
Reconfigurable High Performance Architectures:
How much are they ready for safety-critical

applications?

D. Sabena, L. Sterpone
Dipartimento di Automatica e Informatica - DAUIN

Politecnico di Torino
Torino, Italy

Mario Schölzel, Tobias Koal, H.T. Vierhaus
Brandenburg University of Technology

Department of computer science
Cottbus, Germany

S. Wong
Computer Engineering Laboratory
Delft University of Technology

Delft, The Netherlands

R. Glein, F. Rittner, C. Stender
RF and Microwave Design Department,

Fraunhofer Institute for Integrated
Circuits (IIS)

Erlangen, Germany

M. Porrmann, J. Hagemeyer
University of Bielefeld

Bielefeld, Germany

Abstract—Reconfigurable architectures are increasingly
employed in a large range of embedded applications, mainly due
to their ability to provide high performance and high flexibility,
combined with the possibility to be tuned according to the
specific task they address. Reconfigurable systems are today used
in several application areas, and are also suitable for systems
employed in safety-critical environments. The actual
development trend in this area is focused on the usage of the
reconfigurable features to improve the fault tolerance and the
self-test and the self-repair capabilities of the considered systems.
The state-of-the-art of the reconfigurable systems is today
represented by Very Long Instruction Word (VLIW) processors
and reconfigurable systems based on partially reconfigurable
SRAM-based FPGAs. In this paper, we present an overview and
accurate analysis of these two type of reconfigurable systems.
The content of the paper is focused on analyzing design features,
fail-safe and reconfigurable features oriented to self-adaptive
mitigation and redundancy approaches applied during the design
phase. Experimental results reporting a clear status of the test
data and fault tolerance robustness are detailed and commented.

I. INTRODUCTION
Reconfigurable systems and processors are increasingly used in
several application scenarios. The most important characteristic
lies in the fact that they can be easily tuned to match the
specific requirements of the target application, e.g., in terms of
power consumption, size, and performance; given these
features, is some cases reconfigurable systems and processors
are more convenient than traditional processors [1].
Reconfigurable systems are acquiring an increasing interest in
the domain of safety-critical applications, for example in space
and avionic applications, due to the capability of reconfiguring
the system during run-time execution; moreover the high
computational power of modern Field Programmable Gate

Arrays (FPGAs) makes these devices suitable for data
processing. Finally, reconfigurable systems must also
guarantee the abilities of self-awareness, self-diagnosis and
self-repair in order to face with errors due to the harsh
conditions typically existing in some environments [2].
In this paper we present an overview and an accurate analysis
of the two major type of reconfigurable systems: Very Long
Instruction Word (VLIW) processor and Dynamic and Partial
reconfigurable Platforms (DRPMs). More in details, we
propose a summary of the last developed work in this area,
with particular emphasis on the motivations that have driven
the developers, and on the application areas of the proposed
methods.

II. INTRODUCTION TO ON-BOARD PROCESSORS
An example of reconfigurable system based on modern

SRAM-based FPGAs is the Fraunhofer On-Board Processor
consisting of two space grade Xilinx Virtex-5QV FPGAs,
which presents an overview of the dependable reconfiguration
system. This platform does not require any additional
programmable device like a microcontroller or an anti-fuse
FPGA for the reconfiguration of the Virtex-5QV. An initial-
configuration, stored in a non-volatile Magnetoresistive RAM,
ensures the fail-safe reconfiguration of the FPGAs. Each
FPGA is able to reconfigure itself due to partial
reconfiguration and can reconfigure the other one completely.
The initial-configuration consists of a static part and a
dynamically reconfigurable part. The static part includes a
System on Chip (SoC). The main task of this SoC is the
reconfiguration of both FPGAs, the fault management and the
virtual Telemetry/Telecommand processing. The System on
Chip starts after the initial-configuration of both FPGAs at
power up. If the startup procedure completes successfully one

2014 19th IEEE European Test Symposium (ETS)

!

978-1-4799-3415-7/14/$31.00 ©2014 IEEE

!

of the two FPGAs can be reconfigured entirely for our high-
speed digital signal processing experiments. For a fault
prediction we performed a radiation analysis by calculating
the upset rates of the FPGAs primitives at different solar
conditions. For a fault prediction we performed a radiation
analysis. We calculated the upset rates of the FPGAs
primitives at different solar conditions. With our proposed
internal Block RAM radiation particle sensor we mitigate
Single Event Upsets in the FPGA. During a harsh solar
condition due to solar flares the Block RAM sensor triggers
our self-adaptive mitigation and a mitigation scheme (e. g.
Triple Modular Redundancy) is applied automatically.

The Fraunhofer On-Board Processor (FOBP) is part of the
scientific payload of the Heinrich Hertz communication
satellite. This satellite is planned to be launched into a
Geostationary Earth Orbit (GEO) in 2018 followed by an
operation time of 15 years. During the in-orbit verification the
Fraunhofer IIS will perform various communication
experiments with the FOBP.

Figure 1 depicts the four main hardware modules of the
FOBP: A Radio frequency card (analog front-end receiver,
analog front-end transmitter and clock distribution), a power
supply unit with high voltage High Power Command (HPS)
and Bi-level Switch Monitor (BSM) and two Digital Signal
Processing (DSP) cards. The intermediate center frequency
(IF) of the analog down-converted uplink inputs and outputs
before up-conversion is 1530°MHz. The bandwidth of input 1
(I1) and output 1 (O1) is 36°MHz. Input 2 (I2) and output 2
(O2) for high data rate transmissions carry signal with a
bandwidth of 450°MHz. A 1MHz carrier for a virtual
Telemetry/Telecommand (vTM/TC) is mixed in the signals of
both paths. We control and monitor the whole FOBP via this
vTM/TC link, which is in-band of the user data link. For these
experiments we use the Virtex-5QV space-grade FPGAs with
the following benefits: They are robust against Total Ionizing
Dose (TID) greater than 1°Mrad (Si), immune against
destructive Single Event Effects (SEEs) and radiation-hardened
against temporary SEEs.

III. INTRODUCTION TO VLIW PROCESSORS
Very Long Instruction Word (VLIW) processors are

adopted in a large range of embedded signal processing
applications, mainly due to their capability to achieve high
performances with low power consumption and clock
frequency. The robustness of VLIW processors is extremely
important, at the same time there is an increasing demand for
efficient and optimal test techniques able to detect permanent
faults in VLIW processors [1][3]. These algorithms would be
effective in identify erroneous resources and to perform an on-
site reconfiguration and correction of the faulty module.
Software-Based Self-Test (SBST) methods are an efficient
approach to individuate faults into a processor both at the end
of the manufacturing phase or during the life of the circuit.

In processor design, we can distinguish between two
extremes between “high performance and low flexibility” or
”low performance and high flexibility”, namely application-
specific processors or general-purpose processors, respectively.

Reconfigurable processors are envisioned to provide the best of
both world by achieving high performance with high
flexibility, i.e., the support of many different types of
operations. The MOLEN processor [4] represents an approach
in which arbitrary accelerators can be tied to any general-
purpose processor via a one-time ISA extension. The
accelerators provide the high performance and the support for
any accelerator provides the flexibility. However, the design of
accelerators requires lengthy design times (manual) in order to
achieve the “best” performance and “lowest” energy
consumption. On the other hand, automatic tools provide a way
to quickly generate accelerators, but they are usually hampered
by requiring rewriting of the original application code for them
to work efficiently. In this light, the authors in [5] proposed an
intermediate approach to utilize a parameterized VLIW
softcore, called ρ-VEX, that allows the use of existing
compilers to quickly generate code and exploit the ILP
(instruction- level parallelism) inherent in kernel code using the
VLIW to achieve “high-enough” performance. This is similar
to utilizing horizontal microcode [6]. The parameterization
allows for quick adaptation to different applications and
thereby achieving the needed flexibility. Additional benefits in
utilizing a VLIW stem from the fact that the instruction
scheduling is performed in the compiler removing the need for
a complex and power-hungry instruction scheduler as in
superscalar RISC processors. The initial project presented in
[4] quickly morphed to the design of a stand-alone ρ-VEX
softcore that is envisioned to support dynamic, i.e., run-time,
reconfiguration of its parameters. The main parameter that is
being exploited is ILP. In [7], a design was proposed that
allowed 8 VLIW datapaths to be constructed as a single 8-way,
2 times a 4-way, 4 times a 2-way VLIW processor(s) or any
combination. Moreover, unused resources can be clock gated
in order to reduce power consumption. This allowed for a
dynamic exchange between ILP and TLP (thread-level
parallelism) meaning that a single design can be seen as a
single core or as multiple many-/multi-cores. This is a
departure from the current modus operandi in using compilers
to optimize code to run on different microarchitectures to a
scenario where the core can dynamically adapt itself to the
requirements of the application(s) or the environment it is
being used. At the same time, the reconfigurability allows for
the ρ-VEX to overcome the issues of past VLIWs that
prevented them from becoming mainstream, such as
unbalanced datapaths and a high number of NOPs.

A. GENERIC BINARY
Having the ability to exchange between ILP and TLP does

not yet make the proposed ρ-VEX core dynamic. In the
dynamic scenario, one would like to be able to switch the
execution of an application transparently between 2-, 4-, and 8-
way modes. Without introducing any support, one has to
compile three versions of the application code and switch
between them when necessary. However, this approach has
several caveats. First, the code cannot be interrupted as one
cannot guarantee that the interrupted program point is exactly
the same as in another version of the application code. Second,

!

!

depending on the frequency of switching between the modes
(and assuming correct check-pointing was implemented), the
loading of codes can greatly hamper performance. Therefore,
[8] introduced the notion of generic binaries that is a single
binary that can be executed on multiple-way VLIW processors.
This allowed for the support of interrupts and removed the
need for program loading when the number of ways need to be
changed. This flexibility does not come for free as a reported
performance hit between 10% and 30% had to be paid.
However, the authors explained that this was due to the closed-
source nature of their utilized compiler as the necessary
improvement to reduce this performance hit could not be
implemented.

B. FAULT TOLERANCE
Fault-tolerance support in the ρ-VEX processor can be

implemented in many ways. One approach is to incorporate
hardware support for SEU (single event upset) errors that was
presented in [9]. More specifically, the presented approach
allowed the fault-tolerance circuitry to be dynamically turned
on or off depending on the need for protection of the code. This
means that when protection is not needed, power consumption
can be reduced. In this way, the average power consumption
can be reduced without any consequence of degrading the
fault-tolerance coverage. The paper also demonstrated that the
area overhead and cycle time degradation, compared to an
always-on fault-tolerance support, is minimal.

With the notion of generic binaries, a dynamic software
approach can also be utilized to provide protection to critical
code sections within an application using the dynamic VLIW
core introduced in [4]. For example, critical code sections can
be duplicated or triplicated depending on the level of protection
that is needed to be executed on the lower number of ways-
VLIW cores. In this way, performance can be dynamically
exchanged for (code) protection. Another example pertains the
dynamic lowering of the number of ways of the hardware in
executing an application to allow for checker threads to run on
the “freed” datapaths. When the other datapaths need to be
checked, the application code can be dynamically moved to the
other datapaths. In this manner, the application can be kept
running and be still responsive. This is different from current
approaches that require an actual context switch to allow for
checker threads to execute on the core. This introduces a lot of
overhead that reduces performance and responsiveness of the
application. Finally, we would like to note that the pro- posed
dynamic hardware fault-tolerance support is orthogonal to the
proposed software approaches. This means that they can be
used at the same time in order to provide the necessary level of
fault- tolerance.

C. ρ-VEX V3.0
After two versions of the ρ-VEX softcore (both available

for download and free to use for academic purposes) the ρ-
VEX v3.0 is nearly ready for release. While the earlier releases
required resynthesis in order to run different applications, v3.0
is intended to support the dynamic loading of applications. It is
a SoC built on top of the GRLIB platform [10]. It can address

DDR memory attached to the FPGA through separate
reconfigurable data and instruction caches and supports any
peripheral that can be connected to the AMBA bus. This
includes the programmable timer and interrupt controller that
can be found in GRLIB. The core has been extended with a
vectored trap controller unit that connects to GRLIB’s interrupt
controller. This way, the platform supports exception handling
and interrupt-driven software. Additionally, we have designed
a debug unit for the ρ-VEX core. Using the AMBA-JTAG
interface found in GRLIB, we can connect to it from a host PC
and debug programs running on the platform. To this end, we
have developed the ρ-VEX target for the GDB (GNU
DeBugger) and modified an open source JTAG - RSP (Remote
Serial Protocol) bridge program to connect to our debug unit.
In order to provide run-time support for real-world
applications, this design is also intended to run μc-Linux (as
virtual memory is not supported) and progress is being made in
porting the kernel and standard C library from that distribution
to ρ-VEX.

IV. DEPENDABILITY OF PARTIALLY RECONFIGURABLE
HARDWARE

Dependability in computer-based systems can be defined in
attributes, threats, and means to attain dependability. The main
attributes of the dependability are: Availability, reliability,
safety, integrity, and maintainability. A Concept for threats of
losing the service is the Fault-Error-Failure chain. Means to
attain dependability can be classified in: Fault prevention, fault
tolerance, fault removal and fault prediction. In this section, we
discuss structures and methods to achieve a dependable
reconfiguration system [11][12].

A. INITIAL CONFIGURATION AND START-UP
The digital signal processing of the FOBP includes two

FPGAs without additional configuration logic devices. In order
to attain a high reconfiguration reliability and to avoid single
points of failure, we propose an initial-configuration
framework, which enables partial self-reconfiguration as well
as a complete reconfiguration of the FPGAs. This framework
empowers fail-safe reconfiguration and reduces the
dependency on external configuration logic. These advantages
arise out of the coexistence of the initial-configuration with a
state-of-the-art configuration method (FPGA1 configures
FPGA2 and vice versa). The initial-configuration needs only
one additional protected non-volatile memory per FPGA, e.g.,
Magnetoresistive RAM (MRAM). See [13] for reliability
analysis and implementation details. At FOBP power on, both
FPGAs are configured with identical bit files stored in the
MRAMs. Following both FPGAs negotiate a master, which is
responsible for reconfiguration, fault management, and
vTM/TC processing. Fig. 1 depicts the configuration of the
FPGAs after initial configuration and start up. In this case,
FPGA1 was negotiated as master and is still configured with
the initial-configuration. FPGA2 can be reconfigured
completely with any firmware send via the vTM/TC link. This
configuration concept allows an effective and reliable
maintenance in terms of software and firmware updates.

!

!

Figure 1. The scheme of the FOPB Reconfigurable and Fault Tolerant System

B. SYSTEM ON CHIP AND TASKS
The System on Chip (SoC) is located in the static part of the

initial-configuration and is based on a 32-bit microprocessor.
Most likely, we will use the LEON3FT from Aeroflex Gaisler.
The hardware and the boot code of the SoC is part of the static
area in the initial-configuration and is therefore unchangeable.
Nevertheless, it is possible to update the application software
(e.g., the vTM/TC processing code). The three main tasks of the
SoC can be described as follows.

The first main task is the reconfiguration of both FPGAs via
the Internal Configuration Access Port (ICAP) of the own
FPGA and the Select MAP (SMAP) interface of the FPGA on
the other DSP card. Additionally, the reconfiguration task
includes scrubbing with read back for both FPGAs. Fault
management is the second main task and is realized with a Fault
Detection, Isolation and Recovery (FDIR) system. One part of
the FDIR system is a fault detector, which is capable of
detecting certain faults in several components inside and
outside of the FPGA. A detected fault is reported to a fault
management unit, which calculates countermeasures. A
countermeasure can be a reset of a certain firmware or
hardware unit, (partial) reconfiguration of the FPGAs or
switching into safe mode. For the design of the FDIR system
we took the radiation effects of the FPGA into account, see
Section III-C.

The implemented fault management increases the
availability and reliability of the FOBP. Telemetry and
telecommand of the FOBP is the third main task. Commands
and data (e.g., a bit file or software update) are sent from the
ground station to the FOBP via the vTM/TC uplink. The state
of the FOBP and response messages are sent back to earth via
the vTM/TC downlink periodically.

C. RADIATION ANALYSIS
Temporary SEEs are the dominant fault effects of radiation-

hardened SRAM-based FPGAs in orbit. The focus of this
section are Single Event Upsets (SEU) as part of SEEs. SEUs
occur in every FPGA primitive. We calculated the upset rates of
the different primitives: Configuration controller, SRAM
configuration memory, flip flops, multiplier and Block RAM
(BRAM). Based on the radiation conditions in GEO and an
aluminum shielding of 7°mm we used the widely accepted tool

Cosmic Ray Effects on Micro-Electronics (CREME96) to
calculate the upset rates for five different solar conditions
(Solar Minimum, Solar Maximum, Worst Week, Worst Day
and Peak 5 Minutes) [14].

One result of the upset rate calculation is the high sensitivity
of the non-hardened BRAM regarding protons and heavy ions.
We take advantage of this special property of the BRAM to
perform a run-time fault prediction in orbit. Since
environmental changes have an order of magnitude impact on
upset rates, it is beneficial to adapt the redundancy to the
current environment rather than design for the worst-case
expected environment. Since BRAM upset rates are higher than
other upset rates, we can use BRAM upsets as a sensor to
characterize the environment. We perform a self-adaptive SEU
mitigation based on this environment characterization. In a case
study, we show that it is possible to triplicate the data
throughput at the Solar Maximum condition (no flares)
compared to a Triple Modular Redundancy implementation of a
single module. We also show the decreasing Probability of
Failures Per Hour by 2 x 104 at flare-enhanced conditions
compared with a non-redundant system. The proposed BRAM
radiation sensors can be utilized in a user design without the
need of additional BRAMs. This is possible since the sensor
reads the Error-Correcting Code (ECC) data of the accessed
word and processes it [15].

V. DRPM FOR HARDWARE SATELLITE PAYLOAD
Safety critical missions, driven by space and avionic

applications, are increasingly attracting the usage of
reconfigurable systems due to low non-recurring engineering
costs, reconfigurability and large number of logic resources
they provide. Among the various reconfigurable systems
developed, the ones implemented on SRAM-based FPGAs are
the most effective to cope with the demanding on-board
processing capabilities. SRAM-based FPGAs are characterized
by large gate counts and they provide a flexible platform to
implement a complete System-on-Chip (SoC) on a single
device. Besides, SRAM-based FPGAs are suitable for applying
dynamic reconfiguration, thus enabling the FPGA to be
partitioned into static region (SR) and partially reconfigurable
(PR) region, where the static region contains the components
that are not changed during run-time, such as interface or
memory controllers. Vice versa, the partially reconfigurable

Clock
Distribution

A
na

lo
g

Fr
on

t-
E

nd
R

ec
ei

ve
r

OCXO

SRAM

ADC DAC

SDRAM

MRAM

SRAM

UVEPROM

Power,
HPC/
BSM

Control Syn

BW
36 MHz

BW
450 MHz

50 V

HPC

BSM

I1

I2

A
na

lo
g

Fr
on

t-
E

nd
T

ra
ns

m
itt

er

IF
=

15
30

 M
H

z

BW
36 MHz

BW
450 MHz

O1

O2
IF

=
15

30
 M

H
z

IF
=

15
30

 M
H

z

IF
=

15
30

 M
H

z DSP1

FPGA1 Virtex-5QV

DACADC

Dynamically Reconfigurable Part

Static Part
SoC

Digital
RX

Digital
TX

vTM/TC
SW

CFG IF

SRAM

SDRAM

MRAM

SRAM

UVEPROM

DSP2

FPGA2 Virtex-5QVCFG IF

High Speed Digital Signal Processing Experiments

(completely reconfigurable after initial configuration
of both FPGAs and start-up of FPGA1 as master)

BRAM Sensor

!

!

region offers resources for various different hardware modules
that can be loaded at run-time according to the needs of the
target application. These dynamic components are represented
by so called dynamic partially reconfigurable modules (PRM).
At run-time one or several instances of a PRM can be placed in
the PR region, while the communication between the PR region
and the SR region is realized by a communication macro, which
is explicitly designed to cope with the special needs of dynamic
reconfiguration [16]. For the purpose of this work, we
implemented a tiled PR region according to the scheme
illustrated in Figure 2. In this scenario, the PR region is divided
into reconfigurable tiles, which define the atomic unit of partial
reconfiguration. Each instance of a PR module is composed by
a set of contiguously aligned tiles, where each tile consists of a
set of static and reconfigurable resources. The static resources
are available for the instantiation of PR modules at run-time.

As documented by several research works on the field, one
of the most relevant problems in adopting SRAM-based FPGAs
in radiation-harsh environment is the dangerous effects induced
by radiation particles such as atmospheric neutrons and heavy
ions [17]. These particles may induce non-destructive loss of
information within the system provoking Single Event Upsets
(SEUs) phenomena that may affect the functionality of the
implemented system. In a SRAM-based FPGA, SEUs may
affect both the memory elements used by the design the FPGA
implements as well as the FPGA’s configuration memory.
Several works demonstrated the sensitivity of SRAM-based
FPGAs to the SEUs induced by high energy particles [18][19]
besides various hardening techniques have been developed to
specifically address the mitigation of such effects when circuits
are implemented on these devices. In this paper we show the
results of a neutron testing radiation experiment on a DRPM
system which has been evaluated in two different versions:
unhardened, thus implemented using commercially available
tools, and hardened according our developed hardening design
flow based on suitable place and route implementation of the
system on the SRAM-based FPGA device.

Figure 2. The Dynamically Reconfigurable Processing Module (DRPM)

main architecture overview.
The DRPM system has been implemented on Xilinx

SRAM-based FPGAs: a Xilinx Virtex-4 FX100. The resources
have been placed according to the scheme reported in Figure 2.
Radiation testing were performed in the VESUVIO neutron
facility at ISIS, Rutherford Appleton Laboratories (RAL) in
Didcot, UK. The experimental results we gathered show an

evident reduction of the Single Event Functional Interrupts
(SEFIs) effect observed on the hardened version of the DRPM
with respect to the original unhardened version.

VI. SELF-REPAIR OF RECONFIGURABLE PROCESSORS
Nano-scaled hardware provides high performance at low

power consumption. Unfortunately, it becomes also more
susceptible to aging effects causing permanent faults [20]. This
increases for long living embedded systems the probability to
fail during their mission time. Fault-tolerance techniques
targeting permanent faults will improve the reliability of such
systems. Handling of permanent faults is usually accomplished
by hardware redundancy. While passive hardware redundancy
techniques are used for fault masking, active hardware
redundancy allows for a reconfiguration of the system, such
that faulty components are taken out of operation [21]. This
allows for handling of multiple permanent faults at reasonable
costs, because a faulty component that is taken out of operation
by a reconfiguration will not further contribute to the results of
the system.

In superscalar processors, redundant hardware is inherently
available. Usually it is used for achieving high performance by
parallel execution. But, obviously, it can be also used for fault
tolerance purposes. Thereby, the inherently available hardware
redundancy can be administrated at various levels of the system
stack and at different granularity levels as it is depicted in
Figure 3.

A
dm

in
st

ra
tio

n
La

ye
r

H
W

S
W

Figure 3. Classification of hardware-redundancy according to the used
granularity of the components and the system layer for administration.

The granularity level specifies the size of redundant
components that can replace each other. The size of these
components ranges from processor cores down to simple gates.
The administration of these redundant components can take
place at various levels of the system stack. Thereby, the
administration can be divided roughly into software-based
(SW) and hardware-based (HW) administration schemes. As an
example consider dynamically scheduled superscalar processor
architectures where the hardware scheduler is extended to
duplicate operations that are executed by different functional
units. There, the redundantly available functional units are
administrated in hardware. The same duplication of operations
can be achieved in software by a compiler that generates a
program for a very long instruction word (VLIW) processor.
Hardware-based administration at low granularity levels
requires a strong administrative overhead of more than 100%
only for switches and control of redundant hardware. This
administrative overhead is reduced significantly, if the
granularity is coarsened. However, coarser-grained granularity

!

!

also means that by a single fault a huge functioning portion of
the system is taken out of operation. The advantage of software-
based administration is that the granularity-level can be reduced
substantially without significantly increasing the hardware
overhead. The basic idea of the software-based reconfiguration
is to reconfigure the application in the program memory, such
that faulty components in the data path are no longer used. Such
a software-based administration can be applied only to
statically scheduled processors, e.g., VLIW processors, where
the program has control over the used hardware components.
Some early work on a software-based reconfiguration of a
programmable application specific data path was published by
Guerra [22] and Karri [23]. There, various schedules of the
same program were generated in advance for different fault
states of the data path. If a particular permanent fault occurs in
the field, then the corresponding schedule that avoids the usage
of the defective component was selected for execution. This
solution becomes impractical for larger applications. A few
approaches were recently proposed where the adaption of the
software is done autonomously in the field. In [24], Meixner
has proposed the usage of a compiler in a multicore system with
a general-purpose processor and several simple cores. The
general purpose core is used for recompiling the user
applications for the simple cores in the field. Various detours
were presented for this purpose, for example for avoiding the
usage of particular registers, operators, and bypasses in the
simple cores. However, the required memory overhead for the
used gcc-compiler, source code, and libraries is not reported.
The complexity of the compiler-backend can be reduced
significantly by adapting the binary code of the user application
of a VLIW processor. Various reconfiguration techniques for
VLIW processors programs were presented. For simple
adaptation schemes the repair routine (i.e., the compiler-
backend) is implemented with less than 300 VLIW instructions
and executes within less than a second for adapting some
hundred thousands of instructions. Moreover, it was shown that
with different versions of the repair routine (each version uses
different resources) a single VLIW core can perform the
reconfiguration of its own program code. The granularity of the
software-based reconfiguration was lowered down to simple
2:1-multiplexer structures for read ports and bypasses without
introducing any additional hardware overhead. By this finer
granularity the performance degradation of the processor could
be reduced significantly. Instead of about 300% of run time
overhead, only 20% runtime overhead were achieved.

The fine-grained software-based reconfiguration of the
processor requires an error detection and diagnosis mechanism
that can be carried out in the field at that granularity-level that
is used by the reconfiguration techniques presented. Error
detection may be done on-line concurrently with the execution
of the user application for detecting temporary and permanent
faults or periodically (off-line) for detecting permanent faults
only. Usually periodically testing can be performed at lower
granularity with less overhead than concurrent error detection.
Two major strategies may be used for this purpose, which were
originally developed for manufacturing test and diagnosis:
built-in self-test (BIST) and software-based self-test (SBST).

Diagnostic BIST approaches usually collect test responses as
signatures on-chip. But diagnosis of them is done off-chip,
because determining the fault site based on the signature is a
computational complex and time consuming task. The runtime
of the algorithms used for such a diagnosis is usually in the
range of minutes, measured on workstations. Moreover,
diagnostic information is provided at structural gate level, but
software-based reconfiguration schemes need coarser grained
fault state information at functional level. For example, does a
particular adder work properly, or can a particular register be
used. For coarser grained BIST approaches the diagnostic
complexity is reduced, such that it can be on-chip. For example,
in [25] test patterns for particular components of a processor are
stored in an on-chip ROM, such that they can be tested during
idle cycles. Vierhaus et al. proposed a scan-based BIST
technique for VLIW processors that employs the redundancy in
the data path at slot level. Test patterns are generated with
LFSR structures, but test responses are not compared with pre-
computed test responses. Rather, the same test pattern is applied
to all slots of a VLIW processor, and the obtained results are
compared with each other. Similar ideas have been developed.
The test patterns are stored in the program memory as if they
were instructions. Due to the used VLIW processor
architecture, these test patterns can be fetched directly into the
pipeline for testing the data path as if they were normal
instructions. Test responses are checked at the end of the
pipeline by comparing them with each other. The disadvantage
of these approaches based on a majority vote is that they fail for
multiple faults in the slots of a VLIW processor.

Basically, a SBST is well suited for providing functional
fault state information in the field. Test programs for various
processor components were recently developed for read ports,
register files, TLBs, and branch prediction units. By putting
together all of these test programs, high fault coverage for
complex processors may be achieved. Unfortunately, a good
diagnostic test program is not obtained easily in this way.

The diagnostic capability of such a test program is limited,
because even a simple test program uses many processor
components, such that a faulty component is not uniquely
identified. Diagnosis a diagnostic test routines composed of
many test programs can be also effective. Each test programs
utilizes only few components of the processor, such that a
failing test program refers to a small set of faults only. On the
other hand, all the test programs together should cover as many
faults as possible. In order to achieve both goals. From the
pass/fail information of each test program, the set of fault
candidates is isolated by using fault trees. A major problem of
this approach is the generation of small diagnostic test
programs. A method for automatically improving diagnostic
test programs by an iterative improvement phase using genetic
algorithms can be applied [26]. Unfortunately, both diagnostic
SBST approaches provide diagnostic information at structural
gate level, which is not the desired information for software-
based reconfiguration techniques. Moreover, the SBST
programs are used as static programs. This becomes a problem,
when multiple faults must be localized correctly in a processor.
For example, suppose the test program for an adder uses a

!

!

particular register for loading the operand values. If this register
becomes faulty, then the adder cannot be tested anymore,
because there is no underlying hardware-based reconfiguration
scheme that changes the configuration in a transparent way for
the software. For this purpose diagnostic and adaptive SBST
routine is proposed for a simple VLIW processor, where
software-based reconfiguration techniques are used for adapting
also the test program to the current fault state of the processor.
By this it is ensured that the diagnostic test routine can
determine in a reliable manner the faulty component, even if
there are already other faults present in the processor. The
diagnostic test of most components of the VLIW-processor is
accomplished within a few milliseconds and a total test routine
size of about 26 KByte. Unfortunately the adaptation of the test
programs must be done by an external administration processor,
which requires an additional hardware overhead of 5%. Hence,
diagnostic software-based self-test and reconfiguration of
VLIW processors for handling permanent faults can be
accomplished with low hardware-overhead, moderate program
memory overhead and within a short execution break, whereby
the software-based reconfiguration time dominates by far the
software-based self-test time.

VII. SOFT ERRORS ON DRPM
Radiation experiments were performed in the VESUVIO

neutron facility at ISIS. We irradiated the devices with the
available spectrum that has already been demonstrated to be
suitable for emulating the atmospheric neutron flux. The
available flux was about 5.89·105 n/(cm2·s) for energies above
10MeV. Irradiation was performed at room temperature with
normal angle of incidence. The beam was focused on a spot
with a diameter of 2cm plus 1cm of penumbra. The size of the
spot is sufficient to uniformly irradiate the whole FPGA chip
out of the beam. This is essential for preventing neutron-
induced errors on power switches which may compromise the
experiment. Moreover, having the DDR memory out of the
beam allowed us to use it as a safe temporary storage of the
Microblaze instruction code, thus preventing common failures
induced by errors affecting the original instruction code. The
workload of the system has been settled with an FFT
application cycle executing the following operations: data
memory initialization, data memory checking, two execution of
Fast Fourier Transform (FFT) using Microblaze resources,
checking differences between FFT applications, FFT execution
using multipliers, result comparison. After the FFT application
a set of configuration memory operations ant test routines are
executed.

In details, configuration memory operations consist of three
steps: N configuration memory frames read and on a signature
computed, N configuration memory frames are written and
signature stored, finally the same frames are read back again
and a signature is compared. Signatures comparison allows
detecting SEFI affecting the internal configuration access ports.
Finally, the test routines include Software-Based Self-Test
(SBST) programs suitable written for the DDR memory
controller, Multipliers and ICAP port in order to individuate
errors that cannot be covered by the FFT execution. The total

execution time of this workload lasts for 10 seconds, during the
radiation beam, the workload is continuously repeated until it
stops due to a critical SEFI or a configuration memory scrub
cycle.

Table II. Experimental Results – Long Duration Test

DRPM System – Average Maximal
Duration [min]

Xilinx Virtex-4
FX100

Xilinx Virtex-5
LX50T

Original Hardened Original Hardened
35.36 67.33 34.33 66.83

The analysis we performed consists on two experimental

campaigns. The first aims at evaluating the resilience of the
DRPM under the beam before the system incurs in a permanent
error stopping the DRPM functionality. For this purpose the
application is executed continuously without FPGA’s
configuration memory scrubbing. Results related to this
analysis are reported in Table I, the hardened DRPM system
results two times more resilient than the original ones with
respect to critical SEFIs.

Table III. Experimental Results – Periodic Scrubbing every 20 minutes

The second experiment is oriented to evaluate the overall

performance of the system given a defined scrub cycle of 20
minutes, corresponding to 120 consecutive workload
executions. Experimental results of the second radiation
campaigns are reported in Table III, where we indicated the
average time and the number of errors. Errors are classified
according following classification: transient, in case it
temporary affects the application execution; permanent, if it
affects the execution until a scrub cycle is performed but it is
detected by the checking operations or by the testing routines;
SEFI in case it stops the execution of the DRPM system in an
irreversible way (i.e. the processor hangs and it is necessary to
reconfigure the entire DRPM). As illustrated in Table III, the
hardened DRPM results about 4 times more resilient than the
original version if critical SEFIs induced by FPGA’s
configuration memory bitflips are considered. The first part of
the Table III includes the average time measured before one
kind of error is observed into the system. The two versions have
a similar number of transient errors since the system has not
been protected versus these effects, besides these errors are
detected by the checking operations executed during the
Microblaze workload and by the testing routines. Furthermore,

 Xilinx Virtex-4
FX100

Xilinx Virtex-5
LX50T

Average Time [mins] Original Hardened Original Hardened
Transient Error 10.07 9.68 9.87 9.43

Permanent Error 13.81 15.85 13.63 15.26
SEFI (Critical

Error)
11.31 19.21 11.02 19.18

Errors [#] Original Hardened Original Hardened
Transient Error 89 93 93 96

Permanent Error 78 75 83 76
SEFI (Critical

Error)
16 4 18 5

!

!

it is interesting to notice that the ICAP port has an extremely
low sensitive rate. It must be underline that the relevant
comparison is related to the SEFI inducing critical error,
considering the number of errors generated (Table III, last line).
According to the achieved results, the hardened circuit is 3.8
times better than the original ones since only 5 versus 18
configuration memory upsets lead to the stopping of the
functionality.

As reported in Table III, the number of transient errors
result larger in the hardened version than the original ones. The
controversy data must be analyzed considering that the
hardened version has Microblaze with duplicated data path and
the number of storage resources of the hardened version results
bigger than the plain one. Please note that the number of
transient errors result greater than the number of critical
configuration memory bits, since the system has been hardened
with respect to configuration memory upsets, vice versa, the
system has not been hardened versus transient errors, since
Flip-Flops and local processor memory have not been hardened
with TMR or other redundancy based techniques.

VIII. CONCLUSIONS AND FUTURE WORKS
The adoption of reconfigurable systems on space and

avionic applications is able to provide a great benefit thanks to
the on-site reconfigurable capabilities. Reconfigurable systems
are effectively implemented using Dynamic Reconfigurable
Platforms or Very Long Instruction Word (VLIW) processors
and requires appropriate validation in order to estimate
radiation sensitivity in particular focusing on soft-errors and
latch-ups. On the other side, these systems require the adoption
of diagnostic capability, in order to provide the possibility to
reconfigure the system and repair faulty units.

REFERENCES
[1] D. Sabena, M. Sonza Reorda, L. Sterpone, “On the development of

diagnostic test programs for VLIW processors, ” Very Large Scale
Integration (VLSI-SoC), 2013 IFIP/IEEE 21st International Conference
on, pp. 84 – 89, 2013.

[2] M. Sonza Reorda, L. Sterpone, A.Ullah, “An error-detection and self-
repairing method for dynamically and partially reconfigurable systems,”
Test Symposium (ETS), 2013 18th IEEE European, pp. 1 – 7, 2013.

[3] D. Sabena, M. Sonza Reorda, L. Sterpone, “On the Automatic
Generation of Optimized Software-Based Self-Test Programs for VLIW
Processors,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 22 , no. 4, pp. 813 – 823, April 2014.

[4] V. Stamatis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov and
Elena Moscu Panainte, “The MOLEN Polymorphic Processor”, IEEE
Transactions on Computers, 53, pp. 1363 – 1375, 2004.

[5] S. Wong, T. Van As, G. Brown, “r-VEX: A Reconfigurable and
Extensible Softcore VLIW Processor”, ICECE Technology, 2008, FPT,
International Conference on Field Programmable Technoogy, pp. 369 –
372, December 2008.

[6] S. Vassiliadis, S. Wong, S. Cotofana, “Microcode Processing:
Positioning and Directions”, IEEE Micro, pp. 21 – 30, July, 2003.

[7] F. Anjam, S. Wong, L. Carro, G.L. Nazar and M. B. Rutzig,
“Simultaneous Reconfiguration of Issue-Width and Instruction Cache for
VLIW Processor”, Embedded Computer Systems (SAMOS), 2012,
International Conference on, pp. 183 – 192, July 2012.

[8] Anthony Brandon and Stephan Wong, “Support for Dynamic Issue
Width in VLIW Processors using Generic Binaries”, IEEE Design,
Automation and Test in Europe, 2013, pp. 827 – 832, March 2013.

[9] Fakhar Anjam and Stephan Wong, “Configurable Fault-Tolerance for a
Configurable VLIW Processor”, in Philip Brisk, Josè Gabriel Figueiredo
Coutinho and Pedro C. Diniz, “Reconfigurable Computing:
Architectures, Tools and Applications”, Vol. 7806, Lecture Notes in
Computer Science, pp. 167 – 178, Springer Berlin, Heidelberg, 2013.

[10] Jiri Gaisler, Sandi Habic and E. Catovic, “GRLIB IP Library User’s
Manual”, http://gaisler.com/products/grlib/grlib.pdf, 2010.

[11] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, “Basic concepts
and taxonomi of dependable and secure computing”, IEEE Transactions
on Dependable and Secure Computing, Vol. 1, No. 1, pp. 11 – 33,
January 2004.

[12] M. Glab, “Dependability-aware system-level design for embedded
systems”, Dissertation, University of Erlangen-Nuremberg, Germany,
Mar. 2011, Verlag Dr. Hut, Munich, Germany.

[13] R. Glein, F. Rittner and A. Hoffmann, “Ensuring FPGA reconfiguration
in space”, Xcell Journal, No. 84, pp. 23 – 27, July 2013, [online]
Available:
http://www.xilinx.com/pubblications/archives/xcell/Xcell84.pdf

[14] G. Swift and G. Allen, “Virtex-5QV Static SEU characterization
summary”, May 2013, [online], Available: http://parts.jpl.nasa.gov/wp-
content/uploads/V5QV-Static-SEU-Summary-ReportRevD.pdf

[15] R. Glein, B. Schmidt, F. Rittner, J. Teich, and D. Ziener, “A self-
adaptive SEU mitigation system for FPGAs with an internal block RAM
radiation particle sensors”, in 2014, IEEE 22st Annual International
Symposium on Field-Programmable Custom Machines (FCCM), Boston,
May, 2014.

[16] M. Koester, W. Luk, J. Hagemeyer, M. Porrmann, U. Ruckert, “Design
Optimizations for Tiled Partially Reconfigurable Systems”, IEEE
Transactions on VLSI, 2010, pp. 1 – 14.

[17] G. R. Allen, G. Madias, E. Miller, G. Swift, “Recent Single Event Effects
Results in Advanced Reconfigurable Field Programmable Gate Arrays”,
IEEE Radiation Effects Data Workshop, 2011, pp. 1 – 6.

[18] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. A. LaBel, M.
Friendlich, H. Kim, A. Phan, “Effectiveness of Internal Versus External
SEU Scrubbing Mitigation Strategies in a Xilinx FPGA: Design, Test
and Analysis”, IEEE Transactions on Nuclear Science, Vol. 55, Issue 4,
Part 1, 2008, pp. 2259 – 2266.

[19] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, K. Lundgreen,
“Domain Crossing Errors: Limitations on Single Device Triple-Modular
Redundancy Circuits in Xilinx FPGAs”, IEEE Trans. on Nuclear
Science, Vol. 54, Issue 6, Part 1, 2007, pp. 2037 – 2043.

[20] Y. Cao, P. Bose and J. Tschanz, “Reliability Changes in Nano-CMOS
Design (Guest Editor’s Introduction), IEEE Design & Test of Computers,
26 (6), pp. 6-7, 2009.

[21] I. Koren and C. M. Krishna, “Fault-Tolerant Systems”, Morgan
Kaufmann, 2007.

[22] L. Guerra, M. Potkonjak and J. M. Rabaey, “High Level Synthesis
Technique for Reconfigurable Datapath Structures”, IEEE Conference on
Computer Aided Design (ICCAD’93), pp. 26-29, 1993

[23] L. Guerra, M. Potkonjak and J. M. Rabaey, “Behavioral-Level Synthesis
of Heterogeneous BISR reconfigurable ASIC’s”, IEEE Transactions on
Very Large Scale of Integration (VLSI), 6(1), pp. 158 – 167, 1998.

[24] A. Meixner and D. J. Sorin, “Detouring: Traslating Software to
Circumvent Hard Faults in Simple Cores”, Proceedings of the
International Conference on Dependable Systems and Networks (DSN),
pp. 80 – 89, 2008.

[25] S. Muller, M. Scholzel and H. T. Vierhaus, “Towards a Graceful
Degradable Multicore-System by Hierarchical Handling of Hard Errors”,
Proceedings of 21st Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP’13), 2013.

[26] P. Bernardi, E. Sanchez, M. Schillaci, et. al.,”An effective technique for
minimizing the cost of processor software-based diagnosis in SoCs”,
Proceedings of the Conference on Design, Automation and Test in
Europe (DATE’06), pp. 412 – 417, 2006.

!

!

