
Reconfigurable Digital Audio Mixer for Electroacoustic Music

David Pedrosa Branco, Iouliia Skliarova, José Vieira

Department of Electronics, Telecommunications and Informatics, IEETA

University of Aveiro

Aveiro, Portugal

dpbranco@ua.pt, iouliia@ua.pt, jnvieira@ua.pt

Abstract—Sound diffusion techniques are currently widely

employed in the modern music allowing new composition styles

and sound movement scenarios to be developed. Multichannel

sound diffusion systems are built so as to provide the user with

an opportunity to independently control several input channels

through the desired output channels. The system MIAUDIO

described in the paper allows using up to 8 input channels that

can be mixed in real-time through 32 output speakers. The

core part of the system which performs the desired audio

mixture algorithm was implemented in a Spartan-3E Field

Programmable Gate Array (FPGA). The mixture parameters

are supplied by a host computer communicating with the

FPGA via USB port. The complete system was successfully

implemented and tested. The resulting solution has very low

cost and was developed in relatively short time.

Keywords-electronic music; audio mixture; multichannel

sound diffusion system; FPGA-based prototyping

I. INTRODUCTION

Multichannel sound diffusion is currently an essential
part of the electroacoustic music performance [1, 2]. Modern
electronic music composers need to be able to control large
arrays of audio loudspeakers distributed over a concert hall
(or a laboratory) allowing sound to be placed in any location
and with the desired intensity. Besides, recently new
applications for sound spatialization have been identified
such as virtual reality, multimedia computing, films, videos,
and computer games [3]. Different sound scenarios, such as
immersion and the possibility of movement of the sound
around the audience, are supported by multichannel sound
diffusion systems.

SARC [4] and BEAST [5] are some of the existing
multichannel sound diffusion systems. These systems use
several loudspeakers that are strategically positioned around
the audience. The most common disposition is known as the
Main Eight concept [6]. In this speaker distribution, the
listening room is divided in four sections: Main, Wide, Rear
and Distant. The section Main gives the frontal image while
the Wide is used to stretch that image. The section Rear is
positioned behind the audience allowing a 360° rotation of
the sound. Finally, Distant, gives the perception of what is
further than the main image.

Although there are exist several electroacoustic theaters,
such as SARC, BEAST and ICAST [1], they are out of reach
of musicians working in other countries (different to those

where the respective theaters are installed) [2]. In particular,
there is a strong group of musicians who work in the area of
electroacoustic music in the Department of Communication
and Art (DCA) in the University of Aveiro in Portugal. This
group suggested constructing a digital audio mixture matrix
in order to create a multichannel system that:

• would allow spatial movement of the sound;

• would be cheap;

• could be progressively expanded to include new
functionalities;

• could be installed in a laboratory in DCA and used
by the musicians.

As a result, a MIAUDIO system was developed from
scratch in 2009. The core part of the system is implemented
in a Field Programmable Gate Array (FPGA) of Spartan-3E
family of Xilinx. The system is reconfigurable and therefore
new functionalities can be introduced as well as system’s
parameters can easily be adjusted to new requirements.

The rest of this paper is organized as following. Section
II describes and analyzes the existing multichannel sound
diffusion systems and points out the main distinctions of
MIAUDIO. All the components of MIAUDIO are
characterized in Section III. The implementation details of
the sound mixture algorithm are explained in Section IV.
Section V reports the results of experiments. Conclusion is
given in section VI.

II. STATE OF THE ART

From all the electroacoustic theaters the most known are
SARC [4] and BEAST [5], which will be briefly described
below.

A. Sonic Arts Research Center

Sonic Arts Research Centre (SARC), located in Belfast,
is a sound diffusion system that features 112 loudspeakers
that reproduce the mixture of 24 audio input channels
through 48 different outputs [4]. The 112 loudspeakers are
strategically installed along four levels. This sound diffusion
system is controlled using three Digidesign 192 I/O audio
interfaces [7] that interact with a Pro Tools HD3 Accel
system. A personal computer, Apple PowerMac G5, runs the
software (Pro Tools [8]) and, using the information provided
by the Digidesign mixing surfaces, creates the mixture with
the audio signals involved.

2010 International Conference on Reconfigurable Computing

978-0-7695-4314-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ReConFig.2010.28

132

B. Brimingham ElectroAcoustic Theater

The Birmingham ElectroAcoustic Theater (BEAST) is
another multichannel sound diffusion system [5]. It was
created in the Birmingham University in 1982. This system
provides more than 100 speakers where each one can be
independently addressed. Similarly to the SARC system,
BEAST uses a digital multichannel sound interface that is
controlled via specially written applications using MIDI
faders with resource to a software known as SuperCollider
[9-10]. Using the software, the MIDI faders can be assigned
so that they control a single, a pair or a set of speakers. This
configuration offers good flexibility to this system.

C. Analisys of the Existing Systems

Both systems presented use software based solutions.
There is a software tool responsible for the mixture of the
audio signals that uses information provided by digital
mixture surfaces, or similar hardware. In this implementation
method, a fast and reliable operating system is necessary so
that real-time processing is guaranteed. The operating system
has a great amount of resources dedicated to the sound
system control leaving therefore little space to accomplish
other possible tasks.

The project described in this paper (MIAUDIO) has its
mixing algorithm implemented in hardware. An FPGA is
used to receive the audio signals and process them according
to parameters that are sent by software. Being so, the
software's responsibility is to send the information that
defines the audio mixture – a task much simpler and less
demanding than processing the mixture itself. This is one of
the advantages in MIAUDIO. In software based solutions
like in BEAST and SARC, the operating system that
produces the mixture has to be extremely reliable and
efficient but above all, has to have a great processing power.
In MIAUDIO, given the simplicity of the task assigned to the
operating system, there is space to introduce several new
functionalities as masterization, sound effects, etc.

By adopting a hardware solution implementation, new
functionalities can be added, in MIAUDIO, without
changing the core of the system. Changes can be made at a
higher level. It is possible to add software that interacts with
the module responsible for sending the mixture parameters
as well as to introduce additional hardware. The FPGA can
also be reconfigured to add new features without having to
change the rest of the hardware.

Another relevant fact in this project is related to its
development time and cost. The MIAUDIO was developed
in a relatively short amount of time (approximately 10
person/months) when compared to similar systems. The cost
of the components used to assemble the system is under 500
Euros (not including the loudspeakers). The cost of SARC
and BEAST is not disseminated but we suppose it is
significantly higher.

Different characteristics of the three systems (SARC,
BEAST and MIAUDIO) are summarized in Table I.

TABLE I. COMPARISON OF DIFFERENT SYSTEMS

 BEAST SARC MIAUDIO

support software SuperCollider Pro Tools to define

number of

speakers

~100 112 32

input/output type analog/analog analog/analog analog/analog

mixture in software in software in hardware

cost high high low

development time long long short

III. MIAUDIO – AUDIO MIXTURE DIGITAL MATRIX

A. System Description

MIAUDIO is a multichannel sound diffusion system
built around an FPGA of Spartan-3E family [11]. This
system has the ability of mixing up to 8 analog input
channels through 32 output channels. The analogue input
audio signals are conditioned, converted to digital format by
several analogue-to-digital converters (ADC) and then sent
to the FPGA that performs the mixing algorithm. The host
computer connects to the FPGA and is responsible for
sending the parameters that define the audio mixture, i.e.,
send the information that represents the intensity level of
each input channel on each output. This topology can be
interpreted as a matrix where each coefficient represents the
level of each audio input on each output channel.

Fig. 1 represents the system diagram. The host computer
sends the parameters that define the audio mixture while the
input channels, after the analogue-to-digital conversion, are
sent to the FPGA. The resulting output channels are then
converted to analogue format so that they can be reproduced.

Figure 1. MIAUDIO's system diagram.

133

B. Principal Logic Blocks

Fig. 2 represents a block diagram of the several modules
implemented in the FPGA. The Input block is in charge of
the communication with the analogue-to-digital converters.
After receiving a sample of each audio channel, this
information is sent to the Arithmetic block whose
responsibility is to generate the 32 output signals according
to the current mixture matrix. To obtain the parameters of the
matrix, this block communicates with the Memory Control
block that manages memory banks embedded in the FPGA
where that information is stored. Because the matrix is
controlled by a computer, the USB Communication block is
created to establish the USB interface between the FPGA
and the PC. After generating the 32 output samples, the
Arithmetic block sends this information to the Output block
that is responsible for properly sending these samples to the
digital-to-analogue converters.

Figure 2. Logic blocks implemented in the FPGA.

C. Mixture Algorithm

Each audio input can have a different volume in each
output channel. Being so, because there are 8 input channels
and 32 outputs, 256 coefficients are necessary to define the
audio mixture matrix. Each output can have information of
any of the input channels, therefore each channel is
multiplied by the coefficient that determines the weight of
that input on the respective output and afterwards the 8
products associated with the same output are added.

Fig. 3 represents the relation between the inputs,
coefficients and outputs. As mentioned before, there are 256
coefficients that define the audio mixture matrix. Eight input
signals are introduced in the system and 32 outputs are
generated, being possible that each one of them is different
combination of the input audio signals.

D. Hardware Components

The system is built around an FPGA of Spartan-3E
family [11]. To use this FPGA, the board NEXYS-2 [12]
from Digilent was chosen as the design platform. This board
has numerous interfaces around the FPGA such as a USB
module and several expansion ports that are directly
connected to the FPGA. Considering that the analogue input
signals are processed digitally, it is necessary to use
analogue-to-digital converters as well as digital-to-analogue
converters (DAC). The converters selected for this project
were PCM1802 ADC [13] and DAC8534 DAC [14], both

designed by Burr-Brown Products. Additional hardware is
also required to condition the signals to the system.

Figure 3. Mixture algorithm implemented in the FPGA.

Fig. 4 represents the input and output stages, for two and
four channels, respectively, of the system and their
interconnections with the FPGA. The input signal is
delivered through XLR [15] cables and introduced into input
buffers that convert the signal from the differential format to
single-ended format. Then a second order antialiasing filter,
implemented with resource to operational amplifiers, is used.
The analogue-to-digital conversion is performed and then the
resulting information is sent to the FPGA. The input signal is
converted with a 24-bit resolution and it is sent by the
analogue-to-digital conversion through a serial interface.
This transfer is controlled by the ADC.

On the output stage, a similar but symmetric process
occurs. The digital information is sent by the FPGA towards
the DAC, also through a serial interface. In this case, data
have 16-bit resolution. The analogue signal is low-pass
filtered and then converted to differential format. To obtain
the number of channels desired the input and output blocks
depicted in Fig. 4 are replicated 4 and 8 times respectively.

IV. DETAILS OF THE MIXTURE ALGORITHM

Evaluating the Arithmetic Block, it is possible to observe
that a total of 256 products are necessary once considered the
products between each input signal and the respective 32
coefficients. Being so, it is crucial that this operation is
optimized so that the processing time remains smaller than
the ADCs’ sampling period. Therefore, dedicated multipliers
where used to enhance the system’s performance. The
received input signals are truncated to 18 bits.

134

Figure 4. Input and output stages.

A cyclic Finite State Machine (FSM) was created so that
16 of the 20 dedicated multipliers available in the FPGA
XC3S500e-4fg320 were used in each loop iteration. 16
iterations are required to obtain the 256 products. To
generate one output sample, 8 multiplications are necessary
(each output is a combination of the 8 input signals). Being
so, each iteration produces two output samples. A rounding
algorithm and overflow detection are also done while
generating each output signal. Overflow detection is crucial
because, after the described products, an eight operand
addition takes place increasing therefore the probability of
overflow occurrence. The Arithmetic Block has all the data
represented in two’s complement format. The dedicated
multipliers as well as the analogue-to-digital converters
require this format.

After performing multiplications, the 36-bit results have
their 17 less significant bits truncated. Afterwards the sign
bit is expanded, producing 21-bit partial result.

Fig. 5 represents the used rounding algorithm. This
algorithm is applied after the addition operation is done.
Considering that the data samples are, at this point, in two’s
complement format and are 21 bits wide, to perform the
rounding operation, it is necessary to check the most
significant bit (with index 20). First, the two less significant

bits are evaluated. If they are equal to either “00” or “01”,
then no rounding is performed and these two bits are simply
discarded. Otherwise, the two less significant bits are
discarded and either “1” is added if the most significant bit is
“0” or ‘1’ is subtracted if the most significant bit is “1”. The
result of rounding is 19-bit wide.

Input(1)=?

Input(20)=?
Output = Input(20..2)

Output = Input(20..2) + 1 Output = Input(20..2) - 1

0
1

0 1

Figure 5. Rounding algorithm.

After rounding, an overflow detection technique is
necessary to confirm that no overflow has occurred. To
allow for overflow detection, an extra step was taken into
account in the arithmetic addition phase. The most
significant bit was replicated so that we would have four
signal bits in the most significant data bits. This way, it is
guaranteed that the resulting most significant bit is intact
after adding the eight inputs referenced to a certain output.
Fig. 6 describes the implemented overflow detection.

Input(18)=?

Input<“1111

0000 0000

0000 000”=?

Output = Input(15..0)
Output = “1000 0000

0000 0000”

0 1

0 1

Input > “0000

1111 1111

1111 111”=?

Output = Input(15..0)
Output = “0111 1111

1111 1111”

0 1

Figure 6. Overflow detection algorithm.

By evaluating the most significant bit (with index 18) it
is determined if the data is bigger or smaller than zero. If the
most significant bit is “0”, the word is compared to the
greatest positive value possible, i.e., to “0000 1111 1111
1111 111” in this example. If the most significant bit is “1”
the data are compared with the greatest negative value
possible, i.e., “1111 0000 0000 0000 000”. When an
anomaly is detected (data bigger than the maximum values)
the data is assigned to the respective maximum value. We
have therefore, saturated overflow detection.

As can be seen in Fig. 4, the ADC PCM1802 generates a
clock signal that controls the data transfer considering that
the ADC is configured in Master mode. Being the clock
signal external to the FPGA (it is created by the ADC with
resource to an external oscillator, and, in this case, has a
frequency different from the 50MHz clock that controls the
FPGA logic circuits), a First-In-First-Out (FIFO) stack was
created. This FIFO is provided by Xilinx (Xilinx

135

LogiCORE™ IP) and has the particularity of having, if
desired, different write and read clocks. This module is
highly effective and hides possible synchronization concerns
from the user. On the output stage, this issue is no longer a
problem once the data transfer clock is generated by the
FPGA. The digital-to-analogue converter works in Slave
mode.

Embedded in NEXYS-2 there is a module responsible for
managing the USB communication between the connected
device and the FPGA. Cypress CY7C68013 [16] is an
integrated circuit that interprets the USB communication
signals and converts them to a sort of parallel
communication. If the respective communication circuit
(interacting with the Cypress module) is correctly
implemented in the FPGA, the signals generated by the
Cypress module are well interpreted and data can be
transferred from a computer equipped with USB2.0.

A source file that allows using this communication was
provided by Digilent Inc. (manufacturer of NEXYS-2) and
adapted to this project. The adaptation consisted in storing
the sent information in memory banks embedded in the
FPGA. Previously, this information was stored in registers
and there were only 16 register available. Considering that
256 registers would be necessary to store the matrix
coefficients, it would be a waste of resources. While
processing each group of 8 input samples, the memory banks
are accessed so that the latest 256 coefficients are used.

V. EXPERIMENTS

To evaluate the MIAUDIO’s behavior, several tests were
made during and after the final implementation. With the aid
of a logic analyzer it was possible to determine the time
interval between the beginning of the ADCs’ sample transfer
and the instant where the DACs receive the corresponding
sample. This time interval can be seen in Fig. 7 and Table II,
and corresponds to the FPGA processing time. It is equal to
13�s as shown in Table III. Observing t2 and t3 duration, it is
possible to verify that the sampling frequency is 96KHz.
This matches the sampling frequency configured in the
analogue-to-digital converters.

Figure 7. Test time diagram.

TABLE II. SIGNAL DESCRIPTION FOR FIG. 7

Signal Description
adc.lrck Designates the channel being sent by the ADC (0 –

channel 1; 1 – channel 2)

adc.synk Represents the ADC data transmission state (1 – sending;

0 – stopped)

dac.synk Represents the DAC data transmission state (1 – stopped;

0 – sending)

k.arth Signals the beginning of the Arithmetic block processing

arth.b Represents the Arithmetic block state

(0 – standby; 1 – active)

k.out Signals the beginning of the Output block processing

out.b Represents the Output block state

(0 – standby; 1 – active)

TABLE III. TIME INTERVALS

 Time Interval (µs) Description

t1 13.085 Processing Time

t2 10.4 Arithmetic Block Activations Time

Interval

t3 10.4 Output Block Activations Time

Interval

To measure the input/output delay, a 1KHz sinusoid was

introduced at an input channel and forwarded to a certain
output. Measuring the phase difference, a delay of 250µs was
obtained. The input/output delay is even smaller than this
value because the low-pass filter introduces a phase delay to
the 1KHz sinusoid used to determine this value. This time
interval corresponds to the processing time added to the
conversion duration.

The power consumption of the system was another
measured parameter. It was detected a maximum of 600mA.
This value was obtained with all outputs carrying a signal
introduced in one of the input channels. Finally, a spectral
analysis was done and the harmonic distortion and noise
were measured. A 20KHz cut frequency was obtained. The
total harmonic distortion plus noise (THD+N) is equal to
0,09% (Vin=1,28V @1KHz).

Evaluating the results of synthesis and implementation, it
was verified that few resources are allocated to implement
this project. Sixteen of the twenty embedded multipliers are
used to generate two output samples at each cycle iteration
on the Arithmetic Block’s FSM. This value can be reduced
from 16 to 8 by simply generating one instead of two
samples per cycle. The number of occupied slices of
XC3S500e-4fg320 FPGA is 69% according to the results
calculated by Xilinx ISE 11.3 where the algorithm was
synthesized, and further implemented. The maximum
supported clock frequency of the mixture circuit
implemented in the FPGA is 51.4 MHz.

VI. CONCLUSION

MIAUDIO was successfully implemented (see Fig. 8-
10). A real-time multichannel diffusion system was created
with a very compact and innovative architecture. A low-cost
solution was achieved and the development time was
relatively short.

Since the digital audio mixture is made in hardware, the
computer that defines the parameters of the matrix has most

136

of its resources free to engage in other possible tasks like
producing effects over the audio signals, masterization, video
synchronization, etc. This system is highly reconfigurable
and new functionalities can easily be introduced without
having to change the core of the system. The obtained results
are quite good given that the input/output delay is extremely
low and that the signal quality is assured.

Figure 8. Top-view photo of the implemented system MIAUDIO.

Figure 9. Side-view photo of the implemented system MIAUDIO.

Figure 10. Final system MIAUDIO in the box with all the required

input/output connectors.

One of the limiting aspects of MIAUDIO is the lack of
efficient interface allowing a musician to interact with sound.

Usually, artists recur to mixing consoles and manage the
distribution of audio to as many channels as there are
loudspeakers in such a way as each channel’s fader controls
the gain of the speaker to which it is assigned allowing for
moving sound in the hall in a straightforward way [2]. What
is currently implemented in MIAUDIO is a simple console
application (developed in C) which permits coefficients to be
sent one by one to the FPGA over a USB connection. This
kind of interface is sufficient to test the system’s
performance but is unsuitable for musicians. Therefore,
providing interface with either software which is used by
musicians to create compositions or directly with some kind
of intelligent controller is one of the directions of future
work. Some examples of possible intelligent controllers are
appointed in [2], such as a device which translates gestural
actions of the composer into spatial location of sound or a
strap-on handheld device equipped with 3-D accelerometers.

REFERENCES

[1] S.D. Beck, “The Immersive Computer-controlled Audio Sound

Theater: History and current trends in multi-modal sound diffusion”,
36th Int. Conf. and Exhibition on Computer Graphics and Interactive
Techniques - SIGGRAPH 2009, New Orleans, Louisiana, August 3–
7, 2009.

[2] C. Leider, “Multichannel Audio in Electroacoustic Music: an
Aesthetic and Technical Research Agenda”, IEEE International
Conference on Multimedia and Expo - ICME’2007, Beijing, China,
July 2-5, 2007.

[3] D.G.Malham and A. Myatt, “3-D Sound Spatialization using
Ambisonic Techniques”, Computer Music Journal, 19:4, 1995, pp.
58-70.

[4] Sonic Arts Research Center, Queen’s University, Belfast,
http://143.117.78.181/main.php?page=soniclab.

[5] BEAST and the Electroacoustic Music Studios, University of
Birmingham, http://www.beast.bham.ac.uk/.

[6] J. Harrison, “Diffusion: theories and practices, with particular
reference to the BEAST system”,
http://cec.concordia.ca/econtact/Diffusion/Beast.htm.

[7] Avid Technology, Digidesign, 192 I/O,��
http://www.digidesign.com/index.cfm?itemid=4892.

[8] Avid Technology, the Pro Tools Family,
http://www.digidesign.com/index.cfm?navid=349&langid=100&item
id=33116.

[9] The SuperCollider FAQ, http://www.audiosynth.com/scfaq.html.

[10] J. McCartney, “SuperCollider: a new Real Time Synthesis
Language”, International Computer Music Conference - ICMC’96,
pp. 257-258 Hong Kong, 1996.

[11] Xilinx, Spartan-3E FPGA Family: Complete Data Sheet,
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf.

[12] Digilent, Digilent Nexys-2 Board Reference Manual,
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf.

[13] Burr-Brown, PCM1802, Single-Ended Analog-Input 24-Bit, 96-KHz
Stereo A/D Converter,
http://focus.ti.com/lit/ds/symlink/pcm1802.pdf.

[14] Burr-Brown, DAC8534, Quad Channel, Low Power, 16-Bit, Serial
Input, D/A Converter, http://focus.ti.com/lit/ds/symlink/dac8534.pdf.

[15] XLR cables, http://www.rane.com/par-c.html#xlr.

[16] Digilent, Digilent USB 2 Module Reference Manual,
http://www.digilentinc.com/Data/Products/USB2/USB2_rm.pdf.

137

