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This paper presents design of electronically reconfigurable fractional-order filter that is able to be 

configured to operate as fractional-order low-pass filter (FLPF) or fractional-order high-pass filter 

(FHPF). Its slope of attenuation between pass band and stop band, i.e. order of the filter, is 

electronically adjustable in range between 1 and 2. Also pole frequency can be electronically 

controlled independently with respect to other tuned parameters. Moreover, particular type of 

approximation can be also controlled electronically. This feature set is available both for FLPF and 

FHPF type of response. Presented structure of the filter is based on well-known follow-the-leader 

feedback (FLF) topology adjusted in our case for utilization with just simple active elements 

operational transconductance amplifiers (OTAs) and adjustable current amplifiers (ACAs), both 

providing possibility to control its key parameter electronically. Paper explains how reconfigurable 

3rd-order FLF topology is used in order to approximate both FLPF and FHPF in concerned frequency 

band of interest. Design is supported by PSpice simulations for three particular values of order of the 

filter (1.25, 1.5, 1.75), for several values of pole frequency and for two particular types of 

approximation forming the shape of both the magnitude and phase response. Moreover, theoretical 

presumptions are successfully confirmed by laboratory measurements with prepared prototype based 

on behavioral modeling.  

Keywords: adjustable current amplifier; approximation; ACA; fractional-order filter; fractional-order 

high-pass filter; fractional-order low-pass filter; FLF; follow-the-leader feedback; fractional order; 

operational transconductance amplifier; OTA; reconfigurable filter. 

1.   Introduction 

Each analog circuit needs passive elements (resistors, capacitors, inductors in most cases). 

These passive elements are used for further synthesis together with active elements to 

create linear (integrators, amplifiers, …) and nonlinear (comparators, shapers, switches, 
…) functional blocks. Finally, these blocks create simple or complex applications (filters, 
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oscillators, generators, modulators, mixers, …) that are implemented in complex mixed 
(analog and digital) systems (transceivers, systems for sensor processing, measuring 

devices, systems for communication, etc.). Common approaches in synthesis and design of 

linear circuits suppose integer order of the used passive reactive components and integer 

order of resulting functional block (and application). This fact results from character of 

commonly available (on the market) passive elements. Integer-order passive elements are 

currently easily producible because of technological aspects. 

 However, in some cases, also fractional-order systems1-3 are important due to their 

ability to describe real-world processes and phenomena. Many systems in nature have 

rather fractional character and nonlinear behavior that differs from their common linear 

and integer-order approximations used for better understanding and simpler modeling. 

Typical examples can be found in many analog systems for signal processing (filters, 

amplifiers, controllers, immittance circuits, etc.). For instance, we can mention modeling 

of impedance4 of biological tissue5 that is typical example of fractional-order behavior. The 

impedance characteristic of this biological matter can be modeled by fractional-order 

model where fractional-order passive elements are required.  

 There are two possibilities how to synthetize the fractional-order immittance 

elements. We can use standard synthesis when passive elements (capacitors in many cases) 

are directly replaced by elements with fractional character. There are several methods how 

to construct these elements6-8 (RC ladder structures and chains in the most cases). They are 

referred to as approximants because resulting two-terminal device provides only 

approximation of requested frequency characteristic (immittance) in limited frequency 

band and with certain phase ripple. These features depend on selected approximation, 

usually having polynomial character. There are even attempts to use only appropriate 

locations of zeros and poles of the immittance or transfer function (in case of two-port 

system) instead of any mathematical approximation (implemented in Mathcad9). These 

locations of poles and zeros frequencies can be also achieved quite simply by PSpice 

Optimizer tool for example10-12. 

The second method supposes synthesis of special replacement of fractional-order 

passive element (fractional-order capacitor in most cases) that is applied in original 

structure of the designed fractional-order systems. However, increased circuit complexity, 

power consumption, influences of real parasitic features of used active elements necessary 

for these solutions are substantial in many cases. Typical examples of this method are given 

in13,14. Note that fractional behavior of the two terminal system can be obtained as output 

response of the active filter of high-integer-order with appropriate setting of values of 

transfer coefficients (so-called continuous fraction expansion) supplemented with simple 

conversion of output signal into the input node14-16. Accuracy of the immittance is given 

by mathematical approximation used in such filter17,18 and by coefficients and order of the 

filter19,20. We can also use direct synthesis of the “active” immittance from required 
locations of zeros and poles21. This method is not using special polynomial mathematical 

approximations noted above. Required bandwidth of resulting approximant and 

corresponding phase ripple determines locations and number of these roots directly. This 
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method leads to chains of many sub-block (so-called bilinear sections/immittances with 

independently adjustable poles and zeros21). Bilinear two-ports (building blocks, e.g. 

integrator) also exists11,22. The required phase ripple and bandwidth of validity of 

approximation determine the minimal number of necessary sections. 

Note that real fractional-order devices (two-terminal systems) are developed and 

studied also as solid-state devices based on some chemical/technological mixtures, see for 

example to Ref. 23 - 25. There are also the very first attempts to prepare passive element 

having fractional-order features on chip26, however inventors are contending several issues 

and presented implementation has several drawbacks. 

Usefulness of the fractional-order filters lays in possibility to set theoretically arbitrary 

slope of its magnitude response and also theoretically arbitrary maximal phase shift. 

Classic integer-order filters have steepness between pass and stop band given by 20·n 

dB/dec where n is nonzero integer value (90°·n for maximal phase shift in phase response) 

and depends significantly on number of independent accumulation elements (capacitor, 

inductors) present in the filtering structure. Fractional-order circuits (basic two-terminals 

and two ports, i.e. immittances, integrators, differentiators) generally have arbitrary slope 

of magnitude response (20·a dB/dec) and maximal phase shift (90°·a)11, where a > 0 and 

a is real number. However, this approach is not common because of its impracticality. 

General frequency response of the fractional-order filter is therefore frequently described 

by magnitude slope 20·(n+a) dB/dec and phase shift 90°·(n+a) as combination of integer 

and fractional part/contribution in filters with order higher than 1 (n ≥ 1 and 0 < a < 1). 

Note that a is also very often referred to as α. 

As already discussed, except investigation of solutions of fractional-order replacements 

(approximants) of “passive” elements (typical examples of single-purpose filters are given 

in Ref. 13, Ref. 27-30), there are also methods how to design directly two-port systems 

(filters in many cases17,18 for example) without fractional-order passive elements or their 

active replacements31-35. Some of these works relevant for purposes of this paper are 

summarized in the following Table 1. Almost all of these circuits are designed for operation 

in low-frequency bands (up to units or tens of kHz). Except solutions presented in Ref. 34, 

key features, like reconfigurability of the transfer function, control of pole frequency as 

well as control of the order of the filter are not present in frame of one designed structure, 

and these solutions are not providing this mutually independent and electronical type of 

control at the same time.  

This work focuses on the design of fractional-order filter without fractional-order 

passive elements or their active replacements. Filter provides electronical reconfigurability 

between fractional-order low-pass filter (FLPF) and fractional-order high-pass filter 

(FHPF). Pole frequency and also order of the filter are electronically controlled by 

parameters and coefficients of the filter in both configurations (FLPF and FHPF). 

Moreover, type of the fractional-order approximation can be also controlled electronically, 

because all relevant parameters of integer-order transfer function can be controlled 

electronically. Design is supported not only by simulations, but also by experimental 



4     J. Jerabek, et al. 

 

laboratory measurements. Our secondary goal was also to compare two particular and most 

frequently used types of fractional-order approximations as described below. 

The text is organized as follows. After introductory part explaining our motivation and 

providing state of the art, brief overview about relevant active elements is given. Next 

chapter focuses on details about two common approximations and the design of the FLF 

topology suitable for fulfilling requirements on electronically controllable and 

reconfigurable fractional-order filter that is presented together with numerical design in 

chapter 4. Chapter 5 includes comparison of simulation and measurement results for 

several scenarios. This chapter gives very complex overview of behavior of the filter under 

particular circumstances. The last chapter summarizes the most significant findings of this 

paper. 

2.   Active Elements 

The designed filter, presented in the following chapter contains two basic types of 

controllable active elements. First one is well-known Operational Transconductance 

Amplifier (OTA)36 with current outputs (Fig. 1). Second one is the single-input Adjustable 

Current Amplifier37 (with adjustable current gain) also with several current outputs (Fig. 

2).  

OTA

+

_

i+

v+

v–
i–

iOUT+

vOUT+
gm iOUT-

vOUT-

 

Fig. 1.  Operational Transconductance Amplifier (OTA) schematic symbol (dual-output 
version). 

 

Standard operation of OTA in dual-output configuration as shown in Fig. 1 is described 

by these straightforward equations:  

 .)(   vvgii mOUTOUT
 (1) 

Note that transconductance parameter (gm) is usually controlled by external DC current and 

therefore OTA can be considered as simple electronically controllable active element.  

Normal operation of ACA is also very simple 

 .INOUTOUT iBii    (2) 

Current gain (B) is also usually controlled externally, in many cases by DC voltage 

(referred to as VSET_B in the following Fig. 2). 
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B

ACA
iIN

iOUT+

iOUT-
vIN

vOUT+

vOUT-

VSET_B

 

Fig. 2.  Adjustable Current Amplifier (ACA) schematic symbol (dual-output version). 

Note that for current gain fixed to 1 or −1, this element is frequently referred to as 
Current Follower (CF) in case of having single output. If there are two current outputs, 
element is known as Dual-Output CF (DO-CF)37, usually with two opposite polarities of 
output currents having same magnitude value. Description of the DO-CF element is because 
of its simplicity omitted in this paper. However, it should be noted that two DO-CF-s are 
required in the design of the reconfigurable fractional-order filter. 

 

3.   Proposal of the reconfigurable fractional-order filter 

This chapter describes design procedure of the reconfigurable fractional-order filter. First 

subsection is about design of FLPF, second about FHPF and third part is about its linking 

into one reconfigurable solution.  

3.1.   Butterworth approximation of the fractional-order low-pass filter 

Design procedure of the fractional-order low-pass filter (FLPF) having order of (1 + a) was 

precisely described in Ref. 19 and also Ref. 17. Starting transfer function is in the following 

form: 

 .)(
23

1

1
1

KK

K
K

aa

LP

a 
 

ss
s  (3) 

where from Ref. 17: 

 

.3324.0161.0068.1
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aaK

aK

K

 (4) 

Coefficients KX, where X = 1, 2, 3 influence directly the shape of the obtained transfer 

characteristic. Note that the values of KX are dependent on the parameter a, i.e. on the order 

of the filter. Second-order approximation of sa term from eq. 3 is given by:  

 

01

2

2

21

2

0

aaa

aaaa
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s . (5) 
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There are several ways how to approximate coefficients a0, a1 and a2 from eq. 5 and two 

of them are going to be compared within this paper. First set of coefficients can be 

calculated as follows32: 

 

.)1(2
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aa
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 (6) 

Second approximation19 is defined by 

 

.23

,28

,23

2

2

2

1

2

0







aaa

aa

aaa

 (7) 

Note that these approximations are going to be referred to as 1st and 2nd approximation in 

the rest of the text.  

The following standard 3rd-order transfer function will be used to emulate FLPF with 

Butterworth approximation of order (1 + a) [17]:  

 .)(
012

23

012

2

0

1
1

bbb

aaa

a

K
K

LP

a 



sss

ss
s  (8) 

Formulas for aX coefficients are shown above (two possible approximations), bX 

coefficients (where X = 0, 1, 2) are taken from Ref. 19: 

 
 

.

,

,

0

22301
2

0

2321
1

0

3220
0

a

KaKaa
b

a

aKKa
b

a

KaKa
b










 (9) 

Again, it is worth mentioning that these coefficients are all dependent on parameter a. One 

of possible ways how to implement 3rd-order transfer function is to use follow the leader 

(FLF) filtering topology. Fig. 3 shows the possible block diagram48, consisting in our case 

of three inverting integrators, three feedback loops and three forward signal paths. Note 

that this topology is going to be used for the filter design below. General transfer function 

of this topology can be derived directly from Fig. 3 and it is 
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3s
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Fig. 3.  Block diagram of a FLF (follow-the-leader feedback) topology48 used for 
approximation of the FLPF (fractional-order low-pass filter) of (1 + a) order. 

 

Set of equations how to obtain τX and GX (when X = 1, 2, 3) in eq. 10 from aX and bX 
coefficients (where X = 1, 2, 3) are obvious when comparing eq. 10 and eq. 8.  

3.2.   Butterworth approximation of the fractional-order high-pass filter 

Similarly to FLPF, design procedure of the fractional-order high-pass filter (FHPF) having 

order of (1 + a) was also precisely described in Ref. 17. Starting transfer function is in the 

following form:  
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s , (11) 

where coefficients KX, (X = 1, 2, 3), are defined exactly the same way as in case of FLPF, 

i.e. by eq. 4. Similarly, eqs. 5 to 7 also apply for FHPF design procedure.   

Based on this, the following standard 3rd-order transfer function will be used to emulate 

FHPF with Butterworth approximation of order (1 + a)17:  
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Formulas for aX coefficients are shown above in two possible approximations (eq. 6, eq. 

7), bX coefficients are equal to eq. 9 shown above. 
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In this particular case, 3rd-order transfer function based of FLF type of topology can be 

also used. Fig. 4 shows the particular block diagram49, consisting of inverting integrators, 

supplemented by three feedback loops and three forward signal paths. Transfer function of 

this general topology is 
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Similarly to FLPF, equations how to obtain τX and GX from aX and bX coefficients are 

obvious when comparing eq. 13 and eq. 12.  

+

IIN

1

1s

+1

-1

-1

+G2

-G3
IOUT_HP

+1 +1 -1
-

1

2s
- 1

3s
-

-G1

 

Fig. 4.  Block diagram of a 3rd-order FLF (follow-the-leader feedback) topology49 used for 
approximation of the FHPF (fractional-order high-pass filter) of (1 + a) order. 

3.3.   Linking of FLPF and FHPF topology into one structure 

When we compare Fig. 3 and Fig. 4, it is clear that these topologies are very similar. 

Therefore, these topologies could be linked together and actually made by one general FLF 

structure with just two additional switches referred to as “LP” and “HP” in the following 
Fig. 5 showing final form of the block diagram of designed reconfigurable fractional-order 

filter. These switches could be implemented easily by additional transistor-level structures 

or additional ACA active elements providing zero or unity gain in particular forward 

branch of this current-mode circuit.  
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Fig. 5.  Generalized block diagram of a 3rd-order FLF (follow-the-leader feedback) 
topology used for approximation of both the FLPF and FHPF of (1 + a) order. 

 

Designed reconfigurable filter with active elements introduced in chapter 2 and based on 

generalized FLF block topology (Fig. 5) is shown in Fig. 6. It is obvious that there are three 

OTA amplifiers with gm1, gm2 and gm3 controllable parameters, three ACA elements having 

B1, B2 and B3 gains and two supplementary DO-CF-s. One of them is near input of the 

filter, the second one is not shown directly in Fig. 6. However, it forms part of DO-ACA1, 

because this element is actually built by ACA and DO-CF element as will be described 

below. There are also three capacitors, in each case at the input high-impedance terminal 

of OTA element, in order to form inverting lossless integrator as shown in generalized 

block structure (Fig. 5).   
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Fig. 6.  Particular solution of reconfigurable 3rd-order FLF (follow-the-leader feedback) 
topology used for approximation of both the FLPF and FHPF of (1 + a) order. Currently 
in HP response configuration shown as an example. 

 

Generally, transfer function of filter from Fig. 6 is: 
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Denominator of this transfer function is equal to: 
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If “LP” switch is “on” and “HP” switch is “off”, FLPF response is configured from the 
general filtering structure and nominator is as follows:  
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If “LP” switch is “off” and “HP” switch is “on”, FHPF response is configured and 

nominator is in the following form:  
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It is obvious that both eq. 16 and eq. 17 together with eq. 15 represent inverting form of 

the transfer function and reconfiguration of the type of transfer function is available by 

control of “LP” and “HP” switches. Particular meaning of quantities or variables used in 

eqs. 15, 16 and 17 is obvious from Fig. 6. As already mentioned, several parameters can 

be controlled electronically (all values except values of C1, C2 and C3), which is beneficial 

feature for future change of the filter order and also the control of the pole frequency. This 

is going to be demonstrated in the following sections. 

4.   Numerical design of the reconfigurable filter 

4.1.   FLPF mode of reconfigurable filter 

In order to verify the design, values of all components have been calculated based on eqs. 

3 to 10 and eqs. 14 to 16. Chosen parameters of the filter are: starting pole frequencies 

determining the pass-band: f0_LP = ω0/2π = 100 kHz, values of capacitors: C1 = 1.8 nF, C2 

= 470 pF and C3 = 18 nF. The rest of the parameters is dependent on chosen type of 

approximation of sa term, i.e. eqs. 6 and 7. Calculated values for 1st / 2nd approximation are 

summarized in Table 2. 
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4.2.   FHPF mode of reconfigurable filter 

Based on eqs. 11, 4 to 7, 9 and eqs. 13 to 15 and 17, and similarly to the FLPF design 

described in the previous chapter, values of all components have been calculated. Chosen 

parameters of the filter are exactly the same as in case of FLPF: starting pole frequencies 

determining the pass-band: f0_LP = ω0/2π = 100 kHz, values of capacitors: C1 = 1.8 nF, C2 

= 470 pF and C3 = 18 nF. This allows reconfiguration of the filter between FLPF and FHPF. 

The rest of the parameters is again dependent on chosen type of approximation of sa term, 

i.e. eqs. 6 and 7. Calculated values for 1st / 2nd approximation are summarized in Table 3. 

When we compare values from Table 2 and Table 3, it is obvious that only electronically 

controlled parameters have to be changed during tuning of order of the filter or type of the 

approximation. Of course, the choice of transfer function type is done by switches “LP” 
and “HP”, as already mentioned.  

 

Table 2.  Numerical values of relevant parameters of the filter in FLPF configuration for 

f0_LP  = 100 kHz. Both 1st and 2nd approximation (1st/2nd value if applicable). 

 Order of the filter 

Particular parameter 1.25 1.5 1.75 

C1 [nF] 1.8 1.8 1.8 

C2 [pF] 470 470 470 

C3 [nF] 18 18 18 

R1 = 1/gm1 [Ω] 306 / 245 347 / 310 360 / 348 

R2 = 1/gm2 [Ω] 673 / 406 408 / 207 182 / 76 

R3 = 1/gm3 [Ω] 254 / 348 226 / 291 217 / 256 

B1 [-] 0.208 / 0.129 0.131 / 0.075 0.058 / 0.026 

B2 [-] 0.654 / 0.719 0.572 / 0.610 0.476 / 0.492 

B3 [-] 0.953 / 1.009 0.921 / 1.005 0.923 / 0.999 

Table 3.  Numerical values of relevant parameters of the filter in FHPF configuration for 

f0_LP  = 100 kHz. Both 1st and 2nd approximation (1st/2nd value if applicable). 

 Order of the filter 

Particular parameter 1.25 1.5 1.75 

C1 [nF] 1.8 

C2 [pF] 470 

C3 [nF] 18 

R1 = 1/gm1 [Ω] 307 / 225 347 / 268 360 / 305 

R2 = 1/gm2 [Ω] 2432 / 2605 2283 / 2363 1894 / 1904 

R3 = 1/gm3 [Ω] 255 / 319 225 / 252 217 / 225 

B1 [-] 0.686 / 0.712 0.621 / 0.607 0.516 / 0.493 

B2 [-] 0.218 / 0.128 0.142 / 0.070 0.063 / 0.026 
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4.1.   Frequency tuning of the filter 

The proposed fractional-order filter provides pole frequency control by simultaneous 

change of values of transconductances without disturbing quality factor and order of the 

filter. Chosen parameters of the capacitors and current gains are the same in case FLPF and 

FHPF, respectively. Order of the filter was 1.5 in each of these cases. Values of capacitors 

are exactly the same as in the previous case: C1 = 1.8 nF, C2 = 470 pF and C3 = 18 nF. 

Calculated values of the resistors representing 1/gm-s of the FLPF for three selected values 

of the pole frequency are summarized in Table 4. Table 5 summarizes numerical values of 

the 1/gm-s for FHPF in case of the same set of pole frequencies. Note that in these tables 

are stated values of 1/gm-s for 1st / 2nd approximation. 

 

Table 4.  Numerical values of relevant parameters of the filter in FLPF configuration for constant order 

of the filter 1.5. Both 1st and 2nd approximation (1st/2nd value). 

 Pole frequency [kHz] 

Particular parameter 33 100 300 

R1 = 1/gm1 [Ω] 1041 / 931 347 / 310 116 / 103 

R2 = 1/gm2 [Ω] 1224 / 620 408 / 207 136 / 69 

R3 = 1/gm3 [Ω] 678 / 875 226 / 291 75 / 97 

 

Table 5.  Numerical values of relevant parameters of the filter in FHPF configuration for constant 

order of the filter 1.5. (1st/2nd approximation). 

 Pole frequency [kHz] 

Particular parameter 33 100 300 

R1 = 1/gm1 [Ω] 1041 / 813 347 / 268 116 / 89 

R2 = 1/gm2 [Ω] 6849 / 7161 2283 / 2363 761 / 788 

R3 = 1/gm3 [Ω] 675 / 764 225 / 252 75 / 84 

 

5.   Simulation and experimental results 

To verify the correct function of the proposed fractional-order topology from Fig. 6, the 

PSpice simulations and also experimental measurement are performed and mutually 

compared. The PSpice simulations of the filter were performed using behavioral simulation 

models of the OTA, MOTA, DO‒CF and ACA elements which are mentioned in Chapter 

2. For experimental measurement, the filter was implemented in PCB (Printed Circuit 

Board) form corresponding with the behavioral model in PSpice simulator. The OTA and 

MOTA elements were replaced by UCC_N1B_052047 chips with discrete external resistors 

(R) connected to X terminal representing gm-s of OTA-s. The UCC_N1B_0520 chip 

includes one UCC (Universal Current Conveyor) active element and one second-

generation Current Conveyor (CCII+/-). The DO‒CF element providing input current 

distribution as obvious from Fig. 6, was implemented by CCII+/-. The EL208250 chips are 
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used for implementation of the ACA elements within the reconfigurable topology. Note 

that in order to implement dual-output version of ACA (DO-CA1 from the structure shown 

in Fig. 6), cascade connection of EL2082 and CCII+/- was used in case of both simulation 

and measurement. The current gain of the EL2082 is controlled by DC voltage in range 

from 0 to 2.5 V with gain numerically approximately equal to value of control voltage.  

5.1.   Measurement and simulation results for FLPF 

Figure 7 illustrates measurement results (solid lines) of the electronic control of the FLPF 

order for 1st approximation (eq. 6) in comparison with simulation results (dashed lines).  

Values of all passive components and gains are summarized in Table 2. From magnitude 

and phase responses it is obvious that experimental results are in good agreement with 

simulation results, however the pole frequency from the measurement results is slightly 

higher in comparison with simulations. This frequency shift can be caused by inaccurate 

values of the used capacitors and transconductances. The biggest differences can be seen 

for filter with order 1.75. This difference is given mainly because value of the B1 (see Table 

2) is relatively small and therefore not enough accurate. Measurement (solid lines) and 

simulation (dashed lines) results of the FLPF with used approximation from eq. 7 (2nd 

approximation) are compared in Fig. 8.  Values of all passive components and gains are 

also summarized in Table 2. From obtained responses it can be seen that pole frequency is 

slightly shifted as seen also in the previous graph. The differences between measurement 

and simulation results of the FLPF with order 1.75 are also caused by small value of 

parameters, gm2 and B1 particularly.  

Note that slope of attenuation of the transfer magnitude, for three selected orders and 

used 1st approximation, illustrated in Fig. 7, has fractional character only in short frequency 

range as expected because of the 2nd-order approximation of sa, as represented by eq. 5. 

Slope of attenuation of the transfer functions of the filter with 2nd approximation (Fig. 8) 

has fractional character in wider frequency range than filter with 1st approximation. These 

differences are caused by type of chosen approximation. The frequency range of the 

fractional character is dependent on chosen value of the filter’s order. Note that this applies 

to all achieved results in this paper. 
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(a) 

 

(b) 

Fig. 7.  Simulation (dashed lines) and measurement (solid lines) results of the FLPF for 1st 
approximation: (a) magnitude response, (b) phase response. 
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(a) 

 

(b) 

Fig. 8.  Simulation (dashed lines) and measurement (solid lines) results of the FLPF for 2nd 
approximation: (a) magnitude response, (b) phase response. 
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5.2.   Measurement and simulation results for FHPF 

A comparison of the measurement and simulation results in case of electronically 

controlled order of the FHPF for 1st approximation based on eq. 6 is shown in Fig. 9. The 

chosen values of the order, when the pole frequency is 100 kHz, are the same as at the 

FLPF, i.e.: 1.25, 1.5 and 1.75. Values of all passive components and gains are summarized 

in Table 3 shown above. 

Figure 10 illustrates magnitude and phase responses of the FHPF for 2nd used 

approximation from eq. 7. A comparison of the obtained measurement (solid lines) and 

simulation (dashed lines) results is demonstrated in these graphs for above mentioned 

values of the order. Again, values of all passive components and gains are summarized in 

Table 3 shown above. 

From magnitude responses in Fig. 9 and Fig. 10 can be seen that obtained measurement 

results (solid lines) are slightly different in comparison with simulation results (dashed 

lines). Differences at higher frequencies (around 8 MHz) are caused by bandwidth 

limitations of the used active elements and parasitic capacitance of the designed PCB and 

are not important in these cases. Other differences are given by inaccuracies of the gains 

and passive elements.  
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(b) 

Fig. 9.  Simulation (dashed lines) and measurement (solid lines) results of the FHPF for 1st 
approximation: (a) magnitude response, (b) phase response. 
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(b) 

Fig. 10.  Simulation (dashed lines) and measurement (solid lines) results of the FHPF for 
2nd approximation: (a) magnitude response, (b) phase response. 

 

5.3.   Control of the frequencies of both the FLPF and FHPF 

Magnitude and phase responses while electronically controlling the pole frequency of the 

FLPF, for used 2nd approximation as an example, are shown in Fig. 11 (a), (b). Chosen pole 

frequencies are: 33, 100 and 300 kHz and all other parameters are summarized in Table 4. 

A comparison of the measurement (solid lines) and simulation (dashed lines) results is 

performed also in this case.  

From Fig. 11 (a) it is obvious that measurement and simulation results are very similar. 

However, results for filter with the pole frequency f0_LP = 300 kHz are affected by really 

small values of the 1/gm-s (see Table 4). 

Figure 12 (a), (b) illustrates magnitude and phase response of the three selected values 

of the pole frequency of the FHPF (again the 2nd approximation is used as an example, all 

parameters are shown in Table 5). From Fig. 12 is obvious that obtained results are also in 

good agreement with theory. The bandwidth limitations of the used active elements can be 

seen at higher frequencies. 
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(a) 

 

(b) 

Fig. 11.  Demonstration of the electronic control of the pole frequency of the FLPF for 2nd 
approximation with constant order equal to 1.5: (a) magnitude response, (b) phase 
response. 
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(a) 

 

(b) 

Fig. 12.  Demonstration of the electronic control of the pole frequency of the FHPF for 2nd 
approximation with constant order 1.5: (a) magnitude response, (b) phase response. 
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5.4.   Summarization of the obtained results 

Table 6 and Table 7 summarize obtained values of the slope of attenuation of the transfer 

function of the FLPF and FHPF for three designed values of the order. A comparison of 

the values of the slope of attenuation of the filters for 1st and 2nd approximation is made. 

From obtained experimental results can be seen that values of the slope of attenuation are 

not far from the theoretical results. FLPF for 1st and 2nd approximation is performing very 

similarly. Bigger differences are seen between values of the slope of attenuation of the 

FHPF for 1st and 2nd approximation. 

The obtained theoretical, simulated and measured results of the pole frequency while 

tuning of the FLPF and FHPF, for chosen 2nd approximation, are compared in Table 8 and 

Table 9. From obtained values of the pole frequency of the FLPF (Table 8) can be seen that 

measurement results are very close to the theory. The biggest difference between 

theoretical and measured values of the pole frequency of the FLPF is obvious for the 

highest configured pole frequency (300 kHz). It is caused by relative small value of the 

resistors R1, R2 and R3. From measurement results of the frequency tuning of the FHPF 

(Table 9) is obvious that obtained values of the pole frequency are also very close to the 

theoretical assumptions.  

 

 

Table 6.  Comparison of the theoretical, simulated and measured values of slope of attenuation of the 

filter in FLPF configuration for pole frequency of the filter 100 kHz. Both 1st and 2nd approximation 

(1st/2nd value if applicable). 

 Order 

Slope of attenuation [dB/dec] 1.25 1.5 1.75 

Theoretical  25.0 30.0 35.0 

Simulated  22.7 / 24.2 29.8 / 31.6 36.3 / 36.9 

Measured  23.9 / 24.2 30.0 / 29.8 35.3 / 35.2 

 

 

Table 7.  Comparison of the theoretical, simulated and measured values of slope of attenuation of the 

filter in FHPF configuration for pole frequency of the filter 100 kHz. Both 1st and 2nd approximation 

(1st/2nd value if applicable). 

 Order 

Slope of attenuation [dB/dec] 1.25 1.5 1.75 

Theoretical  25.0 30.0 35.0 

Simulated  25.7 / 24.3 31.5 / 31.0 36.7 / 35.6 

Measured  22.8 / 24.7 29.5 / 31.5 34.9 / 35.9 
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Table 8.  Comparison of the theoretical, simulated and measured values of the pole frequency of the 

filter in FLPF configuration for constant order of the filter 1.5. The 2nd approximation is used. 

 Pole frequency [kHz] 

Theoretical  33.0 100.0 300.0 

Simulated  35.9  112.1  383.5  

Measured  33.1  108.0  398.1  

 

Table 9.  Comparison of the theoretical, simulated and measured values of the pole frequency of the 

filter in FHPF configuration for constant order of the filter 1.5. The 2nd approximation is used. 

 Pole frequency [kHz] 

Theoretical  33.0 100.0 300.0 

Simulated  27.3 81.4 227.2 

Measured  27.0 95.5 289.8 

 

6.   Conclusion 

Reconfiguration of the transfer function between particular solutions of FLPF and FHPF 

was proved to be applicable by the structure presented in this paper. Achieved results prove 

also possibility of electronic and mutually independent control of fractional-order and pole 

frequency by changing values of the parameters of the filter. Moreover, also electronic 

control of type of approximation was proven to be possible. Verification with the 

behavioral models is very useful because it helps to verify successfully the design 

correctness not only in PSpice simulations but also by measurements with real devices in 

laboratory experiments. The measured results in case of the electronic control of the order 

and also the pole frequency are in good agreement with theoretical expectations. Note that 

this paper is significantly extended version of paper published as Ref. 48. 
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