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Abstract—Sound diffusion techniques are currently widely 

employed in the modern music allowing new composition styles 

and sound movement scenarios to be developed. Multichannel 

sound diffusion systems are built so as to provide the user with 

an opportunity to independently control several input channels 

through the desired output channels. The system MIAUDIO 

described in the paper allows using up to 8 input channels that 

can be mixed in real-time through 32 output speakers. The 

core part of the system which performs the desired audio 

mixture algorithm was implemented in a Spartan-3E Field 

Programmable Gate Array (FPGA). The mixture parameters 

are supplied by a host computer communicating with the 

FPGA via USB port. The complete system was successfully 

implemented and tested. The resulting solution has very low 

cost and was developed in relatively short time. 

Keywords-electronic music; audio mixture; multichannel 

sound diffusion system; FPGA-based prototyping 

I.  INTRODUCTION 

Multichannel sound diffusion is currently an essential 
part of the electroacoustic music performance [1, 2]. Modern 
electronic music composers need to be able to control large 
arrays of audio loudspeakers distributed over a concert hall 
(or a laboratory) allowing sound to be placed in any location 
and with the desired intensity. Besides, recently new 
applications for sound spatialization have been identified 
such as virtual reality, multimedia computing, films, videos, 
and computer games [3]. Different sound scenarios, such as 
immersion and the possibility of movement of the sound 
around the audience, are supported by multichannel sound 
diffusion systems.  

SARC [4] and BEAST [5] are some of the existing 
multichannel sound diffusion systems. These systems use 
several loudspeakers that are strategically positioned around 
the audience. The most common disposition is known as the 
Main Eight concept [6]. In this speaker distribution, the 
listening room is divided in four sections: Main, Wide, Rear 
and Distant. The section Main gives the frontal image while 
the Wide is used to stretch that image. The section Rear is 
positioned behind the audience allowing a 360° rotation of 
the sound. Finally, Distant, gives the perception of what is 
further than the main image. 

Although there are exist several electroacoustic theaters, 
such as SARC, BEAST and ICAST [1], they are out of reach 
of musicians working in other countries (different to those 

where the respective theaters are installed) [2]. In particular, 
there is a strong group of musicians who work in the area of 
electroacoustic music in the Department of Communication 
and Art (DCA) in the University of Aveiro in Portugal. This 
group suggested constructing a digital audio mixture matrix 
in order to create a multichannel system that: 

• would allow spatial movement of the sound; 

• would be cheap; 

• could be progressively expanded to include new 
functionalities; 

• could be installed in a laboratory in DCA and used 
by the musicians. 

As a result, a MIAUDIO system was developed from 
scratch in 2009. The core part of the system is implemented 
in a Field Programmable Gate Array (FPGA) of Spartan-3E 
family of Xilinx. The system is reconfigurable and therefore 
new functionalities can be introduced as well as system’s 
parameters can easily be adjusted to new requirements. 

The rest of this paper is organized as following. Section 
II describes and analyzes the existing multichannel sound 
diffusion systems and points out the main distinctions of 
MIAUDIO. All the components of MIAUDIO are 
characterized in Section III. The implementation details of 
the sound mixture algorithm are explained in Section IV. 
Section V reports the results of experiments. Conclusion is 
given in section VI. 

II. STATE OF THE ART 

From all the electroacoustic theaters the most known are 
SARC [4] and BEAST [5], which will be briefly described 
below. 

A. Sonic Arts Research Center 

Sonic Arts Research Centre (SARC), located in Belfast, 
is a sound diffusion system that features 112 loudspeakers 
that reproduce the mixture of 24 audio input channels 
through 48 different outputs [4]. The 112 loudspeakers are 
strategically installed along four levels. This sound diffusion 
system is controlled using three Digidesign 192 I/O audio 
interfaces [7] that interact with a Pro Tools HD3 Accel 
system. A personal computer, Apple PowerMac G5, runs the 
software (Pro Tools [8]) and, using the information provided 
by the Digidesign mixing surfaces, creates the mixture with 
the audio signals involved. 
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B. Brimingham ElectroAcoustic Theater 

The Birmingham ElectroAcoustic Theater (BEAST) is 
another multichannel sound diffusion system [5]. It was 
created in the Birmingham University in 1982. This system 
provides more than 100 speakers where each one can be 
independently addressed. Similarly to the SARC system, 
BEAST uses a digital multichannel sound interface that is 
controlled via specially written applications using MIDI 
faders with resource to a software known as SuperCollider 
[9-10]. Using the software, the MIDI faders can be assigned 
so that they control a single, a pair or a set of speakers. This 
configuration offers good flexibility to this system. 

C. Analisys of the Existing Systems 

Both systems presented use software based solutions. 
There is a software tool responsible for the mixture of the 
audio signals that uses information provided by digital 
mixture surfaces, or similar hardware. In this implementation 
method, a fast and reliable operating system is necessary so 
that real-time processing is guaranteed. The operating system 
has a great amount of resources dedicated to the sound 
system control leaving therefore little space to accomplish 
other possible tasks. 

The project described in this paper (MIAUDIO) has its 
mixing algorithm implemented in hardware. An FPGA is 
used to receive the audio signals and process them according 
to parameters that are sent by software. Being so, the 
software's responsibility is to send the information that 
defines the audio mixture – a task much simpler and less 
demanding than processing the mixture itself. This is one of 
the advantages in MIAUDIO. In software based solutions 
like in BEAST and SARC, the operating system that 
produces the mixture has to be extremely reliable and 
efficient but above all, has to have a great processing power. 
In MIAUDIO, given the simplicity of the task assigned to the 
operating system, there is space to introduce several new 
functionalities as masterization, sound effects, etc. 

By adopting a hardware solution implementation, new 
functionalities can be added, in MIAUDIO, without 
changing the core of the system. Changes can be made at a 
higher level. It is possible to add software that interacts with 
the module responsible for sending the mixture parameters 
as well as to introduce additional hardware. The FPGA can 
also be reconfigured to add new features without having to 
change the rest of the hardware. 

Another relevant fact in this project is related to its 
development time and cost. The MIAUDIO was developed 
in a relatively short amount of time (approximately 10 
person/months) when compared to similar systems. The cost 
of the components used to assemble the system is under 500 
Euros (not including the loudspeakers). The cost of SARC 
and BEAST is not disseminated but we suppose it is 
significantly higher. 

Different characteristics of the three systems (SARC, 
BEAST and MIAUDIO) are summarized in Table I. 

 
 
 

TABLE I.  COMPARISON OF DIFFERENT SYSTEMS 

 BEAST SARC MIAUDIO 

support software SuperCollider Pro Tools  to define 

number of 

speakers 

~100 112 32 

input/output type analog/analog analog/analog analog/analog 

mixture in software in software in hardware 

cost high high low 

development time long long short 

 

III. MIAUDIO – AUDIO MIXTURE DIGITAL MATRIX 

A. System Description 

MIAUDIO is a multichannel sound diffusion system 
built around an FPGA of Spartan-3E family [11]. This 
system has the ability of mixing up to 8 analog input 
channels through 32 output channels. The analogue input 
audio signals are conditioned, converted to digital format by 
several analogue-to-digital converters (ADC) and then sent 
to the FPGA that performs the mixing algorithm. The host 
computer connects to the FPGA and is responsible for 
sending the parameters that define the audio mixture, i.e., 
send the information that represents the intensity level of 
each input channel on each output. This topology can be 
interpreted as a matrix where each coefficient represents the 
level of each audio input on each output channel.  

Fig. 1 represents the system diagram. The host computer 
sends the parameters that define the audio mixture while the 
input channels, after the analogue-to-digital conversion, are 
sent to the FPGA. The resulting output channels are then 
converted to analogue format so that they can be reproduced. 

 

Figure 1.  MIAUDIO's system diagram. 
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B. Principal Logic Blocks 

Fig. 2 represents a block diagram of the several modules 
implemented in the FPGA. The Input block is in charge of 
the communication with the analogue-to-digital converters. 
After receiving a sample of each audio channel, this 
information is sent to the Arithmetic block whose 
responsibility is to generate the 32 output signals according 
to the current mixture matrix. To obtain the parameters of the 
matrix, this block communicates with the Memory Control 
block that manages memory banks embedded in the FPGA 
where that information is stored. Because the matrix is 
controlled by a computer, the USB Communication block is 
created to establish the USB interface between the FPGA 
and the PC. After generating the 32 output samples, the 
Arithmetic block sends this information to the Output block 
that is responsible for properly sending these samples to the 
digital-to-analogue converters. 

 
Figure 2.  Logic blocks implemented in the FPGA. 

C. Mixture Algorithm 

Each audio input can have a different volume in each 
output channel. Being so, because there are 8 input channels 
and 32 outputs, 256 coefficients are necessary to define the 
audio mixture matrix. Each output can have information of 
any of the input channels, therefore each channel is 
multiplied by the coefficient that determines the weight of 
that input on the respective output and afterwards the 8 
products associated with the same output are added.  

Fig. 3 represents the relation between the inputs, 
coefficients and outputs. As mentioned before, there are 256 
coefficients that define the audio mixture matrix. Eight input 
signals are introduced in the system and 32 outputs are 
generated, being possible that each one of them is different 
combination of the input audio signals. 

D. Hardware Components 

The system is built around an FPGA of Spartan-3E 
family [11]. To use this FPGA, the board NEXYS-2 [12] 
from Digilent was chosen as the design platform. This board 
has numerous interfaces around the FPGA such as a USB 
module and several expansion ports that are directly 
connected to the FPGA. Considering that the analogue input 
signals are processed digitally, it is necessary to use 
analogue-to-digital converters as well as digital-to-analogue 
converters (DAC). The converters selected for this project 
were PCM1802 ADC [13] and DAC8534 DAC [14], both 

designed by Burr-Brown Products. Additional hardware is 
also required to condition the signals to the system. 

 

Figure 3.  Mixture algorithm implemented in the FPGA. 

Fig. 4 represents the input and output stages, for two and 
four channels, respectively, of the system and their 
interconnections with the FPGA. The input signal is 
delivered through XLR [15] cables and introduced into input 
buffers that convert the signal from the differential format to 
single-ended format. Then a second order antialiasing filter, 
implemented with resource to operational amplifiers, is used. 
The analogue-to-digital conversion is performed and then the 
resulting information is sent to the FPGA. The input signal is 
converted with a 24-bit resolution and it is sent by the 
analogue-to-digital conversion through a serial interface. 
This transfer is controlled by the ADC.  

On the output stage, a similar but symmetric process 
occurs. The digital information is sent by the FPGA towards 
the DAC, also through a serial interface. In this case, data 
have 16-bit resolution. The analogue signal is low-pass 
filtered and then converted to differential format. To obtain 
the number of channels desired the input and output blocks 
depicted in Fig. 4 are replicated 4 and 8 times respectively. 

IV. DETAILS OF THE MIXTURE ALGORITHM 

Evaluating the Arithmetic Block, it is possible to observe 
that a total of 256 products are necessary once considered the 
products between each input signal and the respective 32 
coefficients. Being so, it is crucial that this operation is 
optimized so that the processing time remains smaller than 
the ADCs’ sampling period. Therefore, dedicated multipliers 
where used to enhance the system’s performance. The 
received input signals are truncated to 18 bits. 
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Figure 4.  Input and output stages. 

A cyclic Finite State Machine (FSM) was created so that 
16 of the 20 dedicated multipliers available in the FPGA 
XC3S500e-4fg320 were used in each loop iteration. 16 
iterations are required to obtain the 256 products. To 
generate one output sample, 8 multiplications are necessary 
(each output is a combination of the 8 input signals). Being 
so, each iteration produces two output samples. A rounding 
algorithm and overflow detection are also done while 
generating each output signal. Overflow detection is crucial 
because, after the described products, an eight operand 
addition takes place increasing therefore the probability of 
overflow occurrence. The Arithmetic Block has all the data 
represented in two’s complement format. The dedicated 
multipliers as well as the analogue-to-digital converters 
require this format.  

After performing multiplications, the 36-bit results have 
their 17 less significant bits truncated. Afterwards the sign 
bit is expanded, producing 21-bit partial result. 

Fig. 5 represents the used rounding algorithm. This 
algorithm is applied after the addition operation is done. 
Considering that the data samples are, at this point, in two’s 
complement format and are 21 bits wide, to perform the 
rounding operation, it is necessary to check the most 
significant bit (with index 20). First, the two less significant 

bits are evaluated. If they are equal to either “00” or “01”, 
then no rounding is performed and these two bits are simply 
discarded. Otherwise, the two less significant bits are 
discarded and either “1” is added if the most significant bit is 
“0” or ‘1’ is subtracted if the most significant bit is “1”. The 
result of rounding is 19-bit wide. 

Input(1)=?

Input(20)=?
Output = Input(20..2)

Output = Input(20..2) + 1 Output = Input(20..2) - 1

0
1

0 1

 
Figure 5.  Rounding algorithm. 

After rounding, an overflow detection technique is 
necessary to confirm that no overflow has occurred. To 
allow for overflow detection, an extra step was taken into 
account in the arithmetic addition phase. The most 
significant bit was replicated so that we would have four 
signal bits in the most significant data bits. This way, it is 
guaranteed that the resulting most significant bit is intact 
after adding the eight inputs referenced to a certain output. 
Fig. 6 describes the implemented overflow detection. 

Input(18)=?

Input<“1111 

0000 0000 

0000 000”=?

Output = Input(15..0)
Output = “1000 0000 

0000 0000”

0 1

0 1

Input > “0000 

1111 1111 

1111 111”=?

Output = Input(15..0)
Output = “0111 1111 

1111 1111”

0 1

 
Figure 6.  Overflow detection algorithm. 

By evaluating the most significant bit (with index 18) it 
is determined if the data is bigger or smaller than zero. If the 
most significant bit is “0”, the word is compared to the 
greatest positive value possible, i.e., to “0000 1111 1111 
1111 111” in this example. If the most significant bit is “1” 
the data are compared with the greatest negative value 
possible, i.e., “1111 0000 0000 0000 000”. When an 
anomaly is detected (data bigger than the maximum values) 
the data is assigned to the respective maximum value. We 
have therefore, saturated overflow detection. 

As can be seen in Fig. 4, the ADC PCM1802 generates a 
clock signal that controls the data transfer considering that 
the ADC is configured in Master mode. Being the clock 
signal external to the FPGA (it is created by the ADC with 
resource to an external oscillator, and, in this case, has a 
frequency different from the 50MHz clock that controls the 
FPGA logic circuits), a First-In-First-Out (FIFO) stack was 
created. This FIFO is provided by Xilinx (Xilinx 
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LogiCORE™ IP) and has the particularity of having, if 
desired, different write and read clocks. This module is 
highly effective and hides possible synchronization concerns 
from the user. On the output stage, this issue is no longer a 
problem once the data transfer clock is generated by the 
FPGA. The digital-to-analogue converter works in Slave 
mode. 

Embedded in NEXYS-2 there is a module responsible for 
managing the USB communication between the connected 
device and the FPGA. Cypress CY7C68013 [16] is an 
integrated circuit that interprets the USB communication 
signals and converts them to a sort of parallel 
communication. If the respective communication circuit 
(interacting with the Cypress module) is correctly 
implemented in the FPGA, the signals generated by the 
Cypress module are well interpreted and data can be 
transferred from a computer equipped with USB2.0.  

A source file that allows using this communication was 
provided by Digilent Inc. (manufacturer of NEXYS-2) and 
adapted to this project. The adaptation consisted in storing 
the sent information in memory banks embedded in the 
FPGA. Previously, this information was stored in registers 
and there were only 16 register available. Considering that 
256 registers would be necessary to store the matrix 
coefficients, it would be a waste of resources. While 
processing each group of 8 input samples, the memory banks 
are accessed so that the latest 256 coefficients are used. 

V. EXPERIMENTS 

To evaluate the MIAUDIO’s behavior, several tests were 
made during and after the final implementation. With the aid 
of a logic analyzer it was possible to determine the time 
interval between the beginning of the ADCs’ sample transfer 
and the instant where the DACs receive the corresponding 
sample. This time interval can be seen in Fig. 7 and Table II, 
and corresponds to the FPGA processing time. It is equal to 
13�s as shown in Table III. Observing t2 and t3 duration, it is 
possible to verify that the sampling frequency is 96KHz. 
This matches the sampling frequency configured in the 
analogue-to-digital converters. 

 

Figure 7.  Test time diagram.  

TABLE II.  SIGNAL DESCRIPTION FOR FIG. 7 

Signal Description 
adc.lrck Designates the channel being sent by the ADC (0 – 

channel 1; 1 – channel 2) 

adc.synk Represents the ADC data transmission state (1 – sending; 

0 – stopped) 

dac.synk Represents the DAC data transmission state (1 – stopped; 

0 – sending) 

k.arth Signals the beginning of the Arithmetic block processing 

arth.b Represents the Arithmetic block state 

(0 – standby; 1 – active) 

k.out Signals the beginning of the Output block processing 

out.b Represents the Output block state 

(0 – standby; 1 – active) 

TABLE III.  TIME INTERVALS 

 Time Interval (µs) Description 

t1 13.085 Processing Time 

t2 10.4 Arithmetic Block Activations Time 

Interval 

t3 10.4 Output Block Activations Time 

Interval 

 
To measure the input/output delay, a 1KHz sinusoid was 

introduced at an input channel and forwarded to a certain 
output. Measuring the phase difference, a delay of 250µs was 
obtained. The input/output delay is even smaller than this 
value because the low-pass filter introduces a phase delay to 
the 1KHz sinusoid used to determine this value. This time 
interval corresponds to the processing time added to the 
conversion duration.  

The power consumption of the system was another 
measured parameter. It was detected a maximum of 600mA. 
This value was obtained with all outputs carrying a signal 
introduced in one of the input channels. Finally, a spectral 
analysis was done and the harmonic distortion and noise 
were measured. A 20KHz cut frequency was obtained. The 
total harmonic distortion plus noise (THD+N) is equal to 
0,09% (Vin=1,28V @1KHz). 

Evaluating the results of synthesis and implementation, it 
was verified that few resources are allocated to implement 
this project. Sixteen of the twenty embedded multipliers are 
used to generate two output samples at each cycle iteration 
on the Arithmetic Block’s FSM. This value can be reduced 
from 16 to 8 by simply generating one instead of two 
samples per cycle. The number of occupied slices of 
XC3S500e-4fg320 FPGA is 69% according to the results 
calculated by Xilinx ISE 11.3 where the algorithm was 
synthesized, and further implemented. The maximum 
supported clock frequency of the mixture circuit 
implemented in the FPGA is 51.4 MHz. 

VI. CONCLUSION 

MIAUDIO was successfully implemented (see Fig. 8-
10). A real-time multichannel diffusion system was created 
with a very compact and innovative architecture. A low-cost 
solution was achieved and the development time was 
relatively short.  

Since the digital audio mixture is made in hardware, the 
computer that defines the parameters of the matrix has most 
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of its resources free to engage in other possible tasks like 
producing effects over the audio signals, masterization, video 
synchronization, etc. This system is highly reconfigurable 
and new functionalities can easily be introduced without 
having to change the core of the system. The obtained results 
are quite good given that the input/output delay is extremely 
low and that the signal quality is assured.  

 

Figure 8.  Top-view photo of the implemented system MIAUDIO. 

 
Figure 9.  Side-view photo of the implemented system MIAUDIO. 

 
Figure 10.  Final system MIAUDIO in the box with all the required 

input/output connectors. 

One of the limiting aspects of MIAUDIO is the lack of 
efficient interface allowing a musician to interact with sound. 

Usually, artists recur to mixing consoles and manage the 
distribution of audio to as many channels as there are 
loudspeakers in such a way as each channel’s fader controls 
the gain of the speaker to which it is assigned allowing for 
moving sound in the hall in a straightforward way [2]. What 
is currently implemented in MIAUDIO is a simple console 
application (developed in C) which permits coefficients to be 
sent one by one to the FPGA over a USB connection. This 
kind of interface is sufficient to test the system’s 
performance but is unsuitable for musicians. Therefore, 
providing interface with either software which is used by 
musicians to create compositions or directly with some kind 
of intelligent controller is one of the directions of future 
work. Some examples of possible intelligent controllers are 
appointed in [2], such as a device which translates gestural 
actions of the composer into spatial location of sound or a 
strap-on handheld device equipped with 3-D accelerometers. 
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