
Reconfigurable Computing: Its Concept and a Practical Embodiment using
Newly Developed Dynamically Reconfigurable Logic (DRL) LSI

Abstract - This paper first outlines a broad range of
reconfigurable computing research activities from a perspective
of system LSI designs. Then, the paper focuses onto
dynamically reconfigurable logic (DRL) LSI, a prototype chip
that we developed to evaluate the reconfigurable computing
concept. Through its ability to exchange hardware contexts
quickly, this chip can accelerate media/communication
applications with customized hardware configurations, yet
maintaining scalability towards varying application sizes.

 I. Introduction

Reconfigurable computing is an approach to solve a given
problem by using a hardware whose structure is
appropriately customized to the application. There is a fairly
long history of research activities in this broad category, that
are called under different names, such as configurable
computing [1][2], reprogrammable computing [3], custom
computing [4], or virtual hardware [5]. Majorities of those
past works have concerned with establishing a general-
purpose computing framework that subsumes a conventional
computing approach in some computation or data intensive
application domains [4].

Recently, reconfigurable computing is gaining renewed
interests from a system LSI design perspective [6]. This is
because a reconfigurable computing IP core, that changes its
configuration to suit the application, can fill a wide gap
between programmable and hardwired IP cores. Here, the
wide gap exists both in performance and programmability: a
hardwired IP core can achieve orders of magnitude better
performance than a programmable IP core, while the latter
can perform virtually any function when the former handles
only the task it is designed for. Reconfigurable computing IP
core may become a key component for software-hardware
co-design of a system LSI, through its ability to achieve both
hardware performance and software programmability.

In this paper, we first overview concept and potential
benefits of reconfigurable computing. We then introduce
newly developed dynamically reconfigurable logic (DRL)
LSI, which is a proof-of-concept prototype for a
reconfigurable computing IP core in the near future.

 II. Reconfigurable Computing

A. Concept
Figure 1 explains the difference between conventional and

reconfigurable computing with using a simplified motion
vector detection routine, often used in video compression
algorithms, as an example. In a conventional computing
system, an original source program [Figure 1(a)] is compiled
into a machine code [Figure 1(b)]. This machine code
consists of a stream of instructions that are pre-defined as a
target of compilation. In case of reconfigurable computing,
the same program is compiled into a hardware configuration
[Figure 1(c)], to which data and control flows of original
source program is directly mapped. This hardware
configuration is instantiated when the routine is to be
executed. Important observations obtained from this simple
example are the following:

Masakazu Yamashina and Masato Motomura

Silicon Systems Research Laboratories
NEC Corporation
Kanagawa, Japan

Tel: +81-42-771-0746
Fax: +81-42-771-0881

E-mail: {yamasina, motomura}@mel.cl.nec.co.jp

j <- 0 :L0
 s <- 0
 i <- 0 :L1
 h <- i+j :L2
 a <- A[h]
 b <- B[base+h]
 i <- i+1
 d <- |a-b|
 s <- s+d
 branch L2 if(i<16)
 j <- j+N
 branch L1 if (j<256)
 .
 .
 .

-

+

-

+

a

-

+

-

+

b

s

0

C1

C2

C3

C4

C0

C
ou

nt
er

C0

C1

C2

C3

C4

start

s=0;
for(j=0; j<256; j+=N) {
 for(i=0; i<16; i++) {
 s=s+abs(a[j+i]
 -b[base+j+i]);
 }
}

(a) Source program

(b) Machine code (c) Hardware configuration

Figure 1. Comparison between conventional and
reconfigurable computing approaches.

- The conventional approach solves the problem in a
temporal manner with using sequence of instructions,
while the reconfigurable approach does this in a spatial
manner with using mutually interconnected operation
units [7][8].

- In the conventional approach, register and instruction
sets are the two important key components that define
the interface between a compiler and hardware.

- In the reconfigurable approach, programmable logic
blocks and programmable interconnections, which are
provided in a reconfigurable computing fabric (such as
an FPGA), define the interface between a compiler and
a hardware.

It is important to note that, despite those differences, both
the conventional and reconfigurable computing approaches
are programmable: the compilers generate the bits that
specify how a given problem is to be solved [9]. Principal
distinction is that the "bits" in reconfigurable computing
case controls detailed hardware configuration that has not
been exposed to compilers conventionally [10]. Because of
this, a compiler for reconfigurable computing (RC compiler)
carries characteristics of both conventional compiler and
conventional LSI design tools [7].

B. Impact on System LSI Design
There is a growing concern in the industry that we hit

more difficulties as the technology allows us to integrate
more transistors on a chip. The difficulties lie in various
aspects, such as 1) how to utilize huge number of transistors,
2) how to design them, 3) how to achieve good yields, 4)
how a chip is tested, and so on. We have already argued that
reconfigurable computing IP core is attractive from a point
of view of software-hardware co-design. It also has many
other attributes that are potentially important for solving the
problems mentioned above.

1) Transistor utilization: A reconfigurable computing IP
core can turn increased number of transistors directly
into improved performance, by enlarging the array size
of its fabric. In conventional processors, most of the
transistors are devoted to cache memories (and to
complex instruction issue logic), which contribute to
the performance only in a saturated manner.

2) Design: It is easier to design than hardwired IP cores
because of its regular array structure. Also, since it is
used repeatedly in various system LSIs, costs for an
optimum design can be compensated more easily.

3) Yields: The regular array structure makes it easier to
tune fabrication process to fit with its geometrical
characteristics. It is also possible to include redundant
cells to improve the yields by using after-fabrication
replacement. These techniques are analogous to the
techniques used to improve the yields of memory LSIs.
Moreover, it may become possible to devise self-
repairing mechanism by taking the advantage of
redundant array structures [11].

4) Testing: It even becomes possible to include built-in

test mechanism within the regular array structure in
order to enhance the testability. A similar technique is
already employed in module based arrays [12].

In essence, since a reconfigurable computing IP core is of
general purpose, the problems regarding "how it is designed
and manufactured" and the problems regarding "how it is
used" can be decoupled cleanly. (These problems are inter-
mixed in case of an application-specific LSI design, which
complicates the design process.) The LSI design tools now
deals with the former, while the RC compiler takes the
responsibility of the latter.

C. Applications
Target application areas of a reconfigurable computing IP

core is media-centric and network-centric processing, to
which conventional programmable IP cores, such as a µP or
a DSP, often fail to deliver sufficient performance. This is
because their characteristics, e.g., abundant yet irregular
parallelism, narrow-bit-width and/or variable-length data
elements, stream-based processing, do not fit well with a
register/instruction-set based, fixed word-length architecture.

D. Required Architecture Improvement
The performance improvements of reconfigurable

computing come from the fact that it solves an application
spatially with a customized hardware. Its programmability,
on the other hand, is determined by how reconfiguration is
conducted quickly and flexibly. Conventional FPGAs have
not focused on this "reconfigurability" issue much, because
they have been used mainly for emulation and prototyping
purposes. In order to make a reconfigurable computing
approach practical, the "reconfigurability" of the
conventional FPGA architectures should be improved
significantly [13][14].

Figure 2. DRL prototype LSI.

Config Select
(3bx2)

UCBC

G
lo

ba
l B

us
S

w
itc

h Memory(4bx2)
Data (4bx8)

UC

UC

UC

UC

UC

UC

UC

UC

UC

UC

UC

UC

UC

UC

UC

BC

BC

BC

D
at

a
(4

bx
4)

C
on

fig
 S

el
ec

t
(3

bx
2)

RC

B
C

B
C

B
C

B
C

Horizontal
Local Bus
(4bx2x4)

V
er

tic
al

Lo
ca

l B
us

(4
bx

2x
4)

In
pu

t S
el

ec
to

r

LB

LB

LB

LB

In
pu

t S
el

ec
to

r

LB

LB

LB

LB

Address Decoder

C
on

fig
ur

at
io

n/
D

at
a

In
pu

t(
79

b)

C
on

fig
ur

at
io

n/
D

at
a

O
ut

pu
t(

79
b)

Configuration Store Address(10b)

Logic Block(LB)

UC: Unified Cell
BC: Bus Connector
RC: Reconfiguration
 Controller

Input
Select

Output
SelectExternal

Configuration Control
Configuration
Store Control

RESET CLOCK
4 2

 III. Dynamically Reconfigurable Logic LSI

As a vehicle for proving the reconfigurable computing
concept and evaluating application performance, we have
designed and fabricated a dynamically reconfigurable logic
(DRL) prototype LSI [15][16]. This chip integrates 5.1M
transistors on 10.1mm square die with using 0.25µm CMOS
technology. It has eight on-chip configuration contexts, and
can switch from a context to the others within a single
operation cycle.

A. Architecture Overview
Figure 2 shows an overall block diagram of the DRL

prototype. It contains a 4 x 12 array of logic blocks (LBs),
an address decoder, and input/output selectors. An LB
comprises a 4 x 4 array of unified cells (UCs), a global bus
switch, bus connectors, and a reconfiguration controller.
Horizontal and vertical global buses provide chip-level
interconnections among LBs within a row and a column.
Each UC is directly connected to its four nearest neighbor
UCs through two sets of horizontal and vertical local buses,
without insertion of a switch matrix. 79b input/output ports
for configuration contexts and operands or results are
located on the left/right side of the chip, respectively.

B. Unified Cell
A plot of a unified cell (UC) is shown in Figure 3(a). The

UC is 114-µm by 337-µm large, and it contains 4,552
transistors. It mainly consists of 4 x 4 matrix of memory
columns (MCs), which are layouted in a pitch-matched

manner. An UC can be configured into 4-input/1-output
arbitrary logic circuits, 4 x 4 interconnection matrix switches,
etc., with using a conventional look-up-table scheme.

An MC circuitry is depicted in Figure 3(b). It consists of a
memory region and a column circuit. The eight memory
cells in the memory region stores eight configuration
contexts, from which Config-Select (see Figure 2) activates a
current context. Here, a single configuration context
contains all the necessary information to configure an UC.
Thus switching between those configuration contexts results
in ultra-fast reconfiguration.

C. Dynamic Reconfiguration
Figure 4 shows simulated waveforms of dynamic

reconfiguration. The simulation is conducted by running a
transistor-level power simulation tool on a back-annotated
netlist after the layout design is completed. Here, we
simulate dynamic reconfiguration of a single LB from a
sample context 0 to a sample context 1 in a 10-ns cycle time.
In Figure 4, the transition of Config-Select at an UC input
takes 1.5 ns from the clock edge. It takes another 1.5 ns to
switch an active word line in an MC from Word-0 to Word-1.
The new context is read out through the column circuits in
the MC circuitry, which generate various control signals.
The critical path delay of dynamic reconfiguration is 4.6 ns.
It is more than five orders of magnitude faster than
reconfiguration latency of conventional FPGAs

Figure 4 also shows current dissipation during the
dynamic reconfiguration. Average current is 16.5 mA, which
results in 2.0-W power dissipation for whole-chip
reconfiguration at 100-MHz clock frequency. Since this
calculation assumes whole-chip reconfiguration to take place
in every clock cycle, this power dissipation number is
unrealistic. Suppose an application conducts reconfiguration
once in every hundred cycles, the power dissipation due to
dynamic reconfiguration is only 20-mW.

D. Application Examples
We are examining various communication-processing

applications on the developed DRL prototype chip. The
evaluation results on data encryption standard (DES)
algorithm has been already reported [16]. In comparison to a
conventional high-speed microprocessor, the DRL has
achieved an order of magnitude better performance with two

Figure 3. An unified cell and a memory column circuitry.

Memory
Column

(a) Unified cell (b) Memory column circuitry

Write Data

Word

8
M

em
or

y
C

el
ls

(L
at

ch
-T

yp
e)

M
em

o
ry

 R
eg

io
n

C
o

lu
m

n
 C

ir
cu

it

Control

Local
Bus(H)

Read Data

Local Bus(V)

Figure 4. Simulated waveforms of dynamic reconfiguration.

I(GND)

I(VDD)

V(CLK)

V(Config Select)

V(Word-1)

V(Word-0)

V(Control Signals)

[ns]0 2 4 6 8

100mA

100mA

4.6ns

1.5ns

3.0ns

orders of magnitude better energy utilization. Other
evaluation results will be reported elsewhere.

In order to show how dynamic reconfiguration is
effectively utilized, Figure 5 illustrates a packet-processing
example. As is well known, a network packet has multiple
headers in front of its payload, each of which corresponds to
each layer in a protocol stack. Not only its bit-length and
field organization but also how it should be analyzed are
different from a header to header. A DRL can process those
headers with customized hardware configurations. Since
how to handle a header in one layer depends on the results of
previous header analysis, quick adaptation of hardware by
using DRL's rapid reconfiguration mechanism is
indispensable.

 IV. Conclusion

We have examined the feasibility of reconfigurable
computing through the design and evaluation of a DRL
prototype chip. Our preliminary evaluation results are quite
positive: a DRL can successfully achieve both hardware
performance and software programmability.

Major obstacle for making reconfigurable computing truly
practical is the lack of efficient RC compiler. As is already
discussed, the RC compiler is something in between
conventional compilers and conventional LSI design tools.
As such, it will become an important and challenging
research target for researchers in the LSI CAD field,
including high-level synthesis [17], logic synthesis, floor-
planning, and place and route tools.

Acknowledgements

We appreciate Mr. Koichiro Furuta and Mr. Taro Fujii for
their indispensable efforts they have devoted in the DRL
prototype LSI development. We would like to appreciate Mr.
K. Wakabayashi for the stimulating discussions on RC
compilers. We also would like to thank Dr. Masao Fukuma
and Dr. Takao Nishitani for their generous understanding
and continuous encouragement towards our work.

References

[1] J. Villasenor and W. H. Mangione-Smith, "Configurable
Computing," In Scientific American, Vol. 276, No. 6,
pp. 54--59, June 1997.

[2] W. H. Mangione-Smith, et al., "Seeking Solutions in
Configurable Computing," In IEEE Computer, Vol. 30,
No. 12, pp. 38--43, December 1997.

[3] S. Hauck, "The Roles of FPGAs in Reprogrammable
Systems", In Proceedings of the IEEE, Vol. 86, No. 4,
pp. 615--638, April 1998.

[4] D. Buell, J. Arnold, and W. Kleinfelder, "Splash2:
FPGAs in a Custom Computing Machine", IEEE
Computer Society Press, 1996.

[5] X. Ling and H. Amano, "WASMII: An MPLD with
Data-Driven Control on a Virtual Hardware, "In Journal
of Supercomputing, Vol. 9, No. 3, pp. 253--276, 1995.

[6] W. B. Andrew, et al., "A Field Programmable System
Chip which Combines FPGA and ASIC Circuitry," In
Proceedings of the IEEE 99 CICC, pp. 183-186, 1999.

[7] A. DeHon, J. Wawrzynek. "Reconfigurable Computing:
What, Why, and Design Automation Requirements?" In
Proceedings of the 1999 Design Automation
Conference, pages 610--615, June 1999.

[8] A. DeHon, "Trends Toward Spatial Computing
Architectures," In ISSCC Digest of Technical Papers,
21.2, Feb. 1999.

[9] M. J. Alexander and M O'toole, "Implications of
Reconfigurable VLSI in a Globally Networked World:
Delivering Hardware Over the Net," Washington State
Univ. Technical Report, EECS-97-003, Aug. 1997.

[10] W. Lee, et al., "Space-Time Scheduling of Instruction-
Level Parallelism on a Raw Machine, " In Proceedings
of the ASPLOS-8, October 1998.

[11] A. Shibayama et al., "An Autonomous Reconfigurable
Cell Array for Fault-Tolerant LSIs," In ISSCC Digest of
Technical Papers, 14.4, Feb. 1997.

[12] http://www.lightspeed.com/
[13] M. Motomura, et al., "An Embedded DRAM-FPGA

Chip with Instantaneous Logic Reconfiguration,"
Proceedings of Symposium on VLSI Circuits, pp. 55-56,
Jul. 1997.

[14] S. Trimberger, et al., "A Time-Multiplexed FPGA," In
Proceedings of Symposium on FCCM, pp. 22-28, Apr.
1997.

[15] T. Fujii, et al., "A Dynamically Reconfigurable Logic
Engine with a Multi-Context/Multi-Mode Unified-Cell
Architecture," In ISSCC Digest of Technical Papers,
21.3, Feb. 1999.

[16] T. Fujii, et al., "A 0.25-µm CMOS, 5.1-M-Transistor,
Dynamically Reconfigurable Logic Engine (DRLE)
LSI," In Proceedings of Cool Chips II, pp. 51-63,
Apr.1999.

[17] K.Wakabayashi, "Cyber: High Level Synthesis
System from Software into ASIC," in High Level
VLSI Synthesis, edited by R. Camposano and W.
Wolf, Kluwer Academic Publisher, pp. 127-151,
1991.Figure 5. Application example: packet processing.

Packet (Multi-layer)

Headers

Process Flow

Payload

Bus

Memory

Logic

Exec. Unit

Reconfiguration

Configuration Context

