IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11,

NOVEMBER 2004

1449

Reconfigurable Hardware SAT Solvers:
A Survey of Systems

louliia Skliarova and Antdonio de Brito Ferrari, Member, IEEE

Abstract—By adapting to computations that are not so well-supported by general-purpose processors, reconfigurable systems
achieve significant increases in performance. Such computational systems use high-capacity programmable logic devices and are
based on processing units customized to the requirements of a particular application. A great deal of the research effort in this area is
aimed at accelerating the solution of combinatorial optimization problems. Special attention in this context was given to the Boolean
satisfiability (SAT) problem resulting in a considerable number of different architectures being proposed. This paper presents the state-
of-the-art in reconfigurable hardware SAT satisfiers. The analysis and classification of existing systems has been performed according
to such criteria as algorithmic issues, reconfiguration modes, the execution model, the programming model, logic capacity, and

performance.

Index Terms—Boolean satisfiability, reconfigurable computing, FPGA, hardware acceleration.

1 INTRODUCTION

ALTHOUGH the concept of reconfigurable computing was
proposed in the early 1960s [1], it is only recently that
technologies that allow it to be put into practice became
available. The interest started at the beginning of the 1990s
as FPGA densities broke the 10K logic gate barrier [2]. Since
then, reconfigurable computing has become a subject of
intensive research. For some classes of applications,
reconfigurable systems allow very good performance to
be achieved compared to general-purpose computers. Other
types of applications were mapped to reconfigurable
hardware because it offers innovative opportunities to
explore. According to the primary objective to be achieved,
all these applications can be broadly divided into three
categories: hardware emulation and rapid prototyping,
evolvable hardware, and the acceleration of computation-
ally intensive tasks. The last category is, without doubt, the
prevalent one.

A common characteristic of the considered computa-
tionally intensive tasks is that they are very well-suited to
parallel implementations that take advantage of the basic
capabilities of reconfigurable computing. Cryptography,
signal and image processing are good examples in this
category. These applications are characterized by large
amounts of data to process and by inherent parallelism and
are suitable for pipelining [3]. All these factors contribute to
an increase in the performance of a reconfigurable system
compared to a similar implementation on general-purpose
computers [4].

Recently, a series of attempts has been made to accelerate
applications that involve rather complex control flow. In
this context, special attention was given to problems in the
area of combinatorial optimization. Among them, the
Boolean satisfiability (SAT) problem stands out. This may

o The authors are with the Department of Electronics and Telecommunica-
tions, IEETA, University of Aveiro, 3810-193 Awveiro, Portugal.
E-mail: {iouliia, ferrari)@det.ua.pt.

Manuscript received 3 Dec. 2003; revised 10 Apr. 2004; accepted 6 May 2004.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0267-1203.

0018-9340/04/$20.00 © 2004 IEEE

be partially explained by the extremely wide range of
practical applications in a variety of engineering areas,
including the testing of electronic circuits, pattern recogni-
tion, logic synthesis, etc. [5]. In addition, SAT has the honor
of being the first problem shown to be NP-complete [6].
This means that existing algorithms have an exponential
worst-case complexity. Implementations based on reconfi-
gurable hardware enable the primary operations of the
respective algorithms to be executed in parallel. Conse-
quently, the effect of exponential growth in the computation
time can be delayed, thus allowing larger size instances of
SAT to be solved [5]. Besides, finding an efficient way to
solve the SAT problem with the aid of reconfigurable
hardware may help to accelerate the solution of other
combinatorial optimization problems.

In this paper, we present the current status of reconfi-
gurable hardware SAT solvers and give an overview of the
existing approaches and their trade offs. The remaining part
of the paper is organized as follows: Section 2 is devoted to
the definition of the problem and the description of the
algorithms that are usually employed by hardware SAT
solvers. Section 3 presents the most well-known architec-
tures of reconfigurable hardware SAT satisfiers. Analysis
and classification of these architectures according to
different criteria is performed in Section 4. Finally, con-
cluding remarks are given in Section 5.

2 PROBLEM DEFINITION

SAT is a very well-known combinatorial problem that
consists of determining whether a given Boolean formula
can be satisfied by some truth assignment. The search
variant of this problem requires at least one satisfying
assignment to be found. Usually, the formula is presented
in conjunctive normal form (CNF), which is composed of a
conjunction of a number of clauses, where a clause is a
disjunction of a number of literals. Each literal represents
either a Boolean variable or its negation. For example, the
following formula in CNF is satisfied when x; =" 0",
Xy = " 1/// and X3 = "

Published by the IEEE Computer Society

1450

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11,

NOVEMBER 2004

procedure DP

return false - ig unsatisfiable

exit with T - &
select the next

p = decide() -

DP (f w{(p)}, T vip})

o (f u{(P}, Tu{ ph

return false - f ig unsatisfiable
end

4
(if it exists) or falee (if it does not exist)

compute implications, apply the pure literal rule

input: a CNF formula £, partial wvariable assignment T
output: a satisfying variable assignment
begin

deduct () -

if () in £

then - f contains an empty clause = conflict

¥
if f = ¥ then - f is empty = all clauses have been satisfied
satisfying variable assignment was found
decision variable and its value

{initially empty

Fig. 1. Pseudocode of the DP algorithm.
(jl \/.T)3)(.f2 \/5‘3)($1 \/1‘2 \/.11‘3)(1‘1 \/.’i3)(i’1 \/CEQ). (1)

Algorithms for solving the SAT problem can be divided
in two major groups: complete and incomplete [5]. The
majority of incomplete algorithms are able to find a solution
in favorable cases, but either do not terminate or get stuck
in other cases. In situations where a solution is not found, it
is impossible to determine whether the formula is unsatisfi-
able or the algorithm did not explore the search space
sufficiently. Consequently, the incomplete algorithms do
not always verify satisfiability and cannot prove unsatisfia-
bility. Nevertheless, these methods are of particular interest
for problem instances that are either underconstrained
(having many solutions) or so difficult that a complete
algorithm cannot solve them in a reasonable time. Besides,
incomplete algorithms can be used to solve the maximum
satisfiability problem (whose objective is to maximize the
number of satisfied clauses).

Complete algorithms are always able either to find a
solution (although it may take an unacceptable time) or to
conclude that a formula is unsatisfiable, i.e., such methods
can verify either the satisfiability or the unsatisfiability of a
given problem instance.

2.1 Complete Algorithms

Among complete algorithms that are usually employed by
hardware SAT solvers, the most well-known are the Davis-
Putnam (DP) algorithm (in Loveland form) [7] and the
PODEM (Path-Oriented DEcision Making) algorithm [8].
Since the former method is much more popular, we will
describe it in more detail.

In the DP algorithm, the search process is organized by
implicitly traversing the space of all possible assignments of
values to variables (the pseudocode of the algorithm is
presented in Fig. 1). The process starts with an empty
variable assignment. Then, a unit clause rule, a pure literal
rule, and decisions are applied alternately.

A unit clause rule consists of finding unit clauses, i.e.,
clauses that contain just one unassigned literal [5]. The
respective variable can be assigned a value (either “1” if the
literal is positive or “0” if the literal is negative) without
losing any possible solution. The selected variable is said to
be implied to the respective value.

A pure literal rule is based on finding pure literals, i.e.,
literals that are either all positive or all negative. The
variable corresponding to a pure literal can be assigned a

value (either “1” if all the occurrences of the literal are
positive or “0” if all the occurrences of the literal are
negative) without influencing in any way the satisfiability
of the formula. These two rules are known as reduction
methods because they allow an initial formula to be
simplified.

When there are no more unit clauses and pure literals, a
decision is taken. The decision consists of choosing one
unassigned variable and assigning a value to it (this
variable is referred to as a decision variable). There are two
basic approaches to the selection of the decision variables:
static and dynamic. In the static approach, all the variables
are initially preordered using some criteria. The resulting
static sequence is used to fetch the next decision variable
when required. In the dynamic approach, a variable and a
value are chosen that are most likely to help in satisfying
the formula (a variety of heuristic methods are employed
for this purpose). When a variable is assigned a value
(either by means of a decision or a reduction), all the
satisfied clauses together with the falsified literals are
removed from the formula.

A conflict appears if either a variable is implied to two
opposite values or there exists an empty clause. In this case,
it is necessary to erase all actions performed after the last
decision and invert the value of the current decision
variable. If both possible values have already been tried,
the algorithm backtracks to the previous decision variable.

When the last clause becomes satisfied and is deleted
from the formula, it means that the current variable
assignment represents a solution. If all possible assignments
of values to variables have been implicitly tested (i.e., both
values of the first decision variable were tried out without
success), then the formula is unsatisfiable.

In the DP algorithm, the search process is usually
represented by a decision tree, whose nodes are associated
with intermediate subformulae obtained during the search
and edges correspond to the decisions taken. An example of
a decision tree constructed for (1) is given in Fig. 2. The root
of the decision tree corresponds to a start point, where all
the variables are unassigned. If, at any node, a partial
variable assignment satisfies a formula, then the search
process is terminated. In the opposite case, the search must
proceed either forward (if there are no conflicts) or
backward (if a conflict has appeared). The decision tree is
traversed using the depth-first-search approach.

SKLIAROVA AND FERRARI: RECONFIGURABLE HARDWARE SAT SOLVERS: A SURVEY OF SYSTEMS

(X VX XE VI, Ve, V(% v BT VX))

P ¥ 3 P,
g g 5|1
Qf o
Ell j‘!’
(x,)(%,) ! G)U':)
2
—Gonflict== 3,
=GV
o
=

Fig. 2. The decision tree constructed for satisfying (1) with the aid of the
DP algorithm.

In the present-day software SAT solvers, a lot of
advanced techniques are applied that enable those regions
of the search space that do not contain any solution to be
discovered and their exploration to be avoided. For
instance, in the case of a conflict in the algorithm described,
the control process always backtracks to the most recently
assigned decision variable (such backtracking is called
chronological [9]). However, an analysis of the conflict causes
may lead to the discovery of the decision variables that are
really responsible for the conflict occurrence. Thus, the
algorithm can backtrack directly to the most recent of these
decision variables, enabling in this way some branches of
the decision tree to be pruned. The process is usually
referred to as nonchronological backtracking (also known as
intelligent backtracking) [9].

The technique of nonchronological backtracking for SAT
was proposed in GRASP (Generic seaRch Algorithm for the
Satisfiability Problem) [9]. It relies on the construction of a
directed implication graph that represents the sequence of
implications generated during the search. When a conflict
arises, the implication graph is analyzed to determine those

1451

variable assignments that are directly responsible for the
conflict. This requires a conflict-induced clause to be
constructed. After that, the algorithm may jump directly
to the most recently assigned decision variable that appears
in the conflict-induced clause. Additionally, the conflict-
induced clauses may be recorded, allowing the occurrence
of similar conflicts to be prevented later on during the
search. This process is referred to as dynamic clause addition.

2.2 Incomplete Algorithms

A number of incomplete algorithms have been developed
that allow for a solution of the SAT problem, including local
search methods [5], genetic algorithms [10], etc. For instance,
local search algorithms can be applied to SAT by introducing
an objective function that counts the number of satisfied
clauses and solving to maximize the value of this function.
Such methods are easily applicable since, given a feasible
solution, little effort is needed to both generate a new solution
and test whether there is any improvement in the objective
function. The major weakness of local search is that the
algorithms have a tendency to get stuck at a local maximum.

Among local search algorithms for SAT, perhaps the
most widely known are GSAT (greedy local search) [11] and
WSAT (GSAT with random walk) [12]. An outline of both
methods is presented in Fig. 3. The algorithms start by
randomly generating a feasible solution. Then, a loop is
executed in which the GSAT algorithm iteratively examines
the neighborhood of the current solution and selects a new
feasible solution that gives the greatest increase in the
number of satisfied clauses, whereas the WSAT algorithm
randomly selects a variable in an unsatisfied clause and
inverts its value. Both algorithms either return a satisfying
assignment or give the answer “no solution found” (the
latter does not mean that a formula is unsatisfiable). The
parameters MAX TRIES (the number of new search
sequences) and MAX_FLIPS (the number of variable values
flips per try) are used to control the maximum runtime of
the algorithms.

Incomplete algorithms are well-suited to a reconfigur-
able hardware implementation because they do not require
complex control structures and have an inherent parallelism
(exhibited, in particular, during the clause evaluation
stage). However, as has already been mentioned, fast

procedure GSAT
input: a CNF formula f, MAX FLIPS and MAX TRIES
output: a satisfying wvariable assignment (if found)
begin
for i in 1 to MAX TRIES
T = randomly generated variable assignment
for j in 1 to MAX FLIPS
if T satisfies f then
return T
p = a variable such that a change in its wvalue
giwves the largest increase in the number of
clauses of £ that are satisfied by T
T = T with the
end for
end for
return "no satisfying assignment found”
end

truth assignment of p reversed

procedure WSAT
input: a CNF formula £, MAX FLIPS and MAX TRIES
output: a satisfying variable assignment
begin
for i in 1 to MAX TRIES

T = randomly generated variable assignment

for j in 1 to MAX FLIPS

if T satisfies f then
return T

{if found)

¢ = a random unsatisfied clause
p:
T = T with the truth assignment of p reversed
for

a random variable in ¢

end
end for

return “ne satisfying assignment found”
end

Fig. 3. Pseudocode of GSAT and WSAT algorithms.

1452

incomplete algorithms are primarily intended for proces-
sing large CNF formulae, for which complete algorithms
may not be applicable. An effective representation, storage
and evaluation in reconfigurable hardware of a significant
number of clauses is a challenging problem (as will be
shown in Section 4.5). Therefore, the implementation of
incomplete algorithms in field-programmable devices cur-
rently seems to have a limited application because all the
potential acceleration that could be gained would be offset
by the communications overhead and high memory
requirements.

3 ARCHITECTURES OF SAT SOLVERS

Recently, several research groups have explored different
approaches to solve the SAT problem with the aid of
reconfigurable hardware [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38]. In this section, the most
widely known and successful architectures will be de-
scribed. Since names have not typically been given to
hardware SAT satisfiers, we will refer to them according to
the first author’s names of the respective publications.

3.1 Suyama et al.

Suyama et al. [13], [14], [15], [16] suggested an architecture
of an instance-specific SAT solver capable of finding all the
solutions (or a fixed number of them) of a given problem
instance. The algorithm employed is characterized by the
fact that, at any moment, a full variable assignment is
evaluated. In order to choose the next decision variable,
static selection was applied in [13] and two dynamic
techniques have been tried in [14], [15], [16]. The first of
the dynamic approaches is based on experimental unit
propagation, which requires both possible values to be
assigned experimentally to each free variable. A variable
and a value are then selected that cause the maximum
number of implications to be generated. The second
approach relies on a maximum-occurrence-in-clauses-of-mini-
mum-size heuristics selecting a variable that appears in the
maximum number of binary clauses [14].

The high-level architecture of the SAT solver [14], [15],
[16] is shown in Fig. 4. The topmost block stores the value
assigned to each variable either by means of implication or
decision and indicates the level of the search tree at which a
variable was assigned. The values of all the variables are fed
to the respective clauses, which in turn are evaluated
concurrently. Then, the results of evaluating every clause
are combined and, depending on the final result, either
branching or backtracking is performed.

Each CNF formula has first to be converted to 3-SAT
format (in which the number of literals per clause is equal to 3)
by introducing auxiliary variables. Then, a specially devel-
oped C program analyzes the resulting formula and gen-
erates the respective behavioral HDL description. On the
basis of this HDL code, an instance-specific circuit is
synthesized and implemented with the aid of commercially
available tools. Using this strategy, a number of circuits have
been implemented on an Altera FLEX10K250 FPGA clocked
at 10 MHz. Suyama et al. were able to achieve speedups of 1-
10 times compared to the POSIT (PrOpositional Satlsfiability
Testbed) algorithm [39] executed on an UltraSPARC-I1/296
MHz over some instances from the DIMACS (Center for

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11,

NOVEMBER 2004

variables
* ntrol | [*
] [%] — N
clauses
branch]] backtrack
[e |[e Cn_ |

evalua-te CNF }
JL

result ‘

Fig. 4. The high-level view of the SAT solver proposed by Suyama et al.
in [14].

Discrete Mathematics & Theoretical Computer Science) bench-
mark suite [40]. However, the time spent in hardware
compilation and configuration (about one hour) was not
taken into account. When a CNF formula cannot be
accommodated in one FPGA, it was proposed to divide the
circuit into multiple FPGA chips. However, because of high
interchip communication requirements, the resulting logic
utilization was very low (about 13 percent) [14], [15].

3.2 Zhong et al.

Zhong et al. implemented an instance-specific SAT solver
based on the DP algorithm [7]. In their early work [17], they
constructed an implication circuit and a finite state machine
(FSM) for each variable in the formula, all the state
machines being connected in a serial chain (see Fig. 5a). In
each period of time, only one FSM is active. As soon as this
state machine completes processing, it transfers control
either to the next FSM (forward search) or to the previous
one (backtracking). Each state machine knows the current
value of its variable (that can be either “0,” “1,” or free) and
is aware of whether that value has been assigned or
implied. The solution is found if the last (right) state
machine tries to activate the next state machine. If the first
(left) state machine tries to pass control to the left, then the
solution does not exist. As a preprocessing step, all the
variables are sorted taking into account the number of their
appearances in a given formula. This static order is used to
arrange the variables in the serial chain.

The main drawbacks of the design suggested in [17] are a
low clock frequency (ranging from 700 KHz to 2 MHz for
different formulae) and a very long hardware compilation
time (up to several hours on a Sun 5/110MHz/64MB). With
the aim to improve performance, hardware implementation
of nonchronological backtracking was proposed in [18].
However, this did not lead to significant improvements
and therefore motivated the revision of the initial design
decisions. As a result, a regular ring-based interconnecting
structure was employed instead of irregular global lines,
essentially reducing the compilation time to the order of
seconds and increasing the clock rate (to 20-30 MHz) [19],
[20]. In addition, a technique enabling conflict clauses to be
generated and added was proposed. Differently from [18],
the design described in [19], [20] is clause-oriented, with the
clauses (all of the same size) arranged in processing
elements distributed along a pipelined communication
network (see Fig. 5b). The main control unit keeps track

SKLIAROVA AND FERRARI:

RECONFIGURABLE HARDWARE SAT SOLVERS: A SURVEY OF SYSTEMS 1453

T £3 T
-{ Control unit
L] ¥ L] 4
—_— —_— ¥
----- iz FSM1 FSM2 FSM3 > FSM(x) —>
F— — e
f d
v u
(a) ¢
= FSM(x,) ——* }
varisble data processing processing processing ¥ ﬁ
and control bits slefment Slamiont clement i
_________ |
clause | | clause | clause 4 o
. - ! 1
control | | clause | i clause ¢ clause e i
T owunit [T o . '—’{ FSM (x.) }—' ¢
] e EESEREE |
clause | | clause i clause

Fig. 5. Zhong et al. architectures: (a) Each FSM corresponds to a
variable in a CNF formula in the satisfier proposed in [17]. (b) In
architecture [19], [20], all the variables pass through the pipeline of
processing elements, each containing a number of clause modules.

of the current state of the SAT solver and monitors the
network for both variable’s value changes and conflicts.

To address large problem instances that do not fit into
one FPGA chip, the authors propose to employ several
interlinked FPGAs (the architectures [19], [20] are easily
scalable). The experimental results are based both on
hardware implementation (on an IKOS emulator containing
a number of FPGA array boards) and on simulation. The
speedups achieved over the software satisfier GRASP [9]
executing on a Sun5/110MHz/64MB (in a restricted mode),
including the hardware compilation and configuration
time, are of an order of magnitude [20] for a subset of the
DIMACS SAT benchmarks [40]. It should be noted that the
architectures proposed by Zhong et al. are among the most
widely known and served as prototypes for a number of
reconfigurable hardware SAT solvers that were developed
subsequently.

3.3 Platzner et al.

The SAT solver proposed by Platzner et al. [21], [22] is
similar to that of Zhong et al. [17]. It consists of a column of
finite state machines, deduction logic, and a global control
unit (see Fig. 6) and implements a DP-based algorithm for
CNF formulae. The deduction logic computes the result of
the formula from the current partial variable assignment.
All variable assignments are tried in a fixed order. Initially,
all variables are unassigned and the control unit activates
the first FSM. This FSM tries to assign “0” to its variable and
the deduction logic calculates the result. If the formula
evaluates to “1,” the solution has been found. Otherwise, if
the formula evaluates to “0,” the FSM complements its
value. If the formula evaluates to “x,” the next FSM is
activated. If an FSM tries both variable assignments and the
formula always evaluates to “0,” the FSM resets its value
and passes control to the previous FSM.

The authors implemented an accelerator prototype on
the base of a Pamette board containing four Xilinx XC4028
FPGAs. The speedups obtained for hole6...holel0 SAT
benchmarks from DIMACS [40], including hardware
compilation and configuration time, range from 0.003 to

——

Fig. 6. The top-level view of the architecture proposed by Platzner et al.
[21], [22].

7.408 compared to GRASP executing on a PII/300MHz/
128MB [21]. The clock frequency in [21] varies from 65 MHz
(for hole6) to 27 MHz (for hole10). The hardware compilation
time dominates the hardware runtime for all the problem
instances considered and, consequently, constitutes the
principal limitation of this architecture. Besides, no solution
was proposed for a case when a given formula does not fit
the chosen FPGA.

3.4 Abramovici et al.

Abramovici and Saab [23] applied a technique of modeling
a given Boolean formula (not necessarily in CNF format) by
an arbitrary circuit. The designed SAT solver is based on the
PODEM algorithm [8] that is generally used to solve test
generation problems. Here, the goal is to set the primary
output of a combinational logic circuit (which represents a
Boolean function to be satisfied) to “1” by finding a suitable
assignment of the primary inputs. An important concept of
this algorithm is an objective, which is a desired assignment
of some value to a signal initially having an unknown value
[23]. An objective can only be achieved by primary input
assignments. A backtrace procedure is used to propagate an
objective along a path to primary inputs and determines the
primary input assignment that is likely to help to achieve
the objective. To accomplish this goal, two models of the
circuit have been constructed: a forward model for
propagating primary input assignments and a backward
model for propagating objectives (see Fig. 7a).

In [24], an improved architecture (shown in Fig. 7b) is
suggested that employs the DP algorithm for CNF formulae
(modeled by a two-level circuit) and implements an enhanced
variable selection strategy. The variable logic block stores the
current values of all the variables. These values are sent to the
literal logic block, which distributes them between clauses.
The clause logic block evaluates every clause and the entire
formula and also determines the desired values for literals
(objectives). The objectives are sent back to the literal logic
block, which combines the objectives arriving from different
clauses into one objective for each variable. Finally, the
variable logic block transforms the objectives into variable
assignments (either implications or decisions). The control
unit initiates backtracking when the formula evaluates to “0.”
It is important that all the objectives propagate concurrently
along all possible paths, enabling multiple variables to be
assigned in parallel.

1454

forward |
model
control
| unit
backward o
model

(a)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11,

NOVEMBER 2004

Jl—b, variable logic
| =

values objectives
A
control : s
7 literal logic
unit |]
values objectives
T—= clause logic

(b)

Fig. 7. Abramovici et al. architectures: (a) For FPGA-based implementation of the PODEM algorithm, two models of the circuit have been

constructed in [23]. (b) The top-level view of the satisfier [24].

For hardware implementation Abramovici et al. suggest
creating a library of basic modules that have predefined
internal placement and routing and are to be used for any
formula. The solver circuit is built from modules, reducing
the compilation time to the order of minutes. The authors
implemented simple circuits on the XC6264 FPGA and
simulated the bigger ones. For a circuit occupying the whole
area of the XC6264 FPGA, the clock frequency was about
3.5 MHz. In [24], Abramovici and de Sousa report raw
speedups (not including the compilation and configuration
overheads) from 0.01 to 7000 (after time unit adjustment)
achieved over GRASP [9] for a subset of DIMACS SAT
benchmarks [40].

In [24], a virtual logic system was proposed allowing
circuits to be constructed for solving SAT problem instances
that are larger than the available hardware resources. This
is achieved by decomposing a formula into independent
subformulae that can be processed in separate FPGAs either
concurrently or sequentially. The important feature of the
suggested method is that subformulae may be solved in any
order and inter-FPGA signals are not required. However,
when the available hardware resources are much smaller
than the original problem size, the decomposition can take
an excessive time and will produce too many subproblems.

3.5 Dandalis et al.

Dandalis et al. [25], [26] proposed an architecture for
evaluating clauses in parallel during the implication
deduction phase. A distinctive characteristic of their
approach is that the circuit evolves dynamically during
execution, trying to achieve a more adequate level of
parallelism and, consequently, optimize performance.

In the suggested architecture, all the clauses of a CNF
formula are split into p groups, which deduce implications
in parallel. Thus, implications are resolved independently
in each group and, subsequently, a merging process
combines all the results allowing the next variable assign-
ment to be formed. If a conflict is detected, the deduction
process is terminated and backtracking is performed. If no
implications occur, a new decision variable is selected and
assigned a value. Otherwise, the resulting variable assign-
ment is fed again to the clause evaluator and the entire
procedure is repeated until no more implications are
deduced or a contflict is detected. An example of the clause
evaluator architecture for p =3 is shown in Fig. 8. The
decision and backtrack processes are assumed to be
executed by a host computer.

Each group of clauses is similar to that proposed by
Zhong et al. in [19] and is organized as a linear array of

modules operated in a pipelined manner (see Fig. 8). Every
module corresponds to a clause with a limited number of
literals and the structure of a module is the same for all the
clauses. The variables associated with a given clause are
stored in the local memory of the respective module. To
update the contents of local memories (to match a particular
problem instance), the use of partial reconfiguration was
suggested.

During problem solving, the circuit is reconfigured to
implement deduction engines with different levels of
parallelism p. In this task, given a set of template circuits
with a different number of modules per group, the objective
is to find a template that minimizes the average implication
propagation delay. Obviously, this time also depends on the
distribution of clauses into groups and their relative
ordering within the group. However, these issues have
not been considered. Instead, a greedy heuristic algorithm
was proposed which is executed by a host machine and tries
all the available templates in turn, starting with the one
having the minimum number of modules per group.
Different templates are tested while any improvement in
performance is detected. Thus, the architecture evolution
consists of finding the optimum number of groups for a given
problem instance. The execution of the SAT algorithm is not
restarted for each template, i.e., after switching templates, the
search process continues with the previously found partial
variable assignment. The authors report speedups of 1-6
times [25] compared to the case where p = 1 for a number of
DIMACS SAT benchmarks [40]. These results were
achieved with the aid of a software simulator and do not

initial i] l | |
variable g -
assignment il [] i
| Host g o l =
computer l | { |_—| L |
variable 2 s [;] %
assignment == = P = s
after | }_’\‘erherga/ \nerge/
implication " \ S e
deduction - - ¥ ‘
= =

Fig. 8. A general view of the parallel clause evaluator proposed in [25].

SKLIAROVA AND FERRARI: RECONFIGURABLE HARDWARE SAT SOLVERS: A SURVEY OF SYSTEMS

1455

: shift register
| |current variable. | g

» ; ——, new variable |- clause
assignment [V usad o fiip one | V| assignment | v evaluator
variable at time |
TI . 2
___/ . L . | . Vs
N | best variable |-—comperalor< i

host

1T

* >| best result

Fig. 9. Structure of the unit implementing the inner loop of the GSAT algorithm.

reflect the required hardware reconfigurations. It was also
assumed that FPGA resources are sufficient for solving a
SAT instance.

3.6 Leongetal

Leong et al. studied the possibility and efficiency of the
realization of complete [27] and incomplete [28], [29] SAT
algorithms in reconfigurable hardware. In particular, the
inner loops of the GSAT [28] and WSAT [29] algorithms for
3-SAT were partially mapped to FPGA.

In the architecture implementing the GSAT algorithm
[28] (see Fig. 9), an initial variable assignment is randomly
generated by a software program and downloaded to a
Xilinx XC6200 series FPGA. The hardware sequentially flips
each variable and evaluates the CNF formula, attempting to
maximize the number of satisfied clauses. The variable
conducting to the maximum number of satisfied clauses is
dispatched to software, which then computes the next
variable assignment by flipping that variable.

The SAT circuit was synthesized from the VHDL
description, with the exception of the clause evaluator,
which is a problem-dependent component and is therefore
customized directly for each individual problem instance
(using the possibility of partial dynamic reconfiguration,
provided by XC6200 family devices). The design was tested
in hardware for small CNF formulae (having up to
50 variables and 80 clauses) and the results were either
worse than or comparable to the software implementation
of the GSAT algorithm [28].

In [29], a similar implementation of the inner loop of the
WSAT algorithm is described. The design is targeted at
Virtex series FPGAs and is based on a template supporting
at most 50 variables and 170 clauses. A circuit matching a
particular 3-SAT formula is generated by a software
program which customizes the template bit stream file. A
direct manipulation of a bit stream is much faster than a
complete synthesis, mapping, placement, and routing cycle,
which is usually performed by instance-specific SAT
solvers. But, the constraints imposed on the maximum
number of variables and clauses limit the application of the
circuit to rather simple CNF formulae.

The results achieved on an XCV300 FPGA under a clock
frequency of 33 MHz for a number of DIMACS SAT
instances [40] show an acceleration of 0.1-3.3 compared to
the implementation of the WSAT algorithm in software (on
a Sun SparcStation 20) [29]. These results include both the
time required to customize and download to FPGA the
template bit stream and the time spent in communications
between the host processor and the FPGA. However,

nothing was proposed for solving problem instances whose
sizes exceed the template dimensions.

3.7 Sousa et al.

De Sousa et al. [30], [31], [32] implemented a DP-based search
algorithm for 3-SAT augmented with a diagnosis engine,
which s activated in case of a conflict and attempts to identify
the decision variables that are directly responsible for the
conflict occurrence. The conflict analysis is also used to
construct and add new clauses to a CNF formula, thus
accelerating the search process. It was decided to partition the
job between software and reconfigurable hardware with the
most computationally intensive tasks (such as computing
implications and choosing the next decision variable)
assigned to hardware, while the control-oriented tasks (such
as conflict analysis, backtrack control, and clause database
management) are performed in software.

The suggested SAT solver has an application-specific
architecture that uses configuration registers for CNF
formula instantiation [31]. In order to deal with instances
that exceed the available hardware capacity, a virtual
hardware scheme with context switching has been pro-
posed. In this case the SAT solver configuration data is
organized in pages, which are stored in on-board memory.
Each page configures a clause pipeline, as shown in Fig. 10.
The data corresponding to the variables is kept in two
memory blocks. The variables are read sequentially from
one memory block, processed in the clause pipeline, and
written into the other memory block. The next hardware
page is then loaded and the variables are processed while
moving from the second memory block back to the first one.
The process continues while there are implications gener-
ated and no conflicts are detected.

In [31], a hardware implementation of the SAT solver
based on the RC1000 PCI board from Celoxica containing
one XCV2000E Xilinx FPGA and four SRAM banks (2 MB
each) is described. The preliminary results [31] show that
this system can run at 47 MHz and should allow formulae
having up to 7,680 variables and 214,304 clauses to be
processed. However, the interface with software has not
been implemented yet, so real execution times are not
available.

3.8 Skliarova and Ferrari

Skliarova and Ferrari [33] proposed and implemented an
application-specific SAT solver based on the DP algorithm.
The problem was formulated over a ternary matrix by
setting a correspondence between clauses and variables of a
CNF formula and rows and columns of the matrix and

1456
clause clause clause
clause clause clause
— > S e _..’_
clause clause clause
T V- i o
e —— =
\ T _____m_‘___,_____.----“"‘ S
T P e T — e ‘/—/

memory block 1 memaory block 2

Fig. 10. Sousa et al. [30], [31], [32] hardware architecture.

finding a ternary vector, v, which is orthogonal to each row
of the constructed matrix. If vector v cannot be found, then
the formula is unsatisfiable. On the other hand, if vector v
exists, then the zeros and ones in it correspond to those
variables that must receive values “1” and “0,” respectively
in order to satisfy the CNF formula.

The proposed satisfier architecture is shown in Fig. 11.
The sequence of hardware operations is managed by a
central control unit using a stack memory to support the
backtracking process. There exist four memory blocks
storing the initial matrix and its transpose. The matrices
are not modified during the search process. All possible
changes (such as deleting rows and columns) are reflected
in the registers. The ALU executes different operations over
rows and columns of matrices such as counting the number
of ones, etc. In order to solve various problem instances, it is
only necessary to download the respective matrix data. All
the other components of the satisfier remain unchanged.
This allows local reconfigurability to be used and reduces
the configuration overhead.

In [34], an improved SAT satisfier architecture was
proposed implementing a hybrid algorithm. The suggested
algorithm requires a favorites list to be constructed, which
contains only permitted partial variable assignments. Then,
the DP algorithm is applied and, at each node of the
decision tree, the current partial variable assignment is
verified for consistency with the contents of the favorites
list. When an inconsistency is detected, premature back-
tracking is performed, allowing the number of visited nodes
in the decision tree to be reduced.

The SAT problem is partitioned between software and
reconfigurable hardware in such a way that an FPGA is
only responsible for processing subproblems that appear at
various levels of the decision tree and satisfy the imposed
hardware constraints (such as the maximum allowed
number of rows and columns in the matrix). This technique
permits formulae to be processed that exceed the resources
of the available reconfigurable hardware. However, the
efficiency of software/hardware partitioning strongly de-
pends on the characteristics of a particular problem
instance.

The SAT satisfier was implemented on an ADM-XRC
PCI board from Alpha Data containing one XCV812E
Virtex-EM FPGA (running at 40MHz). The speedups
obtained for holex SAT benchmarks from DIMACS [40],
including the FPGA configuration and software/hardware
communication time, achieve two orders of magnitude
compared to GRASP [9] executing on an AMD/Athlon/
1GHz/256MB [33]. For other benchmarks from the same

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11,

NOVEMBER 2004

from host computer

Matrices
LR

Y]

1
L] IR RN
llllll] LR
|||||||]
Control '
Unit

Stack Registers ALU

to/from host computer

Fig. 11. The architecture of the SAT solver proposed in [33], [34].

suite [40], which are easily solved by GRASP (in fractions of
a second), the hardware SAT satisfier [33] does not provide
useful speedups.

4 ANALYSIS OF HARDWARE SAT SOLVERS

In this section, we attempt to analyze the reconfigurable
hardware SAT solvers according to such criteria as
algorithmic issues, the programming model, the execution
model, reconfiguration modes, logic capacity, and perfor-
mance. Table 1 summarizes the respective characteristics of
the architectures considered in the previous section.

4.1 Algorithmic Issues

The majority of the existing reconfigurable hardware SAT
solvers employ some variation of the Davis-Putnam
algorithm [7]. The exceptions are the architectures proposed
by Leong et al. [28], [29], Yap et al. [35], and Hamadi and
Merceron [36], which implement incomplete algorithms,
and the SAT satisfiers of Abramovici and Saab [23] and
Rashid et al. [37], which realize PODEM-based algorithms.
Various reconfigurable hardware SAT solvers differ also in
the input format they support. For instance, the architec-
tures of Suyama et al. [14], Leong et al. [29], and de Sousa
et al. [30] are only able to work on Boolean expressions in
3-SAT CNF format; the SAT satisfiers of Zhong [20] and
Dandalis and Prasanna [25] are limited to k-SAT CNF
formulae; the implementations of Mencer and Platzner [21],
Skliarova and Ferrari [33], and Boyd and Larrabee [38]
accept any CNF formulae; and, finally, the architecture of
Abramovici and Saab [23] is capable of processing an
arbitrary Boolean expression. The decision variable selec-
tion strategy also varies among the SAT solvers analyzed.
Although dynamic selection has been considered to be
difficult to implement in hardware, it was realized in a
number of architectures [14], [30], [31], [33], [34].

In present-day software SAT solvers, a lot of advanced
search techniques (such as nonchronological backtracking
[9] and dynamic clause addition) are employed. However,
up to now, these techniques have been largely ignored by
hardware SAT solvers. The only exception to this is the
SAT satisfier of Zhong [20]. The main reason is that
sophisticated decision and backtracking techniques re-
quire complex data structures that favor software over
hardware implementations.

SKLIAROVA AND FERRARI: RECONFIGURABLE HARDWARE SAT SOLVERS: A SURVEY OF SYSTEMS

TABLE 1
Principal Characteristics of the Reconfigurable Hardware SAT Solvers

1457

Programming Reconfigu-
SAT solver Algorithmic issues model Execution model ration mods Logic capacity
Suyama et al DP-like algorithm with instance-specific | hardware only static multi-FPGA
[14]). [15).[16] dynamic selection system
Zhong [20] DP-based algorithm with instance-specific | hardware only static and multi-FPGA
static selection, nonchrono- dynamic system
logical backtracking, and {global)
conflict analysis
Platzner et al DP-based algorithm with instance-specific | hardware only static use larger
[21] [22] static selection device
Abramovici et al. | DP-based algonthm with instance-specific | hardware only dynamic logic partitioning
[24] optimized static selection (global) in subformulae
Dandalis et al. DP-based algonthm with application- implications are processed in | dynamic multi-FPGA
[25] static selaction specific hardware, which evolves (partial and | system
during execution; the restis | global)
implemented in software
Leang et al incamplete algorthms application- the inner loop is executed in | static and nothing
[28], [29] (WSAT, GSAT) specific hardware, the outer loop —in | dynamic proposed
software (partial)
Sousa et al DP-based algorithm with application- softwarehardware dynamic virtual hardware
[30], [31] dynamic selection and specific partitioning according to (partial) scheme
conflict analysis (in computational complexity
software)
Skharova and DP-based algorithm with application- softwarehardware dynamic software/
Ferrari [33] [34] | dynamic selection specific partitioning according to logic | (partial) hardware
capacity partitioning

4.2 Programming Model

There are two basic approaches to mapping a SAT
formula to a reconfigurable system: instance-specific and
application-specific. The first approach has been extensively
explored by the reconfigurable computing community [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24] and
assumes the generation of an individual hardware config-
uration for each problem instance. In this case, a typical
design flow is to describe, synthesize, and implement either
a whole instance-specific circuit or a number of precom-
piled primary modules, which are further customized by
specially developed software tools to match the respective
formula (see Fig. 12a).

In an application-specific approach, the circuit is designed
and optimized only once, after which it can be used for
solving different problem instances [25], [30], [31], [33], [34],
[38]. This can be achieved with the aid of a hardware
template, which is downloaded to an FPGA and customized
directly there with data for a particular problem instance
(see Fig. 12b). It should be emphasized that, in this case, a
hardware compilation step is completely avoided and,
consequently, greater acceleration over software can poten-
tially be achieved.

4.3 Execution Model

An SAT problem can be either entirely mapped to reconfigur-
able hardware (leaving just the tasks of preprocessing and
initialization to the host processor) [13], [14], [15], [16], [17],
[18],[19], [20], [21], [22], [23], [24], [38] or partitioned between
hardware and software [28], [29], [30], [31], [33], [34] (see
Fig. 13a). In the domain of SAT solvers, two methods of
software/hardware partitioning are usually employed:

partitioning according to computational complexity (see Fig. 13b)
and partitioning with respect to logic capacity (see Fig. 13c).

The first method assigns computationally intensive
portions of an application to hardware, while the remaining
portions that exhibit little parallelism are handled by the
host processor [25], [28], [29], [30], [31]. Reconfigurable
systems of this type are based on the 90/10 rule, which
states that 90 percent of the execution time of an application
is spent by 10 percent of its code. Thus, in order to increase
performance, an attempt is made to accelerate this small
portion of an application with the aid of programmable
logic devices.

The second method performs partitioning according to
the available logic capacity of the hardware employed [24],
[33], [34]. In this case, if a problem instance does not “fit” to
a chosen device, it has first to be decomposed by software
into independent subproblems, each of which satisfies the
imposed hardware constraints. As a result, the upper part
of the decision tree is processed by the host computer,
whereas the lower part is handled in an FPGA (see Fig. 13c).

4.4 Reconfiguration Modes

In the domain of reconfigurable computing, it is common to
distinguish between two configuration modes: static mode
and dynamic mode. Static configuration is usually employed
by instance-specific SAT solvers and assumes fixed
functionality of the device once it has been programmed
[13], [14], [15], [16], [17], [18], [21], [22], [23] (see Fig. 14a).
Dynamic reconfiguration allows the functionality of the
SAT satisfier to be changed during the solution of a problem
instance (see Fig. 14b). Dynamic reconfiguration can in turn
be partial or global. Global reconfiguration reserves all the

1458 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004
<\ Probl ~ Library Generate the circuit irdiance.
msta nce Qf modules specific circuit
—
£ 7
: — = -
Hardware : App:_illcat{on-l Adapt to problem
template specific circuit instance
(b)
Fig. 12. (a) Instance-specific versus (b) application-specific SAT solvers.
S (CBegn)
| SAT problem |
I Decision | =~
manual partitioning | (hardware) | Software
|
Haviovel speciication Dedl? ————————— : &
language ‘ ! it [e rmr——— <
g{ - l (hardware) —’(\M) : =1 o R)
Compilation CAD tools | - 3 o €
9 _TCorfiict? | x=0 |
el T | 4 x=l 7 Ky=l)
¥ ¥ yes | %=1 | xz=l) x=() v
Memary — Configuration . i §
{ - | | Diagrosis | Clauses | * %
(software) (software]|
Host computer R“Imgﬁm SR Reconfigurable Hardware

(a)

(Unsatisfiable)

(b) (c)

Fig. 13. Execution models: (a) An SAT problem can be either entirely mapped to reconfigurable hardware or partitioned between hardware and
software. (b) Partitioning according to computational complexity: computing implications and selection of the next decision variable assigned to
hardware, control-oriented tasks performed in software. (c) Partitioning with respect to logic capacity: only subproblems satisfying the resource

constraints are assigned to hardware.

hardware resources for each step of execution. After a step
has been concluded, the device may be reprogrammed for
the next step [24], [25]. Partial reconfiguration implies the
selective modification of hardware resources [25], [28], [30],
[31], [33], [34].

A variety of reprogrammable devices can be employed to
carry out partial dynamic reconfiguration. Single-context
devices require complete reprogramming in order to intro-
duce even a small change. Although many commercially
available FPGAs are single-context, there exist techniques
(based on hardware templates) that allow partial reconfi-
guration to take place [31], [33], [34]. Multicontext devices
possess various planes of configuration information with just
one of them active at any given moment. The use of
multicontext devices for SAT satisfiers has been studied at
the theoretical level [30], but, to the best of our knowledge, no
physical implementation has been built. Partially reconfigur-
able devices permit small portions of their resources to be
modified without disturbing the remaining parts. This kind
of device (such as the XC6200 family of Xilinx) was employed
for some SAT solvers [24], [28], but the potential for partial
reconfigurability has only been explored by Yung et al. [28],
who used this possibility to customize an instance-specific
part of their design at runtime.

4.5 Logic Capacity

The logic capacity of the employed hardware device is
always limited. Thus, efficient techniques are needed to
deal with the situation when a problem instance exceeds the
available hardware resources. The answers to this issue
differ according to the programming and execution models
adopted. Basically, four possibilities have been explored.

The first is the expansion of the logic capacity by
interconnecting a number of programmable devices and
partitioning the circuit between them. It should be noted
that fast and efficient multidevice partitioning and routing
is quite a difficult task (of course, modular design styles [20]
can alleviate it). Moreover, the working frequency of such
multidevice systems is usually limited.

The second method is to partition the problem into a
series of configurations to be run either sequentially or in
parallel. The partitioning is performed by decomposing an
initial formula into a set of independent subformulae [24].
Each subformula must satisfy the imposed hardware
constraints. The main limitation of this method is that the
efficiency of the decomposition greatly depends on the
characteristics of the formula. As a result, for some problem
instances, the partitioning time may increase to unaccep-
table levels.

The third method is based on software/hardware
partitioning according to the available logic capacity of

SKLIAROVA AND FERRARI: RECONFIGURABLE HARDWARE SAT SOLVERS: A SURVEY OF SYSTEMS

/_7\ 1
Prob eiﬁ_' Configuration Execution —b—
|nstance L

(a)

(modify) i '__
‘COnfiguration} [EXBC““"”}
[S

(b)

Result

P
J Problem
instance

Fig. 14. SAT solvers: (a) static versus (b) dynamic reconfiguration.

the hardware that is employed (see Section 4.3). In this case,
just those subproblems that appear at different levels of the
decision tree and respect the capacity limitations are
assigned to hardware, whereas the remaining portion of
the problem is processed by a software application [33],
[34]. As in the previous case, the efficiency of this method is
a function of the characteristics of a given formula.

The last method is based on a virtual hardware scheme
proposed in [30], [31], which relies on dividing the circuit
into a series of hardware pages that are successively run.
Since all the hardware pages have the same structure with
only a number of registers being reconfigured, page
switching is very fast. The computed variable assignment
is stored in external memory blocks and is processed when
traversing the FPGA from one memory block to another.

All these methods alleviate the logic capacity problem, but
do not eliminate it completely. The virtual hardware scheme
is currently the most successful technique since it permits the
biggest formulae to be processed in hardware (up to 7,680
variables and 214,304 clauses as reported in [31]).

4.6 Performance

The total time spent by a reconfigurable hardware SAT
satisfier to solve a particular problem instance is comprised
of four components: hardware compilation time, hardware
configuration time, time required for communication
between software and hardware, and actual execution time.
If a problem solution is partitioned between software and
hardware, then the execution time is composed of software
execution time and hardware execution time. It should be
noted that the values of these components depend on the
programming and execution models employed and some of
them may be zero. For example, if a problem instance is
entirely mapped to hardware, usually there is no commu-
nication (except for notifying the final result) between the
host processor and the programmable device. In the same
manner, if an application-specific approach is followed, the
hardware compilation time is zero. Actually, the compila-
tion time may constitute a large portion of the total solving
time. For easy problem instances, it even dominates and
cancels out all the benefits of fast hardware execution [13],
[14], [15], [16], [17], [18], [21], [22]. That is why, in all recent
designs, a clear intention to reduce or even avoid the
hardware compilation step is apparent [19], [20], [24], [25],
[30], [31], [33], [34], [38]. Therefore, we believe that the most
competitive hardware SAT solvers are those that follow the
application-specific approach [30], [31], [33], [34].

1459

Of the architectures proposed and implemented so far,
that of Zhong [20], because of its original solution of
organizing clauses in a pipelined network, which was
subsequently reproduced in many other hardware SAT
satisfiers, and that of de Sousa et al. [30], [31], because of a
virtual hardware scheme allowing large formulae to be
processed, deserve special mention.

One characteristic inherent in reconfigurable hardware
SAT solvers is that it is very difficult to analyze and
compare their performance accurately. As a rule, the
designers present the results achieved in the light of the
software SAT satisfier GRASP [9]. However, GRASP is run
on different platforms and with dissimilar parameters that
heavily influence its performance. Moreover, the parameter
sets are frequently not published. Besides, the majority of
the SAT solvers considered involve a hardware compilation
step, which is sometimes ignored (or hidden) when
presenting the results.

Generally, one can observe that overall speedups
achieved over software SAT solvers (including all overhead
times) range from zero to one order of magnitude. The raw
speedups (considering only the pure hardware execution
time) have been reported to be very high (several orders of
magnitude). This, on the one hand, points to a great
potential and strengthens the conclusion that more work
has to be invested to reduce the overheads. But, on the other
hand, it is fair to say that such exciting speedups have been
obtained for problem classes that are of little practical
interest. These are artificially generated problems (such as
holex from DIMACS [40]) on which GRASP [9], targeted at
processing highly structured real-world problems, does not
perform very well. Moreover, as shown by the results of the
last two software SAT competitions, which took place in
2002 [41] and 2003 [42], GRASP [9] has been surpassed by
more recent SAT satisfiers such as zChaff [43] and BerkMin
[44]. Consequently, novel algorithmic and architectural
techniques need to be explored in order to put the
reconfigurable hardware SAT solvers in a more favorable
position when compared to software solutions. In particu-
lar, to be highly competitive, hardware SAT solvers should
incorporate advanced search strategies.

5 CONCLUSION

This paper is dedicated to the description and comparison
of reconfigurable hardware SAT solvers. The performed
analysis leads to the following conclusions:

e The majority of designers implement complete
search algorithms derived from the DP algorithm.
Conflict analysis is usually not performed and just
chronological backtracking is executed (with a few
exceptions).

e Initially, all the proposed SAT solvers were based on
the instance-specific approach. However, the hard-
ware compilation time restricts the range of pro-
blems for which a reconfigurable hardware solution
is more effective than the software-based approach.
That is why all recent efforts have been focused on
avoiding instance-specific placement and routing.

e All the reconfigurable SAT solvers considered are
loosely coupled systems with the programmable
device (usually, a commercially available FPGA)

1460

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11,

being attached to the host processor via an external
interface.

It is rather difficult to estimate accurately the results
that have been achieved. First, the hardware
compilation and configuration times are not always
clearly exposed. Second, the results are usually
compared to GRASP, executed on different plat-
forms with dissimilar parameters, which can lead to
variations in the solving time of up to an order of
magnitude. Generally, our analysis has shown that
an overall speedup of about one order of magnitude
is achievable by many hardware SAT solvers for
hard problem instances. No speedup has been
attained for easy problem instances because of the
compilation and configuration overheads.
Real-world SAT formulae are quite large, however,
how instances that do not fit into an available device
can be handled efficiently is not always discussed.
Recently, in what seems to be a promising solution,
it was suggested that the problem should be
partitioned between software and reconfigurable
hardware. It should also be noted that, due to the
rapid evolution in FPGA capacity, many challenging
problem instances can now either be fitted into a
single FPGA or at least partitioned more efficiently.
The speedups achieved by reconfigurable hardware
compared to a software solution are significant just for
certain classes of SAT instances, for which the
optimization techniques proposed and implemented
by software SAT satisfiers are not very efficient. Some
examples of these techniques are: different decision
strategies, exploiting problem symmetry, careful
conflict analysis, etc. Consequently, although many
interesting and worthwhile architectures have al-
ready been proposed, innovative approaches still
need to be explored in the reconfigurable hardware
domain.

ACKNOWLEDGMENTS

The authors would like to thank Ivor Horton for his

valuable comments and suggestions. This work was

supported by the Portuguese Foundation of Science and
Technology under grants No. FCT-PRAXIS XXI/BD/
21353/99 and No. POSI/43140/CHS/2001.

REFERENCES

(1]

(2]
(3]

(4

(5]

[6]
(7]

G. Estrin, “Reconfigurable Computer Origins: The UCLA Fixed-
Plus-Variable (F+V) Structure Computer,” IEEE Annals of the
History of Computing, pp. 3-9, Oct./Dec. 2002.

S.A. Guccione, “Reconfigurable Computing at Xilinx,” keynote talk,
EUROMICRO Symp. Digital System Design, Sept. 2001.

W.H. Mangione-Smith and B.L. Hutchings, “Configurable Com-
puting: The Road Ahead,” Proc. Reconfigurable Architectures Work-
shop, pp. 81-96, 1997.

R. Tessier and W. Burleson, “Reconfigurable Computing for
Digital Signal Processing: A Survey,”]. VLSI Signal Processing,
vol. 28, nos. 1-2, pp. 7-27, 2001.

J. Gu, P.W. Purdom, J. Franco, and B.W. Wah, “Algorithms for the
Satisfiability (SAT) Problem: A Survey,” DIMACS Series in Discrete
Math. and Theoretical Computer Science, vol. 35, pp. 19-151, 1997.
S.A. Cook, “The Complexity of Theorem-Proving Procedures,”
Proc. Third ACM Symp. Theory of Computing, pp. 151-158, 1971.
M. Davis, G. Logemann, and D. Loveland, “A Machine Program
for Theorem Proving,” Comm. ACM, no. 5, pp. 394-397, 1962.

8]

&)

(10]

(1]

(12]

(13]

(14]

(15]

[10]

(171

(18]

[19]

[20]

(21]

(22]

(23]

[24]

(23]

[26]

(27]

(28]

[29]

NOVEMBER 2004

P. Goel, “An Implicit Enumeration Algorithm to Generate Tests
for Combinatorial Logic Circuits,” IEEE Trans. Computers, vol. 30,
no. 3, pp. 215-222, Mar. 1981.

L.M. Silva and K.A. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability,” IEEE Trans. Computers, vol. 48, no. 5,
pp- 506-521, May 1999.

Z. Michalewicz and D.B. Fogel, How to Solve It: Modern Heuristics.
Springer, 2000.

B. Selman, H. Levesque, and D. Mitchell, “A New Method for
Solving Hard Satisfiability Problems,” Proc. Nat'l Conf. Am. Assoc.
Artificial Intelligence (AAAI'92), pp. 440-446, July 1992.

B. Selman, H. Kautz, and B. Cohen, “Noise Strategies for
Improving Local Search,” Proc. 12th Nat’l Conf. Artificial Intelli-
gence, pp. 337-343, July 1994.

M. Yokoo, T. Suyama, and H. Sawada, “Solving Satisfiability
Problems Using Field Programmable Gate Arrays: First Results,”
Proc. Second Int’l Conf. Principles and Practice of Constraint
Programming, pp. 497-509, 1996.

T. Suyama, M. Yokoo, H. Sawada, and A. Nagoya, “Solving
Satisfiability Problems Using Reconfigurable Computing,” IEEE
Trans. VLSI Systems, vol. 9, no. 1, pp. 109-116, 2001.

T. Suyama, M. Yokoo, and A. Nagoya, “Solving Satisfiability
Problems on FPGAs Using Experimental Unit Propagation,” Proc.
Fifth Int’l Conf. Principles and Practice of Constraint Programming,
1999.

T. Suyama, M. Yokoo, and H. Sawada, “Solving Satisfiability
Problems Using Logic Synthesis and Reconfigurable Hardware,”
Proc. 31st Hawaii Int’l Conf. System Sciences, vol. 7, pp. 179-186,
1998.

P. Zhong, M. Martonosi, P. Ashar, and S. Malik, “Using
Configurable Computing to Accelerate Boolean Satisfiability,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 6, pp. 861-868, 1999.

P. Zhong, P. Ashar, S. Malik, and M. Martonosi, “Using
Reconfigurable Computing Techniques to Accelerate Problems
in the CAD Domain: A Case Study with Boolean Satisfiability,”
Proc. Design Automation Conf., pp. 194-199, 1998.

P. Zhong, M. Martonosi, P. Ashar, and S. Malik, “Solving Boolean
Satisfiability with Dynamic Hardware Configurations,” Field-
Programmable Logic: From FPGAs to Computing Paradigm, R.W.
Hartenstein and A. Keevallik, eds., pp. 326-235, Springer, 1998.
P. Zhong, “Using Configurable Computing to Accelerate Boolean
Satisfiability,” PhD dissertation, Dept. of Electrical Eng., Princeton
Univ., 1999.

O. Mencer and M. Platzner, “Dynamic Circuit Generation for
Boolean Satisfiability in an Object-Oriented Design Environment,”
Proc. 32nd Hawaii Int'l Conf. System Sciences (HICSS-32 (Configware-
Reconfigurable Eng. track), 1999.

M. Platzner and G. De Micheli, “ Acceleration of Satisfiability
Algorithms by Reconfigurable Hardware,” Field-Programmable
Logic: From FPGAs to Computing Paradigm, R.W. Hartenstein and
A. Keevallik, eds., pp. 69-78, Springer, 1998.

M. Abramovici and D. Saab, “Satisfiability on Reconfigurable
Hardware,” Proc. Seventh Int’l Workshop Field-Programmable Logic
and Applications, pp. 448-456, 1997.

M. Abramovici and]J.T. de Sousa, “A SAT Solver Using
Reconfigurable Hardware and Virtual Logic,” J. Automated
Reasoning, vol. 24, nos. 1-2, pp. 5-36, 2000.

A. Dandalis and V.K. Prasanna, “Run-Time Performance Optimi-
zation of an FPGA-Based Deduction Engine for SAT Solvers,”
ACM Trans. Design Automation of Electronic Systems, vol. 7, no. 4,
pp- 547-562, Oct. 2002.

M. Redekopp and A. Dandalis, “A Parallel Pipelined SAT Solver
for FPGA’s,” Proc. 10th Int'l Conf. Field-Programmable Logic and
Applications, pp. 462-468, 2000.

CK. Chung and P.HW. Leong, “An Architecture for Solving
Boolean Satisfiability Using Runtime Configurable Hardware,”
Proc. Int’l Workshop Parallel Processing, pp. 352-357, 1999.

W.H. Yung, YW. Seung, KH. Lee, and P.HW. Leong, “A
Runtime Reconfigurable Implementation of the GSAT Algo-
rithm,” Proc. Ninth Int’l Workshop Field Programmable Logic and
Applications, pp. 526-531, 1999.

P.HW. Leong, C.W. Sham, W.C. Wong, H.Y. Wong, W.S. Yuen,
and M.P. Leong, “A Bitstream Reconfigurable FPGA Implementa-
tion of the WSAT Algorithm,” IEEE Trans. VLSI Systems, vol. 9,
no. 1, pp. 197-201, 2001.

SKLIAROVA AND FERRARI: RECONFIGURABLE HARDWARE SAT SOLVERS: A SURVEY OF SYSTEMS

(30]

(31]

(32]

(33]

(34]

(35]

[36]

[37]

(38]

(39]

[40]

[41]

(42]

[43]

(44]

J. de Sousa,]J.P. Marques-Silva, and M. Abramovici, “A Config-
ware/Software Approach to SAT Solving,” Proc. Ninth IEEE Int'l
Symp. Field-Programmable Custom Computing Machines, 2001.

N.A. Reis and J.T. de Sousa, “On Implementing a Configware/
Software SAT Solver,” Proc. 10th IEEE Int’l Symp. Field-Program-
mable Custom Computing Machines, pp. 282-283, 2002.

R.C. Ripado and].T. de Sousa, “A Simulation Tool for a Pipelined
SAT Solver,” Proc. XVI Conf. Design of Circuits and Integrated
Systems, pp. 498-503, Nov. 2001.

I. Skliarova and A.B. Ferrari, “A Software/Reconfigurable Hard-
ware SAT Solver,” IEEE Trans. Very Large Scale Integration (VLSI)
Systems, vol. 12, no. 4, pp. 408-419, Apr. 2004.

L. Skliarova and A.B. Ferrari, “A Hardware/Software Approach to
Accelerate Boolean Satisfiability,” Proc. IEEE Design and Diagnos-
tics of Electronic Circuits and Systems Workshop, pp. 270-277, 2002.
RH.C. Yap, S.Z.Q. Wang, and M.]. Henz, “Hardware Implemen-
tations of Real-Time Reconfigurable WSAT Variants,” Proc. 13th
Int’l Conf. Field-Programmable Logic and Applications, pp. 488-496,
2003.

Y. Hamadi and D. Merceron, “Reconfigurable Architectures: A
New Vision for Optimization Problems,” Proc. Third Int’l Conf.
Principles and Practice of Constraint Programming, pp. 209-215, 1997.
A. Rashid, J. Leonard, and W.H. Mangione-Smith, “Dynamic
Circuit Generation for Solving Specific Problem Instances of
Boolean Satisfiability,” Proc. Sixth IEEE Symp. FPGAs for Custom
Computing Machines, pp. 196-205, 1998.

M. Boyd and T. Larrabee, “ELVIS—a Scalable, Loadable Custom
Programmable Logic Device for Solving Boolean Satisfiability
Problems,” Proc. Eight IEEE Int’l Symp. Field-Programmable Custom
Computing Machines, 2000.

J.W. Freeman, “Improvements to Propositional Satisfiability
Search Algorithms,” PhD dissertation, Univ. of Pennsylvania,
1995.

DIMACS challenge benchmarks, http:/ /www.intellektik.informa
tik.tu-darmstadt.de/SATLIB/benchm.html, 2001.

L. Simon, D. Le Berre, and E. Hirsch, “The SAT2002 Competition.
Technical Report (preliminary draft),” http://www.satlive.org/
SATCompetition/ onlinereport.pdf, 2002.

2003 SAT Competition, http://www.lri.fr/~simon/contest03/
results/, 2003.

M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” Proc. 38th Design
Automation Conf., pp. 530-535, 2001.

E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust SAT-
Solver,” Proc. Design, Automation and Test in Europe Conf., pp. 142-
149, 2002.

1461

louliia Skliarova received the MSc degree in
computer engineering from the Belorussian
State University of Informatics and Radioelec-
tronics, Minsk, Republic of Belarus, in 1998, and
the PhD degree, in electrical engineering, from
the University of Aveiro, Portugal, in 2004. She
is currently an assistant professor in the Depart-
ment of Electronics and Telecommunications at
the University of Aveiro. Her research interests
include reconfigurable computing, application-

specific architectures, computer-aided design, and object-oriented

programming.

Antonio de Brito Ferrari (M'83) received the
electrical engineering degrees from Universi-
dade do Porto, Portugal, and Ecole Superieure
d’Electricité, Paris, and the MSc and PhD
degrees from Brunel University, United King-
dom. Currently, he is a professor of computer
engineering at the University of Aveiro, Portugal.
His main research interests are in computer
architecture, computer arithmetic, and reconfi-
gurable systems. He is a member of the IEEE

and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

