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Abstract—Reconfigurable architectures are increasingly 
employed in a large range of embedded applications, mainly due 
to their ability to provide high performance and high flexibility, 
combined with the possibility to be tuned according to the 
specific task they address. Reconfigurable systems are today used 
in several application areas, and are also suitable for systems 
employed in safety-critical environments. The actual 
development trend in this area is focused on the usage of the 
reconfigurable features to improve the fault tolerance and the 
self-test and the self-repair capabilities of the considered systems. 
The state-of-the-art of the reconfigurable systems is today 
represented by  Very Long Instruction Word (VLIW) processors 
and reconfigurable systems based on partially reconfigurable 
SRAM-based FPGAs. In this paper, we present an overview and 
accurate analysis of these two type of reconfigurable systems. 
The content of the paper is focused on analyzing design features, 
fail-safe and reconfigurable features oriented to self-adaptive 
mitigation and redundancy approaches applied during the design 
phase. Experimental results reporting a clear status of the test 
data and fault tolerance robustness are detailed and commented. 

I. INTRODUCTION 
Reconfigurable systems and processors are increasingly used in 
several application scenarios. The most important characteristic 
lies in the fact that they can be easily tuned to match the 
specific requirements of the target application, e.g., in terms of 
power consumption, size, and performance; given these 
features, is some cases reconfigurable systems and processors 
are more convenient than traditional processors [1]. 
Reconfigurable systems are acquiring an increasing interest in 
the domain of safety-critical applications, for example in space 
and avionic applications, due to the capability of reconfiguring 
the system during run-time execution; moreover the high 
computational power of modern Field Programmable Gate 

Arrays (FPGAs) makes these devices suitable for data 
processing. Finally, reconfigurable systems must also 
guarantee the abilities of self-awareness, self-diagnosis and 
self-repair in order to face with errors due to the harsh 
conditions typically existing in some environments [2]. 
In this paper we present an overview and an accurate analysis 
of the two major type of reconfigurable systems: Very Long 
Instruction Word (VLIW) processor and Dynamic and Partial 
reconfigurable Platforms (DRPMs). More in details, we 
propose a summary of the last developed work in this area, 
with particular emphasis on the motivations that have driven 
the developers, and on the application areas of the proposed 
methods.  

II. INTRODUCTION TO ON-BOARD PROCESSORS 
An example of reconfigurable system based on modern 

SRAM-based FPGAs is the Fraunhofer On-Board Processor 
consisting of two space grade Xilinx Virtex-5QV FPGAs, 
which presents an overview of the dependable reconfiguration 
system. This platform does not require any additional 
programmable device like a microcontroller or an anti-fuse 
FPGA for the reconfiguration of the Virtex-5QV. An initial-
configuration, stored in a non-volatile Magnetoresistive RAM, 
ensures the fail-safe reconfiguration of the FPGAs. Each 
FPGA is able to reconfigure itself due to partial 
reconfiguration and can reconfigure the other one completely. 
The initial-configuration consists of a static part and a 
dynamically reconfigurable part. The static part includes a 
System on Chip (SoC). The main task of this SoC is the 
reconfiguration of both FPGAs, the fault management and the 
virtual Telemetry/Telecommand processing. The System on 
Chip starts after the initial-configuration of both FPGAs at 
power up. If the startup procedure completes successfully one 
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of the two FPGAs can be reconfigured entirely for our high-
speed digital signal processing experiments. For a fault 
prediction we performed a radiation analysis by calculating 
the upset rates of the FPGAs primitives at different solar 
conditions. For a fault prediction we performed a radiation 
analysis. We calculated the upset rates of the FPGAs 
primitives at different solar conditions. With our proposed 
internal Block RAM radiation particle sensor we mitigate 
Single Event Upsets in the FPGA. During a harsh solar 
condition due to solar flares the Block RAM sensor triggers 
our self-adaptive mitigation and a mitigation scheme (e. g. 
Triple Modular Redundancy) is applied automatically. 

The Fraunhofer On-Board Processor (FOBP) is part of the 
scientific payload of the Heinrich Hertz communication 
satellite. This satellite is planned to be launched into a 
Geostationary Earth Orbit (GEO) in 2018 followed by an 
operation time of 15 years. During the in-orbit verification the 
Fraunhofer IIS will perform various communication 
experiments with the FOBP. 

Figure 1 depicts the four main hardware modules of the 
FOBP: A Radio frequency card (analog front-end receiver, 
analog front-end transmitter and clock distribution), a power 
supply unit with high voltage High Power Command (HPS) 
and Bi-level Switch Monitor (BSM) and two Digital Signal 
Processing (DSP) cards. The intermediate center frequency 
(IF) of the analog down-converted uplink inputs and outputs 
before up-conversion is 1530°MHz. The bandwidth of input 1 
(I1) and output 1 (O1) is 36°MHz. Input 2 (I2) and output 2 
(O2) for high data rate transmissions carry signal with a 
bandwidth of 450°MHz. A 1MHz carrier for a virtual 
Telemetry/Telecommand (vTM/TC) is mixed in the signals of 
both paths. We control and monitor the whole FOBP via this 
vTM/TC link, which is in-band of the user data link. For these 
experiments we use the Virtex-5QV space-grade FPGAs with 
the following benefits: They are robust against Total Ionizing 
Dose (TID) greater than 1°Mrad (Si), immune against 
destructive Single Event Effects (SEEs) and radiation-hardened 
against temporary SEEs. 

III. INTRODUCTION TO VLIW PROCESSORS  
Very Long Instruction Word (VLIW) processors are 

adopted in a large range of embedded signal processing 
applications, mainly due to their capability to achieve high 
performances with low power consumption and clock 
frequency. The robustness of VLIW processors is extremely 
important, at the same time there is an increasing demand for 
efficient and optimal test techniques able to detect permanent 
faults in VLIW processors [1][3]. These algorithms would be 
effective in identify erroneous resources and to perform an on-
site reconfiguration and correction of the faulty module. 
Software-Based Self-Test (SBST) methods are an efficient 
approach to individuate faults into a processor both at the end 
of the manufacturing phase or during the life of the circuit. 

In processor design, we can distinguish between two 
extremes between  “high performance and low flexibility” or 
”low performance and high flexibility”, namely application-
specific processors or general-purpose processors, respectively. 

Reconfigurable processors are envisioned to provide the best of 
both world by achieving high performance with high 
flexibility, i.e., the support of many different types of 
operations. The MOLEN processor [4] represents an approach 
in which arbitrary accelerators can be tied to any general-
purpose processor via a one-time ISA extension. The 
accelerators provide the high performance and the support for 
any accelerator provides the flexibility. However, the design of 
accelerators requires lengthy design times (manual) in order to 
achieve the “best” performance and “lowest” energy 
consumption. On the other hand, automatic tools provide a way 
to quickly generate accelerators, but they are usually hampered 
by requiring rewriting of the original application code for them 
to work efficiently. In this light, the authors in [5] proposed an 
intermediate approach to utilize a parameterized VLIW 
softcore, called ρ-VEX, that allows the use of existing 
compilers to quickly generate code and exploit the ILP 
(instruction- level parallelism) inherent in kernel code using the 
VLIW to achieve “high-enough” performance. This is similar 
to utilizing horizontal microcode [6]. The parameterization 
allows for quick adaptation to different applications and 
thereby achieving the needed flexibility. Additional benefits in 
utilizing a VLIW stem from the fact that the instruction 
scheduling is performed in the compiler removing the need for 
a complex and power-hungry instruction scheduler as in 
superscalar RISC processors. The initial project presented in 
[4] quickly morphed to the design of a stand-alone ρ-VEX 
softcore that is envisioned to support dynamic, i.e., run-time, 
reconfiguration of its parameters. The main parameter that is 
being exploited is ILP. In [7], a design was proposed that 
allowed 8 VLIW datapaths to be constructed as a single 8-way, 
2 times a 4-way, 4 times a 2-way VLIW processor(s) or any 
combination. Moreover, unused resources can be clock gated 
in order to reduce power consumption. This allowed for a 
dynamic exchange between ILP and TLP (thread-level 
parallelism) meaning that a single design can be seen as a 
single core or as multiple many-/multi-cores. This is a 
departure from the current modus operandi in using compilers 
to optimize code to run on different microarchitectures to a 
scenario where the core can dynamically adapt itself to the 
requirements of the application(s) or the environment it is 
being used. At the same time, the reconfigurability allows for 
the ρ-VEX to overcome the issues of past VLIWs that 
prevented them from becoming mainstream, such as 
unbalanced datapaths and a high number of NOPs. 

A. GENERIC BINARY 
Having the ability to exchange between ILP and TLP does 

not yet make the proposed ρ-VEX core dynamic. In the 
dynamic scenario, one would like to be able to switch the 
execution of an application transparently between 2-, 4-, and 8-
way modes. Without introducing any support, one has to 
compile three versions of the application code and switch 
between them when necessary. However, this approach has 
several caveats. First, the code cannot be interrupted as one 
cannot guarantee that the interrupted program point is exactly 
the same as in another version of the application code. Second, 
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depending on the frequency of switching between the modes 
(and assuming correct check-pointing was implemented), the 
loading of codes can greatly hamper performance. Therefore, 
[8] introduced the notion of generic binaries that is a single 
binary that can be executed on multiple-way VLIW processors. 
This allowed for the support of interrupts and removed the 
need for program loading when the number of ways need to be 
changed. This flexibility does not come for free as a reported 
performance hit between 10% and 30% had to be paid. 
However, the authors explained that this was due to the closed-
source nature of their utilized compiler as the necessary 
improvement to reduce this performance hit could not be 
implemented.  

B. FAULT TOLERANCE 
Fault-tolerance support in the ρ-VEX processor can be 

implemented in many ways. One approach is to incorporate 
hardware support for SEU (single event upset) errors that was 
presented in [9]. More specifically, the presented approach 
allowed the fault-tolerance circuitry to be dynamically turned 
on or off depending on the need for protection of the code. This 
means that when protection is not needed, power consumption 
can be reduced. In this way, the average power consumption 
can be reduced without any consequence of degrading the 
fault-tolerance coverage. The paper also demonstrated that the 
area overhead and cycle time degradation, compared to an 
always-on fault-tolerance support, is minimal.  

With the notion of generic binaries, a dynamic software 
approach can also be utilized to provide protection to critical 
code sections within an application using the dynamic VLIW 
core introduced in [4]. For example, critical code sections can 
be duplicated or triplicated depending on the level of protection 
that is needed to be executed on the lower number of ways-
VLIW cores. In this way, performance can be dynamically 
exchanged for (code) protection. Another example pertains the 
dynamic lowering of the number of ways of the hardware in 
executing an application to allow for checker threads to run on 
the “freed” datapaths. When the other datapaths need to be 
checked, the application code can be dynamically moved to the 
other datapaths. In this manner, the application can be kept 
running and be still responsive. This is different from current 
approaches that require an actual context switch to allow for 
checker threads to execute on the core. This introduces a lot of 
overhead that reduces performance and responsiveness of the 
application. Finally, we would like to note that the pro- posed 
dynamic hardware fault-tolerance support is orthogonal to the 
proposed software approaches. This means that they can be 
used at the same time in order to provide the necessary level of 
fault- tolerance. 

C. ρ-VEX V3.0 
After two versions of the ρ-VEX softcore (both available 

for download and free to use for academic purposes) the ρ-
VEX v3.0 is nearly ready for release. While the earlier releases 
required resynthesis in order to run different applications, v3.0 
is intended to support the dynamic loading of applications. It is 
a SoC built on top of the GRLIB platform [10]. It can address 

DDR memory attached to the FPGA through separate 
reconfigurable data and instruction caches and supports any 
peripheral that can be connected to the AMBA bus. This 
includes the programmable timer and interrupt controller that 
can be found in GRLIB. The core has been extended with a 
vectored trap controller unit that connects to GRLIB’s interrupt 
controller. This way, the platform supports exception handling 
and interrupt-driven software. Additionally, we have designed 
a debug unit for the ρ-VEX core. Using the AMBA-JTAG 
interface found in GRLIB, we can connect to it from a host PC 
and debug programs running on the platform. To this end, we 
have developed the ρ-VEX target for the GDB (GNU 
DeBugger) and modified an open source JTAG - RSP (Remote 
Serial Protocol) bridge program to connect to our debug unit. 
In order to provide run-time support for real-world 
applications, this design is also intended to run μc-Linux (as 
virtual memory is not supported) and progress is being made in 
porting the kernel and standard C library from that distribution 
to ρ-VEX. 

IV. DEPENDABILITY OF PARTIALLY RECONFIGURABLE 
HARDWARE 

Dependability in computer-based systems can be defined in 
attributes, threats, and means to attain dependability. The main 
attributes of the dependability are: Availability, reliability, 
safety, integrity, and maintainability. A Concept for threats of 
losing the service is the Fault-Error-Failure chain. Means to 
attain dependability can be classified in: Fault prevention, fault 
tolerance, fault removal and fault prediction. In this section, we 
discuss structures and methods to achieve a dependable 
reconfiguration system [11][12]. 

A. INITIAL CONFIGURATION AND START-UP 
The digital signal processing of the FOBP includes two 

FPGAs without additional configuration logic devices. In order 
to attain a high reconfiguration reliability and to avoid single 
points of failure, we propose an initial-configuration 
framework, which enables partial self-reconfiguration as well 
as a complete reconfiguration of the FPGAs. This framework 
empowers fail-safe reconfiguration and reduces the 
dependency on external configuration logic. These advantages 
arise out of the coexistence of the initial-configuration with a 
state-of-the-art configuration method (FPGA1 configures 
FPGA2 and vice versa). The initial-configuration needs only 
one additional protected non-volatile memory per FPGA, e.g., 
Magnetoresistive RAM (MRAM). See [13] for reliability 
analysis and implementation details. At FOBP power on, both 
FPGAs are configured with identical bit files stored in the 
MRAMs. Following both FPGAs negotiate a master, which is 
responsible for reconfiguration, fault management, and 
vTM/TC processing. Fig. 1 depicts the configuration of the 
FPGAs after initial configuration and start up. In this case, 
FPGA1 was negotiated as master and is still configured with 
the initial-configuration. FPGA2 can be reconfigured 
completely with any firmware send via the vTM/TC link. This 
configuration concept allows an effective and reliable 
maintenance in terms of software and firmware updates. 

!

!



 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The scheme of the FOPB Reconfigurable and Fault Tolerant System

B. SYSTEM ON CHIP AND TASKS 
The System on Chip (SoC) is located in the static part of the 

initial-configuration and is based on a 32-bit microprocessor. 
Most likely, we will use the LEON3FT from Aeroflex Gaisler. 
The hardware and the boot code of the SoC is part of the static 
area in the initial-configuration and is therefore unchangeable. 
Nevertheless, it is possible to update the application software 
(e.g., the vTM/TC processing code). The three main tasks of the 
SoC can be described as follows.  

The first main task is the reconfiguration of both FPGAs via 
the Internal Configuration Access Port (ICAP) of the own 
FPGA and the Select MAP (SMAP) interface of the FPGA on 
the other DSP card. Additionally, the reconfiguration task 
includes scrubbing with read back for both FPGAs. Fault 
management is the second main task and is realized with a Fault 
Detection, Isolation and Recovery (FDIR) system. One part of 
the FDIR system is a fault detector, which is capable of 
detecting certain faults in several components inside and 
outside of the FPGA. A detected fault is reported to a fault 
management unit, which calculates countermeasures. A 
countermeasure can be a reset of a certain firmware or 
hardware unit, (partial) reconfiguration of the FPGAs or 
switching into safe mode. For the design of the FDIR system 
we took the radiation effects of the FPGA into account, see 
Section III-C. 

The implemented fault management increases the 
availability and reliability of the FOBP. Telemetry and 
telecommand of the FOBP is the third main task. Commands 
and data (e.g., a bit file or software update) are sent from the 
ground station to the FOBP via the vTM/TC uplink. The state 
of the FOBP and response messages are sent back to earth via 
the vTM/TC downlink periodically. 

C. RADIATION ANALYSIS 
Temporary SEEs are the dominant fault effects of radiation-

hardened SRAM-based FPGAs in orbit. The focus of this 
section are Single Event Upsets (SEU) as part of SEEs. SEUs 
occur in every FPGA primitive. We calculated the upset rates of 
the different primitives: Configuration controller, SRAM 
configuration memory, flip flops, multiplier and Block RAM 
(BRAM). Based on the radiation conditions in GEO and an 
aluminum shielding of 7°mm we used the widely accepted tool 

Cosmic Ray Effects on Micro-Electronics (CREME96) to 
calculate the upset rates for five different solar conditions 
(Solar Minimum, Solar Maximum, Worst Week, Worst Day 
and Peak 5 Minutes) [14]. 

One result of the upset rate calculation is the high sensitivity 
of the non-hardened BRAM regarding protons and heavy ions. 
We take advantage of this special property of the BRAM to 
perform a run-time fault prediction in orbit. Since 
environmental changes have an order of magnitude impact on 
upset rates, it is beneficial to adapt the redundancy to the 
current environment rather than design for the worst-case 
expected environment. Since BRAM upset rates are higher than 
other upset rates, we can use BRAM upsets as a sensor to 
characterize the environment. We perform a self-adaptive SEU 
mitigation based on this environment characterization. In a case 
study, we show that it is possible to triplicate the data 
throughput at the Solar Maximum condition (no flares) 
compared to a Triple Modular Redundancy implementation of a 
single module. We also show the decreasing Probability of 
Failures Per Hour by 2 x 104 at flare-enhanced conditions 
compared with a non-redundant system. The proposed BRAM 
radiation sensors can be utilized in a user design without the 
need of additional BRAMs. This is possible since the sensor 
reads the Error-Correcting Code (ECC) data of the accessed 
word and processes it [15]. 

V. DRPM FOR HARDWARE SATELLITE PAYLOAD 
Safety critical missions, driven by space and avionic 

applications, are increasingly attracting the usage of 
reconfigurable systems due to low non-recurring engineering 
costs, reconfigurability and large number of logic resources 
they provide. Among the various reconfigurable systems 
developed, the ones implemented on SRAM-based FPGAs are 
the most effective to cope with the demanding on-board 
processing capabilities. SRAM-based FPGAs are characterized 
by large gate counts and they provide a flexible platform to 
implement a complete System-on-Chip (SoC) on a single 
device. Besides, SRAM-based FPGAs are suitable for applying 
dynamic reconfiguration, thus enabling the FPGA to be 
partitioned into static region (SR) and partially reconfigurable 
(PR) region, where the static region contains the components 
that are not changed during run-time, such as interface or 
memory controllers. Vice versa, the partially reconfigurable 
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region offers resources for various different hardware modules 
that can be loaded at run-time according to the needs of the 
target application. These dynamic components are represented 
by so called dynamic partially reconfigurable modules (PRM). 
At run-time one or several instances of a PRM can be placed in 
the PR region, while the communication between the PR region 
and the SR region is realized by a communication macro, which 
is explicitly designed to cope with the special needs of dynamic 
reconfiguration [16]. For the purpose of this work, we 
implemented a tiled PR region according to the scheme 
illustrated in Figure 2. In this scenario, the PR region is divided 
into reconfigurable tiles, which define the atomic unit of partial 
reconfiguration. Each instance of a PR module is composed by 
a set of contiguously aligned tiles, where each tile consists of a 
set of static and reconfigurable resources. The static resources 
are available for the instantiation of PR modules at run-time. 

As documented by several research works on the field, one 
of the most relevant problems in adopting SRAM-based FPGAs 
in radiation-harsh environment is the dangerous effects induced 
by radiation particles such as atmospheric neutrons and heavy 
ions [17]. These particles may induce non-destructive loss of 
information within the system provoking Single Event Upsets 
(SEUs) phenomena that may affect the functionality of the 
implemented system. In a SRAM-based FPGA, SEUs may 
affect both the memory elements used by the design the FPGA 
implements as well as the FPGA’s configuration memory. 
Several works demonstrated the sensitivity of SRAM-based 
FPGAs to the SEUs induced by high energy particles [18][19] 
besides various hardening techniques have been developed to 
specifically address the mitigation of such effects when circuits 
are implemented on these devices. In this paper we show the 
results of a neutron testing radiation experiment on a DRPM 
system which has been evaluated in two different versions: 
unhardened, thus implemented using commercially available 
tools, and hardened according our developed hardening design 
flow based on suitable place and route implementation of the 
system on the SRAM-based FPGA device.  

 
Figure  2. The  Dynamically Reconfigurable Processing Module (DRPM) 

main architecture overview. 
The DRPM system has been implemented on Xilinx 

SRAM-based FPGAs: a Xilinx Virtex-4 FX100. The resources 
have been placed according to the scheme reported in Figure 2. 
Radiation testing were performed in the VESUVIO neutron 
facility at ISIS, Rutherford Appleton Laboratories (RAL) in 
Didcot, UK. The experimental results we gathered show an 

evident reduction of the Single Event Functional Interrupts 
(SEFIs) effect observed on the hardened version of the DRPM 
with respect to the original unhardened version.  

VI. SELF-REPAIR OF RECONFIGURABLE PROCESSORS 
Nano-scaled hardware provides high performance at low 

power consumption. Unfortunately, it becomes also more 
susceptible to aging effects causing permanent faults [20]. This 
increases for long living embedded systems the probability to 
fail during their mission time. Fault-tolerance techniques 
targeting permanent faults will improve the reliability of such 
systems. Handling of permanent faults is usually accomplished 
by hardware redundancy. While passive hardware redundancy 
techniques are used for fault masking, active hardware 
redundancy allows for a reconfiguration of the system, such 
that faulty components are taken out of operation [21]. This 
allows for handling of multiple permanent faults at reasonable 
costs, because a faulty component that is taken out of operation 
by a reconfiguration will not further contribute to the results of 
the system.  

In superscalar processors, redundant hardware is inherently 
available. Usually it is used for achieving high performance by 
parallel execution. But, obviously, it can be also used for fault 
tolerance purposes. Thereby, the inherently available hardware 
redundancy can be administrated at various levels of the system 
stack and at different granularity levels as it is depicted in 
Figure 3. 
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Figure 3. Classification of hardware-redundancy according to the used 
granularity of the components and the system layer for administration. 

The granularity level specifies the size of redundant 
components that can replace each other. The size of these 
components ranges from processor cores  down to simple gates. 
The administration of these redundant components can take 
place at various levels of the system stack. Thereby, the 
administration can be divided roughly into software-based 
(SW) and hardware-based (HW) administration schemes. As an 
example consider dynamically scheduled superscalar processor 
architectures where the hardware scheduler is extended to 
duplicate operations that are executed by different functional 
units. There, the redundantly available functional units are 
administrated in hardware. The same duplication of operations 
can be achieved in software by a compiler that generates a 
program for a very long instruction word (VLIW) processor. 
Hardware-based administration at low granularity levels 
requires a strong administrative overhead of more than 100% 
only for switches and control of redundant hardware. This 
administrative overhead is reduced significantly, if the 
granularity is coarsened.  However, coarser-grained granularity 
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also means that by a single fault a huge functioning portion of 
the system is taken out of operation. The advantage of software-
based administration is that the granularity-level can be reduced 
substantially without significantly increasing the hardware 
overhead. The basic idea of the software-based reconfiguration 
is to reconfigure the application in the program memory, such 
that faulty components in the data path are no longer used. Such 
a software-based administration can be applied only to 
statically scheduled processors, e.g., VLIW processors, where 
the program has control over the used hardware components. 
Some early work on a software-based reconfiguration of a 
programmable application specific data path was published by 
Guerra [22] and Karri [23]. There, various schedules of the 
same program were generated in advance for different fault 
states of the data path. If a particular permanent fault occurs in 
the field, then the corresponding schedule that avoids the usage 
of the defective component was selected for execution. This 
solution becomes impractical for larger applications. A few 
approaches were recently proposed where the adaption of the 
software is done autonomously in the field. In [24], Meixner 
has proposed the usage of a compiler in a multicore system with 
a general-purpose processor and several simple cores. The 
general purpose core is used for recompiling the user 
applications for the simple cores in the field. Various detours 
were presented for this purpose, for example for avoiding the 
usage of particular registers, operators, and bypasses in the 
simple cores. However, the required memory overhead for the 
used gcc-compiler, source code, and libraries is not reported. 
The complexity of the compiler-backend can be reduced 
significantly by adapting the binary code of the user application 
of a VLIW processor. Various reconfiguration techniques for 
VLIW processors programs were presented. For simple 
adaptation schemes the repair routine (i.e., the compiler-
backend) is implemented with less than 300 VLIW instructions 
and executes within less than a second for adapting some 
hundred thousands of instructions. Moreover, it was shown that 
with different versions of the repair routine (each version uses 
different resources) a single VLIW core can perform the 
reconfiguration of its own program code. The granularity of the 
software-based reconfiguration was lowered down to simple 
2:1-multiplexer structures for read ports and bypasses without 
introducing any additional hardware overhead. By this finer 
granularity the performance degradation of the processor could 
be reduced significantly. Instead of about 300% of run time 
overhead, only 20% runtime overhead were achieved. 

The fine-grained software-based reconfiguration of the 
processor requires an error detection and diagnosis mechanism 
that can be carried out in the field at that granularity-level that 
is used by the reconfiguration techniques presented. Error 
detection may be done on-line concurrently with the execution 
of the user application for detecting temporary and permanent 
faults or periodically (off-line) for detecting permanent faults 
only. Usually periodically testing can be performed at lower 
granularity with less overhead than concurrent error detection. 
Two major strategies may be used for this purpose, which were 
originally developed for manufacturing test and diagnosis: 
built-in self-test (BIST) and software-based self-test (SBST). 

Diagnostic BIST approaches usually collect test responses as 
signatures on-chip. But diagnosis of them is done off-chip, 
because determining the fault site based on the signature is a 
computational complex and time consuming task. The runtime 
of the algorithms used for such a diagnosis is usually in the 
range of minutes, measured on workstations. Moreover, 
diagnostic information is provided at structural gate level, but 
software-based reconfiguration schemes need coarser grained 
fault state information at functional level. For example, does a 
particular adder work properly, or can a particular register be 
used. For coarser grained BIST approaches the diagnostic 
complexity is reduced, such that it can be on-chip. For example, 
in [25] test patterns for particular components of a processor are 
stored in an on-chip ROM, such that they can be tested during 
idle cycles. Vierhaus et al. proposed a scan-based BIST 
technique for VLIW processors that employs the redundancy in 
the data path at slot level. Test patterns are generated with 
LFSR structures, but test responses are not compared with pre-
computed test responses. Rather, the same test pattern is applied 
to all slots of a VLIW processor, and the obtained results are 
compared with each other. Similar ideas have been developed. 
The test patterns are stored in the program memory as if they 
were instructions. Due to the used VLIW processor 
architecture, these test patterns can be fetched directly into the 
pipeline for testing the data path as if they were normal 
instructions. Test responses are checked at the end of the 
pipeline by comparing them with each other. The disadvantage 
of these approaches based on a majority vote is that they fail for 
multiple faults in the slots of a VLIW processor.  

Basically, a SBST is well suited for providing functional 
fault state information in the field. Test programs for various 
processor components were recently developed for read ports, 
register files, TLBs, and branch prediction units. By putting 
together all of these test programs, high fault coverage for 
complex processors may be achieved. Unfortunately, a good 
diagnostic test program is not obtained easily in this way.  

The diagnostic capability of such a test program is limited, 
because even a simple test program uses many processor 
components, such that a faulty component is not uniquely 
identified. Diagnosis a diagnostic test routines composed of 
many test programs can be also effective. Each test programs 
utilizes only few components of the processor, such that a 
failing test program refers to a small set of faults only. On the 
other hand, all the test programs together should cover as many 
faults as possible. In order to achieve both goals. From the 
pass/fail information of each test program, the set of fault 
candidates is isolated by using fault trees. A major problem of 
this approach is the generation of small diagnostic test 
programs. A method for automatically improving diagnostic 
test programs by an iterative improvement phase using genetic 
algorithms can be applied [26]. Unfortunately, both diagnostic 
SBST approaches provide diagnostic information at structural 
gate level, which is not the desired information for software-
based reconfiguration techniques. Moreover, the SBST 
programs are used as static programs. This becomes a problem, 
when multiple faults must be localized correctly in a processor. 
For example, suppose the test program for an adder uses a 
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particular register for loading the operand values. If this register 
becomes faulty, then the adder cannot be tested anymore, 
because there is no underlying hardware-based reconfiguration 
scheme that changes the configuration in a transparent way for 
the software. For this purpose diagnostic and adaptive SBST 
routine is proposed for a simple VLIW processor, where 
software-based reconfiguration techniques are used for adapting 
also the test program to the current fault state of the processor. 
By this it is ensured that the diagnostic test routine can 
determine in a reliable manner the faulty component, even if 
there are already other faults present in the processor. The 
diagnostic test of most components of the VLIW-processor is 
accomplished within a few milliseconds and a total test routine 
size of about 26 KByte. Unfortunately the adaptation of the test 
programs must be done by an external administration processor, 
which requires an additional hardware overhead of 5%. Hence, 
diagnostic software-based self-test and reconfiguration of 
VLIW processors for handling permanent faults can be 
accomplished with low hardware-overhead, moderate program 
memory overhead and within a short execution break, whereby 
the software-based reconfiguration time dominates by far the 
software-based self-test time. 

VII. SOFT ERRORS ON DRPM 
Radiation experiments were performed in the VESUVIO 

neutron facility at ISIS. We irradiated the devices with the 
available spectrum that has already been demonstrated to be 
suitable for emulating the atmospheric neutron flux. The 
available flux was about 5.89·105 n/(cm2·s) for energies above 
10MeV. Irradiation was performed at room temperature with 
normal angle of incidence. The beam was focused on a spot 
with a diameter of 2cm plus 1cm of penumbra. The size of the 
spot is sufficient to uniformly irradiate the whole FPGA chip 
out of the beam. This is essential for preventing neutron-
induced errors on power switches which may compromise the 
experiment. Moreover, having the DDR memory out of the 
beam allowed us to use it as a safe temporary storage of the 
Microblaze instruction code, thus preventing common failures 
induced by errors affecting the original instruction code. The 
workload of the system has been settled with an FFT 
application cycle executing the following operations: data 
memory initialization, data memory checking, two execution of 
Fast Fourier Transform (FFT) using Microblaze resources, 
checking differences between FFT applications, FFT execution 
using multipliers, result comparison. After the FFT application 
a set of configuration memory operations ant test routines are 
executed.  

In details, configuration memory operations consist of three 
steps: N configuration memory frames read and on a signature 
computed, N configuration memory frames are written and 
signature stored, finally the same frames are read back again 
and a signature is compared. Signatures comparison allows 
detecting SEFI affecting the internal configuration access ports. 
Finally, the test routines include Software-Based Self-Test 
(SBST) programs suitable written for the DDR memory 
controller, Multipliers and ICAP port in order to individuate 
errors that cannot be covered by the FFT execution. The total 

execution time of this workload lasts for 10 seconds, during the 
radiation beam, the workload is continuously repeated until it 
stops due to a critical SEFI or a configuration memory scrub 
cycle.  

 
Table II.  Experimental Results – Long Duration Test 

DRPM System – Average Maximal 
Duration [min] 

Xilinx Virtex-4 
FX100 

Xilinx Virtex-5 
LX50T 

Original Hardened Original Hardened 
35.36 67.33 34.33 66.83 

 
The analysis we performed consists on two experimental 

campaigns. The first aims at evaluating the resilience of the 
DRPM under the beam before the system incurs in a permanent 
error stopping the DRPM functionality. For this purpose the 
application is executed continuously without FPGA’s 
configuration memory scrubbing. Results related to this 
analysis are reported in Table I, the hardened DRPM system 
results two times more resilient than the original ones with 
respect to critical SEFIs.  

 
Table III. Experimental Results – Periodic Scrubbing every 20 minutes 

 
The second experiment is oriented to evaluate the overall 

performance of the system given a defined scrub cycle of 20 
minutes, corresponding to 120 consecutive workload 
executions. Experimental results of the second radiation 
campaigns are reported in Table III, where we indicated the 
average time and the number of errors. Errors are classified 
according following classification: transient, in case it 
temporary affects the application execution; permanent, if it 
affects the execution until a scrub cycle is performed but it is 
detected by the checking operations or by the testing routines; 
SEFI in case it stops the execution of the DRPM system in an 
irreversible way (i.e. the processor hangs and it is necessary to 
reconfigure the entire DRPM). As illustrated in Table III, the 
hardened DRPM results about 4 times more resilient than the 
original version if critical SEFIs induced by FPGA’s 
configuration memory bitflips are considered. The first part of 
the Table III includes the average time measured before one 
kind of error is observed into the system. The two versions have 
a similar number of transient errors since the system has not 
been protected versus these effects, besides these errors are 
detected by the checking operations executed during the 
Microblaze workload and by the testing routines. Furthermore, 

 Xilinx Virtex-4 
FX100 

Xilinx Virtex-5 
LX50T 

Average Time [mins] Original Hardened Original Hardened 
Transient Error 10.07 9.68 9.87 9.43 

Permanent Error 13.81 15.85 13.63 15.26 
SEFI (Critical 

Error) 
11.31 19.21 11.02 19.18 

Errors [#] Original Hardened Original Hardened 
Transient Error 89 93 93 96 

Permanent Error 78 75 83 76 
SEFI (Critical 

Error) 
16 4 18 5 
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it is interesting to notice that the ICAP port has an extremely 
low sensitive rate. It must be underline that the relevant 
comparison is related to the SEFI inducing critical error, 
considering the number of errors generated (Table III, last line). 
According to the achieved results, the hardened circuit is 3.8 
times better than the original ones since only 5 versus 18 
configuration memory upsets lead to the stopping of the 
functionality. 

As reported in Table III, the number of transient errors 
result larger in the hardened version than the original ones. The 
controversy data must be analyzed considering that the 
hardened version has Microblaze with duplicated data path and 
the number of storage resources of the hardened version results 
bigger than the plain one. Please note that the number of 
transient errors result greater than the number of critical 
configuration memory bits, since the system has been hardened 
with respect to configuration memory upsets, vice versa, the 
system has not been hardened versus transient errors, since 
Flip-Flops and local processor memory have not been hardened 
with TMR or other redundancy based techniques. 

VIII. CONCLUSIONS AND FUTURE WORKS 
The adoption of reconfigurable systems on space and 

avionic applications is able to provide a great benefit thanks to 
the on-site reconfigurable capabilities. Reconfigurable systems 
are effectively implemented using Dynamic Reconfigurable 
Platforms or Very Long Instruction Word (VLIW) processors 
and requires appropriate validation in order to estimate 
radiation sensitivity in particular focusing on soft-errors and 
latch-ups. On the other side, these systems require the adoption 
of diagnostic capability, in order to provide the possibility to 
reconfigure the system and repair faulty units.  
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