
,FOSR-TRP 8 1-.0.138..

lr

COMPUTER SCIENCE

TECHNICAL REPORT SERIES

I.-D T S ELcr•ELIECTE

.. MAR 5 98

Id S~A

UNIVERSITY OF MARYLATqD
COLLEGE PARK, MARYLAND

20742

diatribution unlimited,
(czAppovevd fo'o• pi~blio release J

"Iq

/, ,+,

TR-963 /

October, 1980i• ~AEOSR- 77 - 3271

RECONFIGURABLE _.ELLULAR jCOMPUTERS

Azriel Rosenfeld

Angela Y. Wu*

Computer Vision Laboratory
Computer Science Center
University of Maryland
College Park, MD 20742

DTIC
ELECTEft

SMAR 5 1

A

The support of the U.S. Air Force Office of Scientific
Research under Grant AFOSR-77-3271 is gratefully acknowledged,
as is the help of Sally Atkinson in preparing this paper.
Some of the material in this paper is based onZ/.nic-al
Reports 730 (Febr.r.y. 1979) and7_iJulTy 1979). The authors
wish to 'thanik-Tsvi Dubitzkif-or his help in formulating some
of the reconfiguration algorithms, and Todd Kushner for his
help in computing expected graph diameters.

* Also with the Department of Mathematics, Statistics, and
Computer Science, American University, Washington, DC.

AIR FORCE OFFTCE OF SCIFNTIFIC EES.ARCH (AySO)

NOTICE OF 7 . "'.ITT:L T" DC
This tvc'.: ., it reviewed and is

App. I BtUW ~ t• IAl l,' 19U-12 (7b).

A. D. :,Lu,,,;,
[lv[n•iil.al Into rurition Offioer

__ _ __ _ __ _ _ l

ABSTRACT .
When a collection of processors C.4P, Pd operates

in parallel, it is'desirable that at any given stage of the
computation, each P:,'should have a ta.sk of about the same
size to perform, aný each P. should require about the same
amount of information from ihe other P's in order to perform
its task. To the extent, that these conditions are violated,
parallelism is impaired, in thc sense that the P's are not
all used with equal efficiency. In cellular computers, e.g.
as they might be used for parallel image processing, these
conditions are maintained by having the P's all perform
similar computations on different parts of the input data, and
by allcwing each P. to receive information from a fixed set
of the others (its .'neighbors'() , where these sets are all of
bounded size. This paper discusses, on an abstract level, the
concept of a reconfigurable cellular computer, in which each
P. can receive information from a set S: of the other P's,

and the S. 's are all of bounded size, b~t they need not remain
fixed, thr~ug1ltout a computation. Requiring the S. 's to have
bounded size implies that most P's cannot communicate directly;
the expected time required for two arbitrary P's to communicate
depends onthe graph structure defined by the sets S.. The
question of how to change the S. 's in parallel duriný the
course of a computation is alsoldiscussed.

ItI

., . .

1. Parallelism and cellular computers

Let C={PI,'''IPn} be a collection of processors operating

in parallel. In general, we can regard each P. as performing

a sequence of computational tasks, and at the end of each task,

providing new information to other P's and requesting new

information from other P's. In order to make efficient parallel

use of the P's, we would like all of them to be active as much

of the time as possible. This suggests that we should try to

make the tasks as equal as possible in size, to avoid the need

for some P. having to wait a long time for a piece of information
1

that some other P. is still computing. Moreover, we shouldS~1

design the tasks so that each Pi needs to give about the same

amount of information to other P's, and to receive about the

same amount from other P's, between tasks, to avoid long I/O

delays while some P. is sending or receiving information.

Cllular computers [1-5] make efficient parallel use of

large numbers of processors by dividing up both the computa-

tional taks and the I/O requirements very equally among two

P's. On an abstract level, in a cellular automaton [6 -103,

each computational Atep is symbolized by a change in a processor's

state, and the new state depends on the old states of the pro-

cessor and a fixed set of its neighbors; this corresponds to

a task (lookup of the new state) that requires a fixed amount

of new data (the neighbor's states) to be input (and by the

same token, a fixed amount of data to be output: one's own

state to one's neighbors), and a fixed amount of computation.

The same principles are used in concrete realizations of cellu-

lar computers, as applied to such tasks as image processing

1 - 5].One can process an image using a square array of

P's, each of which receives a block of image data, with neigh-

boring P's receiving neighboring blocks. The processing is

P's exchange updated information about their blocks for use

at the next stage. Thus here again, every P. does essentially

the same amount of processing and of 1/O from/to neighboring

of the array. More general examples could be given in which

the P's are connected to form a fixed graph structure (rather

tha~n an array structure), and are used to simulate ia-teractions

among the nodes of the graph (see [101) ; note that here, too,

j we would want each node to have about the same number of neigh-

Llors, to keep their 1/0 requirements comparable.

It has usually been assumed, in studying cellular computers,

that the number of "neighboring" P's with which a given P. can

communicate directly is bounded --i.e., if we represent the P's

by the nodes of a graph, and join neighboring P's by arcs, the

resulting graph has bounded degrce, which does not grow with the

number of P's. This assumption is very reasonable if we regard

neighboring P's as hardwired together; the number of I/0 ports

available to a given P.i will be limited, no matter how many P's

there are. But even if we do not assume har~iwired connections,

it is still reasonable to require the number of neighbors

of each P. to be bounded, in order to put a bound on the

amc~unt of 1/0 that each P.i can do at a given stage of the

computation. If we do not impose such a bound, different

Z P's may require very differen.. I/0 delays, since some of them

may need to output or receive much more information than others,

so that once again there is danger of serious loss of paral-

lelism.

In conventional cellular computers thi~s graph structure

defining the "neighbor" relations between P's is not only

of bounded degree, but is also assumed to remain fixed in the

course of a computation; this allows us to regard the neigh-

boring P's as hardwired together. In this paper, we consider

the possibility of reconfigurable cellular computers in which

the set of nieighbors of each P.i can change during the computa-

tion, but their number remains bounded. We do not consider

here how direct communication is physically realized; we simply

assume that each P. has a list of "addresses" of those P. Is with

which it can currently communicate directly, and that this list.

always remains of fixed size. (For the sake of concreteness

[1 1, we can imagine that P. communicates with P by putting

a message addressed to P. on a very fast bus.) We also assume
3

that all communication is potentially two-way, i.e., ifP

can address P.,, then P. can address P., and conversely.

When we assume, in a cellular computer, that the nodes are

of bounded degree, we are making it easier to achieve efficient

parallelism, but we are also introducing a potential speed

L'4

limitation due to the time that may now be requir:ed for

information to be exchanged between t~wo arbitrary P's..

A given P. can communicate directly only with a bounded

subset of the P's, namely its neighbor.s, and if it needs

to communicate with an arbitrary P., the message may have

to be celayed through many stages. The expected and worst-

case communication times between a pair of P's depend on the

struct-ure of the graph that defines the neighbor relationship;

examples, for various standard graph structures, are given in

Section 2. Evidently, cellular computers are best suited for

tasks in which each P. needs to communicate, for the most1

part, only with a bounded number of others, and their graph

structures should be designed so that, to the extent possible,

these others are P. 's neighbors.
In the case of a reconfigurable cellular computer, another

problem arises when we want to change its graph structure

during a computation. If PI. and Pj can currently address one

another, it is easy for them to drop one another from their

address lists by mutual agreement. But if Pi and Pk cannot

currently address one another, how do they simultaneously

add each other to their lists? Section 3 proposes a "local"

approach to this problem, in which Pi and Pk can add each

other to their lists only if they currently have a common

neighbor P., which they may then simultaneously drop; and

it is shown how, by iterating this "local reconfiguration"

step, direct addressing can be established between any two

desired P's. In Section 4 we illustrate this approach

by showing how various standard graph structures can be

reconfigured, in parallel, into other standard structures,

while maintaining boundedness of degree throughout.

I!
,!
i
I•

2. Communication time in cellular computers

Let G be any undirected graph, with set of nodes NG

and set of arcs AG. Two nodes P,Q are called neighbors

if (P,Q)eAG. By a path of length m between two nodes

P,Q we mean a sequence of nodes P=Q0 ,QI,-.,Qm=Q such that

Qi is a neighbor of Qil' l~i~n. We say that G is connected

if there is a path between any two nodes of G. We will

usually assume in what follows that G is connected.

By the distance 6 (P,Q) betwceen P and Q we mean the

shortest length of any path between them. lIt is easily

seen that distance is a metric, i.e. reflexive (6(P,Q)=

0 iff P=Q), symmetric (6(P,Q)-6(QP) for all P,Q), and

satisfies the tiliangle inequality (6 (P,R)A-6 (P,Q)+6 (Q,R)

for all P,Q,R,).] The greatest distance between any two

nodes of G is called the diameter of G, denoted A(G),

and the expected distance between two randomly chosen nodes

of G is called the expected diameter of G, denoted E(G).

Let C be a cellular computer with set of processors

S{Pl''" Pn}' and let A be the set of pairs of processors

that (currently) can directly conununicate with each other.

If we let NG={Pl,.'-,Pn} and AG=A, we obtain an undirected

graph G, called the graph of C. The degree of a node P is

the number of its neighbors, d(P)=I{QI(P,Q)EAG}I. We say

that G has degree d if d(P) d for all PENG, where d is as

-->

small as possible. We assume from now on that the graph

of C always has degree-d for some fixed d.

The expected amount of time required for a message to

get from one randomly chosen node to another is proportional

to E(G), and the longest possible time for a message to get

from one node to another is p:oportional to A(G). For a

given number n of nodes, the values of E(G) and L(G) depend

on the graph structure of G. Table 1 shows these values for

a set of basic types of graphs. The derivations of the E(G)

values are given in Appendix A.

Table 1 suggests that we can keep the expected or max-

imum communication time short by using high°-dimensional

trees or arrays as graph structures. However, such struc-

tures involve high node degrees, and the higher the degrees

are, the more room there is for differences between the

1/0 requirements of different. nodes. We will therefore

consider only the low-degree cases from now on: string

and cycle (degrees62), binary tree (degrees-3), and two-

dimensional array (degrees).

S. I. A.

Maximum Expected

Graph type degree(d) Diameter0() diameter(E)

String 2 n-1 (n+l)/3

Cycle 2 [n/21 (n+l)/4

Balanced
binary tree 3 2(t-1) 2(n+l)i•' ~~~~n (n'-1)[(-3n+]

where k=log (n+l)

Two-dimensional
array 42-n- 2/-n-/3

Balanced
2 k-ary tree k+l 2k

where n= (k 1-l)/(k-i)

k-dimensional
array 2k k k/n--

Table 1. Values of diameter and

expected diameter for some simple

types of graphs, all having n nodes

~ - _____ ~I*

3. Reconfiguration of cellular computers

Suppose that P.i and P.j can currently address one another,

and P. wants to drop P. from i~s address list. Then P. must
1

drop P.i from its list simultaneously. To insure this, P i

sends P.3 a message requesting that they drop each other; P.

acknowledges and agrees to the message; and they then drop

each other. We assume here that such messages are sent and

received in a unit time period, so that the dropping can

take place simultaneously. Note that when two nodes drop

each other, the graph may become disconnected; we will

assume that normally this does not happen. (If desired, one

can check that deletion of an arc will not disconnect the

graph before actually deleting it; see [10I.

It is less obvious how P. and P. can add each other to
2. J

their lists, if they cannot currently address one another.

Suppose first that P. and P. have a common neighbor P The

sequence of events is then as follows: P. (say) informs

Pkthat it wants to add P.j P asks P .to ad i nom

Pthat it agrees; Pk signals P. to add P. and P. to add P.
k k j2

simultaneously. Here again, st~andard unit times are assumed,

to insure simultaneity. We have also assumed that P. and

P, both have room to add each other without exceeding the

degree bound. If this is not so, we can modify the construc-

tion to make P. and P. drop P kat the same time they add each

.. k

other; this insures that their degrees remain within the

bound. Of course, this assumes that there is no objection

to disccnnecting Pk from P. and P..
k 1

In the case of an arbitrary P. and P., we proceed by1 j

induction on the distance between them. (We assume the

graph is connected, so that this distance always exists.)

if the distance is 1, they are already neighbors; if it is

2, they have a common neighbor, and the construction in

the previous paragraph can be used. Let the distance

between them be m>2, and let Pi=Q 0,Q,'.''Qm=pj be a

shortest path between them. Then Pi=Q0 and Q have the

common neighoor Ql" By the previous paragraph, Pi and Q

can add each other to their lists and (if desired) can

drop Q1 from their lists. We now have a path Pi=Q0 ,Q 2 ,'--

Qm=P" of length m-i, so that the distance from P. to P.

is now m-1. Repeating this construction, we can eventually

r. 'dce the distance to 2 anc, then to ', at which point P.

anm P. have become neighbors. As before, we assume that3

there is no obstacle to adding and deleting the intermediate

arcs involved i. this construction.

The construction just giveA shows orly how to create

an arc between two arbitrary given nodes, and assumes that

we are free to create and destroy intermediate arcs as

needed. During the iperation of a reconfigurable cellular

I

t..Al%•<Ik. , -t.•-~ ~ ~ ~ zh~a*±. ~ . . '
M 5

i id

computer, many pairs of nodes may want to connect or dis-

connect themselves at the same time, and it will not in

general be po~ssible to carry out the necessary reconfigur-

* ation steps simultaneously without conflict. To demonstrate

that the concept of reconfiguration is useful, we w'ust show

how graph structures can be nontrivially reconfigured in

parallel. In Section 4 we will skctch several such recon-

figuration algorithms which allow conflict-free parallel

transformations between strings, cycles, arrays, and trees.

We will generally assume in these algorithms, as is coirmonly

assumed for graph-structured cellular automata, that the

graph has a distinguished node.

I'I

4. Some parallel reconfiguration algorithms

4.1 Strings and cycles

It is trivial for a cycle to transform itself into a

string by dropping an arc, e.g. one of the arcs incident

on the distinguished node. Conversely, for a string to

transform i.tself into a cycle, the node at one end (which

we may assume to be distinguished) succesively connects

itself to the third, fourth,...nodes, using the path-

shortening construction in Section 3, until it is connected

to the other end; each intermediate arc used in this con-

struction is deleted as soon as the next arc is formed. The

time required to form a string into a cycle is proportional

to the length of the string.

4.2 String to tree

For a string, say of length Z, to transform itself into

a balanced binary tree, a construction similar to that used

for firing squad synchronization can be employed. The mid-

point M0 of the string (or one of the two midpoints, if Z is

even) is identified by sending two signals from the (d-istin-

guished) end node, one at unit speed and one at 1/3 speed;

the unit speed signal bounces back from the other end and

meets the 1/3 signal at M0 . Next, we similarly find mid-

points M1 and M2 of the two halves of the string, and at

1 2

~ ~ ~~ ,~ ~ 4

the same time, we connect M0 to each of them; M0 is the

root of the tree being constructed, and MIM 2 are its sons.

We now have two substrings with midpoints M1 ,M2 and we

repeat this process in parallel for each of them, thus

joining M1 to the midpoints MIIMI 2 , of its halves, and

M2 to the midpoints M2 1 ,M2 2 of its halves. After log2Z

repetitions of this procedure, we have constructed the

Uee. The total time required for the construction is

3 3Z3t 3
about <3Z, proportional to Z.

4.3 Tree to string

Given a binary tree, we can reconfigure it into a

string in time proportional to the height of the tree.

We do this by repeatedly, in parallel, joining each node

to the right son of its left son and the left son of its

right son, and disconnecting it from its left and right

sons, where "left" and "right" refer to an arbitrary

given labeling of the sons of each node. Figure 1 illus-

trates how this process works in a simple example. It is

not hard to see that when the process terminates, each

node is joined to the rightmost descendant of its left

son and the leftmost descendant of its right son, and

the resulting arcs define a string which corresponds to

an inorder traversal of the tree.

4.4 String to array

We assume that each node knows the length Z of the

Lstring anO its own position in the string. Let s = [t•],

01,A

(a)

K (b)

(C)

Figure 1. Reconfiguring a tree into a string

and regard the string as composed of substrings of length

s. We join the .th node of each substring to the ith node

of the following substring, 1 f i £ s, and disconnect the

Last node of each substring from the first node of the

following one. Evidently, all these Joinings can take

place in parallel. [We do this as follows: Assume that

nodes nos. 1, l+2s.... are specially marked. Each marked

node ks+i joins itself to the next marked node, using the

stepwise construction of Section 3. As soon as this pro-

cess has passed node ks+i, it too starts a reconstruction

process, which stops as soon as it finds a node that still

has only two neighbors and occurs after a marked node;

this can only be node (k+l)s+i.) The substrings can be

regarded as the rows of an array, and the new arcs connect

the successive nodes in each column. If Z is not a perfect

square, the last row will be shorter than the others. Evi-

dently, the joining process takes time proportional to .

4.5 Array to tree or string

To change an array into a string, we can simply build a

breadth-first spanning tree of the array with one of the

corner nodes as root; readily, this tree is binary and can

be constructed in such a way that it has height equal to

the array's city block diameter. The construction of Sec-

tion 4.3 can then be used to convert the tree into a string.

The process takes time proportional to the array diameter.

if a , 2~y.ibju..AWIIV~s...,g u.&u-,k~afinflksui4<,¶¶.taui tZ .,,~'1'Ixxdf ,a2La A. II~ai~.•n~rz~nrt. ,~, ... ,.At" i.LL~& , U.iL. ' ,

For the details of a tree construction process that yields

a tree of the desired height that is ao balanced as possi-

ble, see Appendix B.

4.6 Tree to array

A binary tree can be converted into an array by first

changing it into a etring (Section 4.3) and then changing

the string into an array (Section 4.4); but the latter pro-

cess takes o(string length) time. A more complicated

construction can be given which requires only O(array dia-

meter) time; for the details, see Appendix B. It would

be of interest to design an algorithm tnat requires only

O(tree height) time.

gI

5. Concluding remarks

This paper has suggested that it may be of interest

to study reconfigurable cellular computers, in which the

number of processors that can address a given one is bound-

ad, but the set of these processors can change, thus modi-

fying the graph structure defined by the addressability

relation. Examples were given illustrating how various

simple graph structures can be reconfigured into one

another in parallel.

Ordinary cellular computers are applicable to compu-

tational tasks which can be divided among the processors

in such a way that only certain pairs of processors need

to interact; one would then define the graph structure of

the computer so as to make these pairs neighbors. More

generally, one could imagine a computational task in which,

at various stages, different kinds of interprocessor inter-

actions are needed. Such a task could be handled by a

reconfigurable cellular computer which changed its graph

structure at the end of each stage.

As an example of such a multistage task, let us again

consider the domain of image processing. We know that 4n

array-structured cellular computer is useful at an early

stage of image analysis, when local operations are being

performed on the image. The result of this stage might be

a segmentation of the image into regions, and we might then

want to jerform further processing at the region level, e.g.

merging regions, or identifying particular configurations

of regions by matching against models. This level of pro-

cessing might be best carried out on a cellular computer

configured in such a way that eckch node represents a region,

and neighboring nodes represent adjacent regions. It is

not difficult to define reconfiguration algorithms which,

given an array-structured cellular processor i.n which region

labels have been attached to the nodes, can construct a

graph-structed cellula~r processor representing the adjacency

graph of the regions. A paper describing such algorithms

is in preparation [12 -14.

Appendix A: Expected Diameters

1) Cycle

In a cycle of odd length n, the sum of the distances

from any given node to the other nodes is

(rn-l)/2 n2-1
2E i - 4

i=l

Hence the average distance from an arbitrary node to any

other node is the sum divided by n-i, or (n+l)/4. If n is

even, the sum is

(n-2)/2
n2

so that the averaqe is n 2 /4(n-l). Note that if we include

the given node itself (distance=O) in the average, the deno-

minator is n rather than n-i, so that we obtain n/4 in the

even case, and (n 2 -1)/4n in the odd case.

2) Arx-ay

In an rxs rectangle, the sum of the distances from any

of the corner nodes to the other nodes is

r-l s-1
rs(r-l) + rs(s-l) = rs(r+s-2)/2E E (i+j) = 2 + 2 sr-2/

i=0 j=0

Hence in a UxV rectangle, we can find the sum of the distances

from a given node (u,v) to the other nodes by regarding (u,v)

and three of its neighbors as the corners of four subrectangles:

R ,
1 2

. . (u,v)(u+l,v).

. . .(uv-l)(u+l,v-l) . .

R R 4
R3 4

Now a node in R or R has distance from (u,v) 1 greater than
2 3

its distance from its own corner, while a node in R has dis-
4

tance 2 greater. Hence the sum of the distances from (u,v)

is the sum of the distances (+ 1 or 2) from the nodes of R ,
1

R , R , R to their respective corners. Since the sizes of
2 3 4

R , R , R , R are uxv, (U-u) xv, ux(V-v), and (U-u) x(V-v),
1 2 3 4

respectively, the sum is

uv(u+v-2) + (U-u)v[l+(U-u)+v-2]

2 2

+ u(V-v) [1+u+(V-v)-2 + (U-u) (V-v) [2+ (U-u)+(V-v)-2

which evaluates to

Uv2+Vu2-U(V+l)v-V(U+l)u + 1PV(U+V+2)

and the average distance is this divided by UV-l. To obtain

the average distance between a pair of arbitrary (distinct)

nodes, we must average this result over (u,v), i.e. by taking

U V
1___ • Z of it. Now applying this to v2 yields (V+l)(2V+I)/6;

UV u=l v=1

to u 2 , (U+l) (2U+I)/6; to v, (V+1)/2; and to u, (U+l)/2. Hence

our final average is

1
1 -I[U(V+1) (2V+l)/6 + V(U+1) (2U+I)/6

- U(V+1) 2/2 - V(U+l) 2 + UV(U+V+2)/2]

which evaluates to (LJ+V)/3. In particular, for a square

array of n nodes we have U=V=/n-, so that the average is

/n'-/3; and for a string of n nodes we have U=n, V=l, so

that the average is (n+l)/3.

3) Tree

A complete binary treeTof height h has 1,2,...,2

nodes at levels 0,1,...,h-l, respectively. For a node N at

level k, the sum of the distances to the other nodes can be

computed as follows: Let N be at distance d from the root

of a subtree T' of height r which does not contain N. Thus

N is at distance d+l from 2 nodes of T', d+2 from 4 nodes,

r-l
... , and d+r-i from 2 nodes. The sum of the distances

from N to the nodes of T' is thus

d + 2(d+l) + 22 (d+2) + ••. + 2r-l(d+r-l)

= d(2r-l) + 7+'i 2 i =d(2 r-l)+(r- 2) 2 r+ 2 = (d+r- 2) 2 r - (d-2).
i=l

Let N be at level k; then we can decompose T into subtrees

as follows: Sum of distances:iDistance d from rfrom N to nodesRoot of T' root of T' to N Heightr of T' of T o

N's brother 2 h-k (h-k) 2 hk

N's father's
brother 3 h-k+l (h-k+2) 2 h-k+l-

N's grand-
father's bro-
ther 4 h-k+2 (h-k+4) 2 h-k 2 -2

The brothe : of
N's :estor
just jelow the
root of T k+l h-l (h+k-2)2hI - (k-l)

'Lain-

in fact, T consists of these subtrees together with N's

father, grandfather, ... , and the root of T, which have diz-

tances 1,2,...,k from NI, hence sum of distances k(k+l)/2;

and the subtree rooted at N itself, which has sum of distan-

h-k
ces (h-k-2)2 + 2 from N. The contributirxAý to the sum

from the suburees in the table is

k h k-i k-i
(h-k)E2h-i + E (2i)2 - Ei

i=l i=l i=l

- (h-k) 2 hk(2k-l) + 2 hk+ ((k-2)2 +2) - k(k-l)/2

The total sum of distances for a node N at level k :is thus

(h- -2) (2k -1)k
(h-k-2)2k + 2 + (h-k) 2 hk(21) + 2 h-k+l ((k-2)2"+2) + k

(k-2)2h+l + (h-k)2h + 2h-k+l + k + 2

- 2 h (h+k- 4)+ 2 hk~l + k + 2

h _I
and the average distance is this divided by 2 -2 (nodes SN).

To get the average distance between two arbitrary nodes, we

take a weighted average of these sums, with weight3 2 k (rep-

resenting the 2 k nodes at level k, k=0,1,...,h-l), and denomi-

nator 2h-i (the total number of nodes in T). This yields

.1h h-l k h h-i k h-i ~h '2 (h-4)+2) E 2 + (2 +)•h Ek2 + E 2(2h-1)(2 -2) k=O k=0 k=O

1 -[(2 h(h-.4)+2) (2 h_1) + (2h +1) ((h_ 2) 2 h+ 2) + h2h+l
(2 -1) (2 -2)

For a tree having n nodes, we have n=2 h-1, so that this may be

written as

2(n+l)[- 2nn)l)h[(h-3)2 n-2h]

n(n-l) (h-3) (n+l)+(h+3) (n1)[(h-3)n + 2h]

where h = log2 (n+l).

t

Appendix B: Array/Tree and Tree/Array Reconfiguration*

In Section 4 we outlined a number of algorithms for

parallel reconfiguration of one graph into another; but

some of these algorithms were not the fastest possible

or did not yield the best possible results (see Sections

4.5 and 4.6). The purpose of this appendix is to show how

improvements can be achieved by using algorithms that. are

somewhat more complicated. Thus the appendix serves to

illustrate that straightforward reconfiguration algorithms

may not always be the best ones.

iiI

i'I

*The algorithms in this Appendix were developed with the help

of Tsvi Dubitzki.

H'

"•,0: • ... 'H

Algorithm, B.l: Reconfiguring a two-dimensional array into a

minimum-height binary tree.

Let A be a rectangular array of automata which

contains N nodes where N = r-s (r5.s) for integers r,s. D is

the node at the northwest corner of A.

The basic steps of the algorithm are:

(1) Send a signal down from D along the leftmost vertical

line. Upon receipt of this signal, each node below D along

the vertical line sends a signal to erase the series of hori-

zontal arcs emanating from it in A. This gives us an unbalanced

binary tree with height at most r + s. We can view

this tree as composed of one horizontal string of length s

and s vertical strings of length r - 1. (The distinctions

between left, right up and down connections at each node are

known in A.)

(2) D sends a signal to order each string to turn into

a balanced binary tree as described in Section 4.2. This takes

at most O(s) time. We now have r + 1 binary trees: one with

height O(Ilog si) and s with height O(Llog (r-l)1). In the

above process the tree arcs are marked.

(3) Define the tree with s nodes as the "horizontal" tree

"T and the t trees with (r-l) nodes as "vertical" trees. We

will hang the "vertical" trees on the leaves of the horizontal

tree T. This is done as follows:

) .T

D sends a horizontal triggering signal through

all the nodes of the tree T in A. Upon arrival at a node i

(including D itself) the signal causes node i to check how

many marked arcs of the tree are connected to it. If thatI

* number is 1 or 2 (except the root of T which is marked and

considered as a node with 3 tree arcs) it means that respec- L
tively 2 or 1 of the "vertical" trees can ba hung on node i

in T. Then node i sends (ahead of the triggering signal) aj

Ysearching signal for 2 or 1 roots of "vertical" trees either

through the node below it in A or to the right, checking at

each node whet~her the "vertical" tree below it, in A, is still

coneced o t.If iistllconnected, then it can be

*assign~ed to node i of T, i.e. node 1. connects itself to the

roots of its &ssigned trees and the arcs of A connecting these

"vertical" trees to the upper horizontal. line o±. A are dis-

connected. All the new connecting arcs to the roots of the

"vertical" trees are marked as tree arcs. The horizontal

triggering signal continues to the cight one time unit after

the searching signal. starts, in order to avoid too many t-emporary

connections at any node of T. In case the above searching sig-

* nal, starting at node i, does not find enough needed unassigned

"lvertical" trees to its right, it bounces back to the left in

the upper horizonital line of A to look for unassigned "vertical"

trees left by the previous searching signals. This is not done

when i is the rightmost node in A's top line.

F! (4) All the unmarked arcs (of A) are erased by a Lbeadth

first search signal from D sent down the spanning tree of A.

In the following a leaf is defined to be a node which

does not have two sons in T and is said to have one or two

null links.

Claim 2.1.1: There are enough null links at the leaves of T

to hang all the "vertical" trees in A.

Proof: There are s nodes in T. By induction the number of

null links in a binary tree with s nodes is s + 1. On the

other hand there are only s "vertical" trees in A.

Corollary: If the rightmost node in A's top line finds under

it one unassigned tree to be hung on it, then it doesn't bounce

a signal back along A's top line since Claim 2.1.1 proves that

there is one less "vertical" tree in A than needed to fill

all the null links.

Claim 2.1.2: The height of the combined tree formed from T

and the tree hanging from it is at most one unit more than the
I

height of a balanced binary tree formed from a string of

N = s.r nodes.

Proof: The height of a balanced binary tree with N nodes is

h = ilog2 NJ. The total height of the combined tree constructed

by Algorithm 2.1 will be

SH = 1 + llog2 sJ + Llog2 (r-l)J s l+LlogsJ+tlogrJ j l+00og2 Nj

so that H ih+ 1.

________ ~11

Claim 2.1.3: Algorithm 2.1 takes O(s) time.

Proof: Step (1) of disconnecting the horizontal lines in A

takes O(,+r) time.

Step (2) of converting all the strings into binary trees

takes O(s) time.

Step (3) of converting the binary trees into one tree

takes O(s) time.

Step (4) of erasing nontree arcs takes 0(s+r) time.

K -. ,

Algorithm B.2: Reconfiguring a complete binary tree into a

two-dimensional array.

Let T be a complete binary tree of automata with N nodes.

Let D be the root of T. By a complete tree we mean a tree

in which all the paths from the root to the leaves are of the

same length. In the following a leaf node of T is a node

with two null links.

The basic steps of the algorithm are:

(1) Conversion into a tree)f strinis:

In parallel D sends two signals down T, one at unit jpeed

and the other at 1/3 speed. The unit speed signal bounces

back from the leaves of T and meets the 1/3 speed signal at a

node in the middle of each path from D to the leaves of T.

Each such meeting node markq itself and turns the

subtree rooted at it into a string as described in Section 4.3.

The unit speed signals continue up to D and make it convert the

binary tree rooted at it and having as leaves the marked nodes

into a string also. We thus obtain a horizontal string (the

last one) with two folded strings hanging from every other

node of it, since in converting a binary tree into

a string as described in Section 4.3, every two leaf nodes are

separated by a nonleaf node, and the above twofold strings

hang only on leaf nodes. D knows that the process of turning

the specified subtrees into strings has terminated as soon as

it receives (from its two sons in T) the string generating

3
-~-----

signals which bounced back from T's leaves. All the arcs

of T not participating in the above construction are erased

as follows: D send breadth first erasing signals down in T.

The signals bounce back from the leaves towards D and on

their way back erase every arc of T except the first level of

arcs above the leaves and above the marked nodes.

(2) Formation of a pseudo-array:

D orders every hanging point (in the horizontal string

of (1)) of a twofold string to order the first node in the

right part of the twofold string hanging from. it to connect

itself to the node to its right and then disconnect itself from

its old hanging point. The rightmost node of the horizontal

string doesn't have a nonleaf node to its right and therefore

orders its right neighbor in the twofold string hanging from

it to be a new hanging point to its right (thus part of the

horizontal string) from which hangs the rest of the right part

of that rightmost twofold string. We now have a

binary tree composed of a set of strings hanging vertically

and we need only generate the horizontal connections in it in

order to get an array. Note that the rightmost. hanging string

is one node shorter than the other hanging strings.

(3) Conversion into an array:

First we define for each node in the pseudo-array of step

(2) what its upward,downward and horizontal connections are.

......... I

For this purpose D sends a breadth-first search signal down

nodes of the vertical strings and go back up in

the strings of the pseudo-array. Each ent.-ance to a node

in this path is a downward connection and each exit an upward

connection. Upon arriving at the marked nodes of step (1)

the definitions of the connections change to horizontal until

the signals reach D again. Each node in the horizontal line

will not emit a signal in the horizontal direction towards D

until it has received a horizontal signal. Thus upon receiving

two signals D will know that this marking process has termi-

nated. At this stage D orders each of its horizontal. neighbors

to connect itself temporarily to the node on its downward con-

nection. Then each of the horizontal neighbors of D

orders its vertical neighbors and the node below D to connect

t~he~itiselves. The above temporary connections are then disco"-_

nectecL In turn each horizontal neighbor of D starts such a

connecting process too. This process propagates in the first

upper row of the pseudo-array; at the same time each node

below that row, having established a horizontal arc, starts

such a process in the row below it, and so on until the net-

work of horizontal arcs in D is completed.

Claim 2.2.1: The length of the string formed from the upper

part of T (the upper row of the final array) is O(K).

...

h+1

Proof: The number of nodes in T is N which equals 2 - 1

in a complete binary tree with height h. The marked nodes in

step (1) of Algorithm 2.2 divide T into an upper complete tree

with height h/2 and the rest of T. In that upper part of T

we have N' = 2 h/2+l - 1 nodes. Therefore N' is O(U).

Claim 2.2.2: Each hanging point in the pseudo-array of

step (2) of Algorithm 2.2 is the middle of the twofold string

hanging from it and the lengths of all the twofold strings in

the pseudo-array are equal.

Proof: A complete binary tree has equal numbers of nodes in

the right subtree and left subtree of its root. The subtrees

forming the twofold strings in step (1) of Algozithm 2.2 are

complete binary trees. The process of converting a binary

tree into a string produces a st~ing in which the root of

the tree is an internal point, all the nodes to its right come

from the right subtree of the root and all the nodes to its

left come from its left subtree. Thus the root of the tree

(a hanging point) is the middle of the twofold string. The

lengths of all the twofold strings in the pseudo-array are equal

since all the marked nodes of step (1) are at the same depth

below D and hence al.1 the subtrees below them are of the same

size.

Corollary: The array formed in step (3) of Algorithm 2.2 is

of size O(/IN) x O(/•). This Js due to the fact that the upper

horizontal line of the array contains O(/N) nodes by Claim 2.2.1

and the lengths of all the vertical strings hAnging from the

horizontal line of step (2) are equal by Claim 2.2.2.

Note that Algorithm 2.2 is applicable with slight changes

to non-complete balanced binary trees. In particular if we

are dealing with height-balanced binary trees with minimal

numbers of nodes, then the upper horizontal line of the array

holds less than AN nodes since the marked nodes of step (1)

(closest to the root) are now closer to D than in the case of

a complete binary tree because of the existence of short

paths going through a node to the leaves of T. Also the

difference in length between the vertical hanging strings

grows with N since we are dealing with subtrees (generating the

twofold strings) which differ more and more in their numbers

of nodes as the height of T grows. These factors give us

finally very incomplete rectangular arrays.

Claim 2.2.3: Algorithm 2.2 takes 0(rT) time.

Proof: Step (1) of constructing the tc-, of strings takes

O(log N) time. Step (2) of constructing the pseudo-

array takes connzLant time. Step (3) of forming the horizon-

tal lines of the array takes O(VK) time since we already have

a skeleton of an array of size O(N) x O(N).

References

1. S. H. Unger, A computer oriented toward spatial problems,
Proc. IRE 46, 1958, 1744-1750.

2. B.J. McCormick, The Illinois pattern recognition computer-
ILLIAC III, IEEE Trans, EC-12, 1963, 791-813.

3. M.J.B. Duff and D.J. Watson, The cellular logic array
processor, Computer J. 20. 1977, 68-72.

4. K.E. Batcher, Design of a massively parallel processor,
IEEE Trans. C-29, 1980, 836-840.

5. P. Marks, Low level vision using an array processor, Computer
Graphics Image Processing, 1980, in press.

6. A.R. Smith III, Cellular automata and formal languages,
Proc. llth SWAT, 1970, 216-224.

7. A.R. Smith III, Two-dimensional formal languages and pattern
recognition by cellular automata, Proc. 12th SWAT,1971,144-152.

8. S.R. Kosaraju, On some open problems in the theory of cell-
ular automata, IEEE Trans. C-23, 1974, 561-565.

9. A. Rosenfeld, Picture Languages, Academic Press, NY, 1979.

10. A. Wu and A. Rosenfeld, Cellular graph automata (I and II),
Info. Control 42, 1979, 305-329, 330-353.

11. C. Rieger, ZMOB• A mob of 256 cooperative Z80A-based micro-
computers, Proc. DARPA Image Understanding Workshop, November
1979, 25-30.

12. A. Wu and A. Rosenfeld, Local reconfiguration of networks
of processors, TR-730, Computer Vision Laboratory, Computer
Science Center, University of Maryland, College Park,Maryland 20742, February 1979.

13. T. Dubitzki, A. Wu, and A. Rosenfeld, Local reconfiguration
of networks of processors: arrays, trees, and graphs, TR-
790, Computer Vision Laboratory, Computer Science Center,
University of Maryland, College Park, Maryland 20742,July
1979.

14. A. Rosenfeld and A. Wu, Cellular computers for region-level
image processing and analysis, in preparation.

t A W

UNCLASSIFIED
SECURITY CLA M *kI•1_ F OF' THIS PAGE (Wh.en ., _.-, ... C STRUTLON'R~`TDCUETTO PAGE •,_-----R STR uCTIONS

ED •p,,,,BT DOCUMENTATIO PEFORE COMPLETING FORM
.. PC GOVT ACCESSION NO. a. RECIPiENT'S CATALOG NUMBER

______- -_" _-__1_A-,) ,__ 06!::r

(,,'..,T ,OF REPORT , PERT. OVp kED

-. . .(Technical '_i:OkD
' .ECONFIGURABLE CELLULAR COMPUTERS ioo . REPORT NUMBER

rR-963
7. AUTHOR(S) 6 ONTRAC OR GRANT NUMBER(•)

0 Azr ieU Ros-e-n-fe Z7
Angela _±Y.]Wu .. AFOSR-77-3271

9. PERFORMING OROAN,11ZATION NAME AND ADDRESS 10. PROGRAM 9LE1.MENT• PROJECT, TASK

Computer Vision Laboratory, Computer AREA & WORK UNIT NUMBERS

Science Center, University of Maryland,
College Park, MD 20742

I1. CONTROLLING OFFICE NAME AND ADDRESS }.t2. *wn -r IATK__

Math. & Info. Sciences, AFOSR/NM // ,kaOct• 8z
Bolling AFB Ili WNUMBER OF PAGES

Wash., DC 20332 35
14. MONITORING AGENCY NAME 6 ADORESS(II dille,rent rim Controlflnl Office) 15. SECURITY CLASS. (of this report)

Unclassified

SIS*. DE LASSIFICATION/ DOWNGRADINGK I. D~UUYY~f~., /ilSCHEDULE

Approved for public release; distribution unlimited.

"17. DISTRIBUTION STAtI'-•VIT (of the ebetetict entered in Block 20. io dilltsiw from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue o.' ,everse side It necessary and Idetilfy by block numLber)

Cellular computers
Parallel processing
Reconfiguration
Cellular graph automata

10. ABSTRACT (Continue on reverse aide It necessary and ident(;" by block number)

When a collection of processors C={PI,...,P J operates in parallel
it is desirable that at any given stage of •he computation, each
P. should need to obtain about the same amount of information
f'om the other P's in order to perform its task. To the extent
"that these conditions are violated, parallelism is impaired, in
the sense that the P's are not all used with equal efficiency.

:P I~n -ilular computers, e.g. as they might be used for parallel
3,imz.,c processing, these conditions are maintained by having

,A71 EDITION - ' , Iq I oLi UNCLA':SIFIED NJ. _ _D D_,_ _ _ _ _ _

./QSECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) j

-J -A-

UNCLASSIFIED
SCCUPITY CLASSIFICATION Of THIS PAOE(Whon Data Entered.)

the P's all perform similar computations on different parts
of the input data, and by allowing each P. to receive
information from a fixed set of the otheri (its "neighbors"),
where these sets are all of bounded size. This paper
discusses, on an abstract level, the concept of a recon-
figurable cellular computer, in which each P. can receive
information from a set S. of the other P' , ýnd the S.'s
are all of bounded size, but they need noi remain fixed
throughout a computation. Requiring the Si's to have
bounded size implies that most P's cannot communicate
directly; the expected time required for two arbitrary P's
to communicate depends on the graph structure defined by the
sets Si. The question of how to change the Si's in parallel
during the course of a computation is also discussed.

•" •

?; I

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

