)

Power consumption (mW)
. (29)

The technology scaling of power from 180 nm@1.8 V

to 90 nm@1.0 V is given by P90 = P180× (C90/C180)×
(V90/V180)

2 = P180 × 0.5× (1.0/1.8)2 = P180× 0.1543. The

proposed reconfigurable adaptive SVD engine design is com-

pared with other designs as shown in Table IV. An SVD chip

without the need of CSI was proposed in [19]. The block-type

pilots are utilized in the IEEE 802.11n systems for training

symbol-based channel estimation of each subcarrier. The least-

square and minimum-mean-square-error techniques [30] are

widely used for channel estimation when training symbols are

available. The complexity is fairly low owing to no matrix

inversion required in channel estimation with pre-defined

orthogonal training sets [17]. SVD in [19] only supports

the 4×4 antenna system and implements the U� algorithm



CHEN et al.: RECONFIGURABLE ADAPTIVE SINGULAR VALUE DECOMPOSITION ENGINE DESIGN 757

which is not complete for SVD. The overall computational

complexity of the SVD in [19] is proportional to the iteration

number required which is about 500. By applying the proposed

adaptive step size and partial update schemes in our proposed

design, the iteration number required per matrix in our design

is 3380/16 ≈ 212 at most. In addition, the average iteration

number can be further reduced by 20% with the proposed SIS

as shown in Tables I and II. An improved design of [21] can

be considered as [23], but it only computes V and � which

are partial of SVD outputs. Our design is able to handle 16

4×4 channel matrices at the same time.

Compared with other related works, only our work can

support all antenna configurations in a MIMO system. Among

all designs, our SVD chip has the highest throughput and

power efficiency in the 4×4 SVD operations. In addition,

the chip result shows that in an 802.11n system with 128

subcarriers, the average latency of our SVD chip is only

0.33% of the WLAN coherence time. Therefore, our SVD

engine design is very suitable for high-throughput wireless

communication applications.

In order to effectively enhance the throughput, we can

use larger adaptive step size and apply the SIS to our SVD

engine. First, we replace µi (n) = 0.5/λi (n) with µi (n) =
0.75/λi(n). This costs four additional complex adders in

hardware implementation. Second, by applying the SIS, the

registers in the update state can hold the converged values

of the previous subcarriers until their adjacent subcarriers’

channel information comes. Hence, additional multiplexers are

required in hardware implementation. If µi (n) = 0.75/λi(n)

and the SIS is applied, the mean and the standard deviation

of the required iteration numbers in the first update process

are 14.4 and 5.6, respectively. Therefore, we can choose the

maximum iteration number in each update process as 36 which

is roughly equal to the sum of the mean and four times the

standard deviation. Note that the SVD operations for the first

16 subcarriers, the maximum iteration number in each update

process, should be bigger since no additional information

could speed up the convergence time. With this scenario, the

throughput of our SVD engine can be enhanced to 850 k with

little extra hardware cost.

We used the clock gating scheme to turn off the unused mul-

tipliers with smaller channel matrices. The power consumption

is not directly related to the operating cycles, but related

to the executed operation per cycle in average. The main

operation in the proposed SVD algorithm is matrix-to-vector

multiplication whose complexity is proportional to N2 , where

N is the length of the vector. Owing to the leakage power

and other common operations in different matrix sizes, the

power consumption of 1×1∼4×4 matrices are 12, 33, 74, and

125 mW, respectively. The corresponding power consumptions

of processing nonsquare matrices are close to that of square

matrices with size of min(row, col.), where row and col. are

the numbers of rows and columns of the channel matrices.

In summary, a reconfigurable SVD for different antenna sets

and deriving all singular vectors is required for the application

to IEEE 802.11n systems. The throughput requirement is also

high. Compared with the referenced work in [19], our SVD

engine is able to achieve the goals mentioned above. For

the throughput consideration, we proposed the adaptive step

size, partial update scheme, and SIS to accelerate the overall

processing. The throughput and power efficiency is about

9 times and 2.6 times than that in [19], respectively. The

throughput improvement with SIS is about 20% as shown in

Tables I and III. The proposed design with OR scheme is able

to be 4 dB better at least compared with the design without

OR scheme as shown in Figs. 17 and 18.

VII. CONCLUSION

This paper presented a reconfigurable adaptive SVD engine

design for MIMO-OFDM systems. The proposed architectural

design techniques can lower the computational complexity,

effectively reduce the decomposing latency, and support all

antenna configurations in a MIMO system. These design

strategies enable the use of SVD to be effectively applied

to the high-throughput wireless communication applications.

Our SVD engine is implemented in UMC 90-nm CMOS

technology for the application of IEEE 802.11n systems with

16 antenna configurations. The proposed SVD engine achieves

a higher throughput rate than that of other related works.

Moreover, the chip result shows that for an 802.11n system,

the average latency of our SVD engine is only 0.33% of

the WLAN coherence time. Therefore, the proposed SVD

engine is very suitable for the high-throughput MIMO-OFDM

applications.

APPENDIX

We show the detailed derivations of (10) and (11). Assume

that the matrix R ∈ Cd×d is a positive semi-definite matrix.

The eigenvalue decomposition of R can be expressed as

R = U�UH

=
[

u1 u2 · · · ud

]

⎡

⎢

⎢

⎢

⎢

⎣

λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λd

⎤

⎥

⎥

⎥

⎥

⎦

[

u1 u2 · · · ud

]H

(A.1)

where � is a d × d matrix with only real and nonnegative

main diagonal entries. The entry (i , i) of � denotes the i th

largest eigenvalue λi , with i = 1, 2, . . . , d . The i th column

vector ui in U is called the i th eigenvector corresponding to

the i th largest eigenvalue λi .

Consider the objective function J (w)

J (w) = 1

2
wH Rw − 1

4
(wH w)2. (A.2)

In [20], the authors have proved that all the stationary point of

J (w) are eigenvectors of R with magnitude being the square

root of the corresponding eigenvalue of R. Besides, if the

dominant eigen pair is of multiplicity one, the dominant eigen

pair is the global maximum point of J (w).

Taking the gradient of J (w), we have

∇w J (w) = Rw − (wH w)w. (A.3)
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To maximize the objective function J (w), it is straightforward

to apply the steepest-descent techniques [9]. The updated

formula is given by

w(n + 1) = w(n) + µ · ∇w J (w)

= w(n) + µ
(

Rw(n) − (w(n)H w(n))w(n)
)

= w(n) + µ
(

R − (w(n)H w(n))I
)

w(n) (A.4)

where µ is the step size. Generally speaking, the value of

the step size directly impacts the convergence speed, stability,

and accuracy of the adaptive algorithms. Since the objective

function J (w) is a fourth-order function in w, the analysis

of the step size is complicated. Hence, we will give a loose

bound by approximating J (w) to a quadratic function around

the optimal point
√

λ1u1. By invoking the second-order Taylor

series expansion of J (w) around the optimal point
√

λ1u1,

J (w) can be approximated by

Ĵ (w) = J (
√

λ1u1) + 1

2
(w −

√

λ1u1)
H∇2

w J (
√

λ1u1)

×(w −
√

λ1u1) (A.5)

where is the Hessian of J (w) which can be expressed as

∇2
w J (w) = R −

(

wH w
)

I − 2wwH . (A.6)

By substituting the optimal point
√

λ1u1 into (A.6), we obtain

∇2
w J (

√

λ1u1) = U�UH − λ1UUH − 2λ1u1uH
1

= U

⎛

⎜

⎜

⎜

⎝

� − λ1I − 2

⎡

⎢

⎢

⎢

⎣

λ1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

UH

= −U

⎡

⎢

⎢

⎢

⎣

2λ1 0 · · · 0

0 λ1 − λ2 · · · 0
...

...
. . .

...

0 0 · · · λ1 − λd

⎤

⎥

⎥

⎥

⎦

UH

= −UTUH . (A.7)

By employing (A.5) and (A.7), the updated equation around

the optimal point can be expressed as

w(n + 1) = w(n) + µ · ∇w Ĵ (w),

= w(n) + µ · ∇2
w J (

√

λ1u1)(w(n) −
√

λ1u1)

= w(n) − µUTUH (w(n) −
√

λ1u1). (A.8)

We define the error vector at time n as

e(n) = w(n) −
√

λ1u1. (A.9)

By using (A.9), (A.8) can be rewritten as

e(n + 1) = (I − µUTUH )e(n) = U(I − µT)UH e(n). (A.10)

Pre-multiplying both sides of (A.10) by UH and using the

property of the unitary matrix that UH equals the inverse of

U, we have

UH e(n + 1) = UH U(I − µT)UH e(n)

= (I − µT)UH e(n). (A.11)

We now define a new set of coordinates as follows:

c(n) = UH e(n). (A.12)

Accordingly, we may rewrite (A.11) in the transformed form

c(n + 1) = (I − µT)c(n). (A.13)

The initial value of c(n) equals

c(0) = UH (w(0) −
√

λ1u1). (A.14)

For the kth entry of the vector c(n), we have

ck(n + 1) = (1 − µtk)ck(n), k = 1, 2, . . . , d (A.15)

where tk is the kth diagonal entry of T. (A.15) is a homoge-

neous difference equation of the first order. Assume that ck(n)

has the initial value ck(0), (A.15) can be rewritten as

ck(n) = (1 − µtk)
nck(0), k = 1, 2, . . . , d. (A.16)

Since all the diagonal values of T are positive and real,

the response ck(n) will not have no oscillations. In addition,

(A.16) represents a geometric series with a geometric ratio

equal to 1 − µtk . For stability or convergence of the adaptive

algorithm, the magnitude of this geometric ratio must be less

than 1 for all k. That is

−1 < 1 − µtk < 1, k = 1, 2, . . . , d. (A.17)

Therefore, the necessary and sufficient condition for the sta-

bility or convergence of the adaptive algorithm is that the step

size µ satisfies the following condition:

0 < µ <
2

tmax
(A.18)

where tmax is the maximal diagonal entry of T which is given

by

tmax = 2λ1. (A.19)

By substituting (A.19) into (A.18), we have

0 < µ <
1

λ1
. (A.20)

Hence, (A.20) provides a useful bound for the stability or

convergence of the adaptive algorithm.

To analyze the convergence speed of the adaptive algorithm,

we define a time constant τ k as the number of iterations

required for ck(n) to decay to 1/e of its initial value ck(0),

that is

ck(n) = e
− n

τk ck(0), k = 1, 2, . . . , d. (A.21)

From (A.16) and (A.21), the time constant τ k can be expressed

as

τk = −1

ln |1 − µtk |
, k = 1, 2, . . . , d. (A.22)

Note that the time constant τ k is the function of the step size

µ. The first time constant τ 1 has the following properties:
{

Dµτ1 > 0, if 0 < µ < 1
2λ1

Dµτ1 < 0, if 1
2λ1

< µ < 1
λ1

(A.23)

where is the derivative of τ 1 with respect to µ. According

to (A.23), we know that τ 1 is a convex-like function in the
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convergence region. In addition, other time constants have the

following properties:

Dµτk < 0, if 0 < µ <
1

λ1
(A.24)

and

τk ≥ τk+1 (A.25)

where k = 2, 3, . . ., d . According to (A.24), {τk}k=2
d are the

decreasing curves in the convergence region. From (A.25),

given a value of µ, the maximal time constant is either τ 1 or

τ 2. Therefore, we have to find a good step size to minimize

the maximal time constant. This condition occurred at τ 1 =
τ 2, that is

−1

ln |1 − µt1|
= −1

ln |1 − µt2|
. (A.26)

By employing (A.7) and (A.26) and solving for µ, we

have

µopt = 2

3λ1 − λ2
. (A.27)

It should be noted that µopt is a near-optimal step size since in

(A.5) is an approximate function to describe J (w) around the

optimal point. As a result, (A.27) provides a good guideline

in choosing a proper step size of the adaptive algorithm.
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