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Abstract—We investigate a reconfigurable intelligent sur-
face (RIS)-aided multi-user massive multiple-input multi-output
(MIMO) system where low-resolution digital-analog converters
(DACs) are configured at the base station (BS) in order to reduce
the cost and power consumption. An approximate analytical
expression for the downlink achievable rate is derived based on
maximum ratio transmission (MRT) and additive quantization
noise model (AQNM), and the rate maximization problem is
solved by particle swarm optimization (PSO) method under
both continuous phase shifts (CPSs) and discrete phase shifts
(DPSs) at the RIS. Simulation results show that the downlink
sum achievable rate tends to a constant with the increase of the
number of quantization bits of DACs, and four quantization bits
are enough to capture a large portion of the performance of the
ideal perfect DACs case.

Index Terms—Reconfigurable intelligent surface (RIS), Intel-
ligent Reflecting Surface, massive MIMO, low-resolution DACs.

I. INTRODUCTION

Recently, a reconfigurable intelligent surface (RIS), which

can configure the wireless propagation environment, has at-

tracted extensive research interests [1]–[3]. Specifically, the

RIS is a planar consisting of a large number of passive

elements, each of which can manipulate the electromagnetic

characteristics of reflected signal independently. By carefully

tuning the phase shifts of the RIS, the reflected signals can

be constructively added with the direct signals from the BS

to enhance the desired signal power, or destructively added

with the direct signal to mitigate the undesired signals. Some

advantages of RIS-assisted wireless communications include:

easy deployment, low hardware cost, enhanced energy- or

spectrum-efficiency (EE/SE), and easy integration into the

existing networks [4]. As a result, the RIS is expected to push

forward an immense influence on improving the transmission

performance of future wireless communication networks.

To reap the benefits promised by the RIS, the phase shifts of

the reflecting elements at the RIS should be carefully designed.

Most of the existing contributions designed the phase shifts

based on the instantaneous channel state information (CSI)

(Corresponding author: Cunhua Pan).
J. Dai is with School of Science, Nanjing University of Posts and Telecom-

munications, Nanjing 210096, China. (email:daijx@njupt.edu.cn).
Y. Wang is with College of Telecommunications and Information Engineer-

ing, Nanjing University of Posts and Telecommunications, Nanjing 210096,
China. (email:1219012316@njupt.edu.cn).

C. Pan and K. Zhi are with the School of Electronic Engineering and
Computer Science at Queen Mary University of London, London E1 4NS,
U.K. (e-mail: c.pan, k.zhi@qmul.ac.uk).

H. Ren is with the National Mobile Communications Research Laboratory,
Southeast University, Nanjing 210096, China. (hren@seu.edu.cn).

K. Wang is with Department of Computer and Information Science,
Northumbria University, UK. (e-mail: kezhi.Wang@northumbria.ac.uk).

[5]–[7]. This scheme has some drawbacks. Firstly, the phase

shifts of the RIS reflecting elements need to be calculated

within each channel coherence time that varies rapidly (on

the order of milliseconds). This will incur high computational

complexity at the base station (BS). Secondly, this scheme

requires to estimate instantaneous cascaded CSI that will

entail high channel estimation overhead, the amount of which

generally increases linearly with the number of reflecting

elements. Hence, it is unaffordable for the scenario when

the channel coherence time is very short. Thirdly, since the

phase shifts need to be updated for each channel coherence

time, there will be frequent information exchange between the

BS and the RIS. One promising solution to addressing these

drawbacks is to design the phase shifts based on the long-term

CSI such as angle information [8]–[11] or location information

[12], which varies much more slowly than instantaneous CSI.

All the above-mentioned contributions [8]–[12] assumed

the ideally perfect hardware at the BS. Authors in [13]

investigated the energy efficiency maximization problem for

RIS-aided multi-user communication where the static power

of hardware was taken into account. In massive MIMO

systems, each antenna is connected to one analog-to-digital

converter (ADC) or digital-to-analog converter (DAC), and

will consume high power consumption when adopting high-

resolution ADC/DACs due to the large number of antennas.

Hence, it is appealing to adopt low-resolution ADC/DACs in

massive MIMO systems due to its reduced cost and low power

consumption [14].

Against the above background, in this paper we study

a RIS-aided multi-user massive MIMO system, where the

BS is equipped with low-resolution DACs. Specifically, our

contributions are summarized as follows:

1) We derive downlink sum achievable rate of the multi-

user massive MIMO system based on Rician channel

model;

2) We utilize particle swarm optimization (PSO) algorithm

to solve the achievable rate maximization problem by

optimizing the phase shifts by considering both continu-

ous phase shifts (CPSs) and discrete phase shifts (DPSs);

3) Through simulations, we analyze the impacts of the

number of quantization bits of DACs and phase shifts

at the RIS on the rate performance, and verify the

effectiveness of the proposed algorithm.

Notations: diag(x) denotes a diagonal matrix with the

entries of x on its main diagonal. The symbols E{·}, Re{·},
and Tr(·) denote the expectation operator, real part, and trace,

respectively. IN is the identity matrix with dimension of N .

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on August 01,2021 at 11:55:27 UTC from IEEE Xplore.  Restrictions apply. 



1089-7798 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2021.3097208, IEEE

Communications Letters

2

C
M×N represents the M×N complex-valued matrix. Besides,

x ∼ CN (a, b) denotes that random variable x follows the

complex Gaussian distribution with mean a and variance b.

II. SYSTEM MODEL
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Fig. 1: System Model

We consider a downlink multi-user massive MIMO system

where a passive RIS with discrete unit elements is deployed to

assist the communication from an M -antenna BS to K single-

antenna mobile users, as shown in Fig. 1. The BS consists

of a large-scale uniform linear antenna array (ULA) and each

antenna is equipped with a low-resolution DAC, and the RIS is

composed of N reflecting elements. We assume that the direct

link between the BS and users is neglected due to obstacles,

and the RIS is deployed at a proper position where line-of-

sight (LoS) communication is ensured for both BS-to-RIS and

RIS-to-user links.

Let G ∈ C
N×M , H = [h1,h2, . . . ,hK ] ∈ C

N×K respec-

tively denote the channel matrices for the channel between

the BS and the RIS, and that between the RIS and K users,

and the Rician fading model is adopted for the channel. Here,

hH
k ∈ C

1×N represents the channel from the RIS to the k-th

user. Specifically, G and hH
k can be expressed as:

G =
√
ε

(√
KG

KG + 1
Ḡ+

√
1

KG + 1
G̃

)
(1)

and

hH
k =

√
βk

(√
Kk

Kk + 1
h̄H
k +

√
1

Kk + 1
h̃H
k

)
, (2)

where ε and βk represent the distance-dependent path loss of

BS-to-RIS and RIS-to-k-th-user paths, and KG, Kk refer to

Rician factors. G̃, h̃H
k are scattering components, each element

of which is i.i.d. complex Gaussian distributed with zero mean

and unit variance and Ḡ, h̄H
k are LoS components, which can

be expressed by the responses of the ULA as:

Ḡ = aN (φr)a
H
M (φt) , h̄H

k = aHN (ϕkt) , (3)

where φr is the angle of arrival (AoA) at the RIS, φt and ϕkt

are respectively angle of departure (AoD) at the BS and the

k-th user’s AoD at the RIS. In addition, the array response of

an X-element ULA is:

aX (ϑ) =
(
1, ej2π

d
λ
sinϑ, . . . , ej2π

d
λ
(X−1) sinϑ

)T
, (4)

where d and λ are the element spacing and signal wavelength.

In this paper, we assume that the statistical CSI can be readily

obtained by the existing channel estimation methods.

Define an N × N diagonal matrix Φ =
diag

(
ζ1e

jθ1 , ζ2e
jθ2 , . . . , ζNejθN

)
as the reflection coefficient

matrix of the RIS, where ζn ∈ [0, 1] and θn ∈ [0, 2π) for

n = 1, 2, . . . , N represent the amplitude reflection efficiency

and the phase shifts induced by the n-th reflecting unit,

respectively. Without loss of generality, we set ζn = 1 for all

n.

The unquantized downlink transmission signal at the BS can

be written as:

x = Ws, (5)

where s = (s1, s2, . . . , sK)
T ∈ C

K×1 denotes the transmit

signal vector of the BS, which satisfies E
{
ssH

}
= IK ,

and W = [w1,w2 . . .wK ] ∈ C
M×K denotes the precoding

matrix.

Based on additive quantization noise model (AQNM), the

downlink transmission signal quantized by DACs at the BS

can be expressed as:

xq = Q (x) = αx+ nq, (6)

where Q (·) is a quantization function [15], with α = 1− ρ,

where ρ is the inverse of the signal-to-quantization-noise ratio

and nq ∈ C
M×1 denotes the additive Gaussian quantization

noise, that is uncorrelated with x, whose covariance is:

Rnqnq
= E

{
nqn

H
q

}
= α (1− α) diag

(
WWH

)
. (7)

The values of ρ corresponding to the quantization bits b are

listed in Table I for b ≤ 5 and can be approximated by ρ =√
3π
2 · 2−2b for b > 5 [14].

TABLE I: ρ VERSUS QUANTIZATION BITS b

b 1 2 3 4 5

ρ 0.3634 0.1175 0.03454 0.009497 0.002499

Therefore, the downlink received signal of the users can be

expressed as:

y =
√
PFHxq + n, (8)

where FH = HHΦG ∈ C
K×M represents the cascaded

BS-RIS-user channel, P represents the transmit power at the

BS, and n ∼ CN
(
0, σ2IK

)
denotes the AWGN vector at the

users.

By using (5) and (6), the received signal of the k-th user is

given by:

yk=α
√
P fHk wksk +α

∑K
i=1,i ̸=k

√
P fHk wisi+

√
P fHk nq+nk,

(9)

where fHk = hH
k ΦG, with k = 1, 2, ...,K. The first term on

the right hand side of (9) is the desired signal, the second term

is the multi-user interference, the third term is quantization

noise and the last term is the AWGN.

III. ANALYSIS OF ACHIEVABLE RATE

In this paper, the MRT method is adopted to process the

transmit signal at the BS to maximize the signal power gains

of the desired users. Then, the precoding matrix W of the BS

is:

W =
F√

Tr (FHF)
. (10)
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From (9), we can obtain the signal-to-interference-plus-

noise ratio (SINR) at the k-th user, which can be expressed

as:

γk =
α2P

∣∣fHk wk

∣∣2

α2P
∑K

i=1,i ̸=k

∣∣fHk fi
∣∣2 + P

∣∣fHk nq

∣∣2 + |nk|2

=
α2P ∥fk∥4

α2P
∑K

i=1,i ̸=k

∣∣fHk fi
∣∣2 + PΓ|fHk nq|2 + Γ|nk|2

,

(11)

where Γ = Tr
(
FHF

)
. Therefore, the achievable rate of the

k-th user can be expressed as:

Rk = E {log2 (1 + γk)} . (12)

A closed-form approximation of (12) is obtained in the

following theorem and the sum rate can be written as:

Rsum =
K∑

k=1

Rk. (13)

Theorem 1 In the RIS-aided massive MIMO System with

Low-Resolution DACs, the downlink achievable rate can be

approximated as:

Rk ≈ log2

(
1 +

α2PEsignal
k

α2P
∑K

i=1,i ̸=k Iki + PIDAC
k + σ2Enoise

k

)
,

(14)

where Esignal
k , Iki, IDAC

k , and Enoise
k are respec-

tively given by (15), (16), (17) and (18). Besides,

δc = εβc

(KG+1)(Kc+1) , ψc(Φ) = aHN (φr)Φ
H h̄c =

∑N
n=1 e

j2π d
λ
(n−1)(sin(ϕct)−sin(φr))−jθn ∈ C

1×1, c ∈ {k, i}.
Proof By applying [16, Lemma 1] and (7), the achievable rate

can be approximated as (19).

To derive the closed-form expression, we need to derive

signal term E
{
∥fk∥4

}
, interference term E

{
|fHk fi|2

}
, quan-

tization noise term E
{
ΓfHk Rnqnq

fk
}

and AWGN noise term

E {Γ} after simplification. Define fkm as the m-th entry of fk,

the first two terms have been given in [10, Lemma 1] and the

remaining two terms are derived as :

E
{
ΓfHk Rnqnq

fk
}
= α (1− α)E

{
fHk diag

(
FFH

)
fk
}

= α (1− α)E
{∑M

m=1|fkm|
2
(
|fkm|2+

∑K
i=1,i ̸=k|fim|

2
)}

= α (1− α)
(∑M

m=1 E
{
|fkm|4

}
+
∑M

m=1

∑K
i=1,i ̸=k

E
{
|fkm|2

}
E
{
|fim|2

})
, (20)

where

E
{
|fkm|2

}
=

1

M
E
{
∥fk∥2

}

= δk
(
KGKk|ψk(Φ)|2+N (KG+Kk+1)

)
,

(21)

E
{
|fkm|4

}
=δ2

{(
KGKk |ψk(Φ)|2

)2
+2N2 (KG+Kk+1)

2

+4KGKk |ψk(Φ)|2 (N(KG+Kk+1) + 2) (22)

+2N(2KG + 2Kk + 1)
}
,

which can be derived by applying [10, Lemma 1]. In addition,

we have

E {Γ}=E

{∑K
k=1

∑M
m=1 |fkm|

2
}
=
∑K

k=1

∑M
m=1 E

{
|fkm|2

}

=M
∑K

k=1 δk
(
KGKk|ψk(Φ)|2+N (KG+Kk+1)

)
. (23)

By substituting (20), (23) and the useful signal term and

interference term into (19), we can obtain the final result. This

Algorithm 1 Particle Swarm Optimization Algorithm (PSO)

1: Particle swarm parameters initialization: Initialize L, T ,

ω, c1, c2, r1 ,r2;

2: for i = 1, 2, . . . , L do

3: Initialize θ
(0)
i , v

(0)
i , p

(0)
i = θ

(0)
i ;

4: end for

5: Find R′(p∗(0)) = min{R′(p
(0)
1 ), . . . , R′(p

(0)
L )}, and set

g(0) = p∗(0);
6: while t ≤ T do

7: for i = 1, 2, . . . , L do

8: Update the velocity and position of particles:

v
(t+1)
i = ωv

(t)
i + c1r1(pi − θ

(t)
i ) + c2r2(g − θ

(t)
i ),

θ
(t+1)
i = θ

(t)
i + v

(t+1)
i ;

9: Evaluate fitness value;

10: Calculate the historical optimal position of particle i:

p
(t+1)
i =

{
p
(t)
i , R′(p(t)

i

)
≤ R′(

θ
(t+1)
i

)

θ
(t+1)
i , R′(p(t)

i

)
> R′(

θ
(t+1)
i

) ;

11: Find R′(p∗(t+1))=min{R′(p
(t+1)
1 ),. . ., R′(p

(t+1)
L )};

12: end for

13: Calculate the historical optimal position of the popula-

tion:

g(t+1) =

{
g(t), R′ (g(t)

)
≤ R′(p∗(t+1)

)

p∗(t+1), R′ (g(t)
)
> R′(p∗(t+1)

) ;

14: Adjust adaptive parameter shown in Algorithm 2;

15: Set t← t+ 1.

16: end while

completes the proof.

IV. PHASE SHIFT OPTIMIZATION

In this section, we aim to maximize the sum achievable

rate by optimizing the phase shifts, considering both CPSs and

DPSs, based on the long-term CSI, which can be formulated

as:
max
Φ

Rsum

s.t. θn ∈ F1 or F2, ∀n = 1, 2, ...,N.
(24)

where F1 = {θn| 0 ≤ θn ≤ 2π} and F2 =
{
0, 2π

2B
, · · · , 2π(2

B−1)
2B

}
denote the sets of continuous

and discrete phase shift values, respectively. Here, we limit

the period phase in order to simplify the algorithm and B
denotes the number of quantization bits of phase shifts at the

RIS.

Due to the complex expression of the objective function,

we adopt a PSO algorithm in Algorithm 1 owing to its high

universality. Supposing the size of particle population is L, and

the maximum number of iterations is T , the complexity of the

algorithm is proportional to L × T [17]. For i = 1, 2, . . . , L,

the coordinate position of particle i at time t can be associated

to a 1×N phase shift vector θ
(t)
i = (θi1, θi2, . . . , θiN ), each

element of which is generated randomly limited within F1 or

F2. Specifically, the difference between F1 and F2 is whether

the phase is discretized during initialization.

The fitness value of each particle is evaluated by using the

fitness function R′(θ), which can be defined as follows:

R′(θ) = −Rsum.
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Esignal
k =Mδ2k ×

{
M(KGKk)

2|ψk(Φ)|4 + 2KGKk|ψk(Φ)|2(2MNKG +MNKk +MN + 2M +NKk +N + 2)

+MN2(2K2
G +K2

k + 2KGKk + 2KG + 2Kk + 1) +N2(K2
G + 2KGKk + 2KG + 2Kk + 1)

+MN(2KG + 2Kk + 1) +N(2KG + 2Kk + 1)
}
,

(15)

Iki =Mδkδi ×
{
MK2

GKkKi|ψk(Φ)|2|ψi(Φ)|2 +KGKk|ψk(Φ)|2(KGMN +NKi +N + 2M)

+KGKi|ψk(Φ)|2(KGMN +NKk +N + 2M) +N2(MK2
G +KG(Kk +Ki + 2) + (Kk + 1)(Ki + 1))

+MN(2KG +Kk +Ki + 1) +MKkKi

∣∣h̄H
k h̄H

i

∣∣2 + 2MKGKkKiRe
{
ψH
k (Φ)ψi(Φ)h̄H

i h̄k

}}
,

(16)

IDAC
k = α (1− α)M ×

{
δ2
{(

KGKk |ψk(Φ)|2
)2

+2N2 (KG+Kk+1)
2
+4KGKk |ψk(Φ)|2 (N(KG+Kk+1) + 2)

+2N(2KG + 2Kk + 1)
}
+
∑K

i=1,i ̸=k δkδi

{
K2

GKkKi|ψk(Φ)|2|ψi(Φ)|2 +NKGKk|ψk(Φ)|2(KG +Ki + 1)

+NKGKi|ψi(Φ)|2(KG +Kk + 1) +N2(K2
G +KGKk +KGKi +KkKi + 2KG +Kk +Ki + 1)

}}
,

(17)

and
Enoise

k =M
∑K

k=1 δk
(
KGKk|ψk(Φ)|2 +N (KG +Kk + 1)

)
. (18)

Rk ≈ log2

(
1 +

α2PE
{
∥fk∥4

}

α2P
∑K

i=1,i ̸=k E
{
|fHk fi|2

}
+ PE

{
ΓfHk Rnqnq

fk
}
+ σ2E {Γ}

)
. (19)

Finding the maximum value of Rsum means finding the mini-

mum value of R′(θ), then the minimum value of the reciprocal

of the exponential product will be found accordingly.

The velocity of particle i is defined as the dis-

tance of particles moving in each iteration, expressed as

v
(t)
i = (vi1, vi2, . . . , viN ), each of which is limited within

[−vmax, vmax]. p
(t)
i and g(t) are respectively defined as the

optimal position of particle i and the optimal position of the

whole population after t iterations. ω represents the inertia

weight, which is used to adjust the search scope of the solution

space and balance the global convergence and convergence

rate. c, c1 and c2, and r1 and r2 respectively represent

stagnation counter, acceleration constants, and random values

within [0, 1].

Algorithm 2 Adjust Adaptive Parameter

1: Initialize c = 0;

2: if g(t+1) < g(t) then

3: flag = 1;

4: else

5: flag = 0;

6: end if

7: if flag = 0 then

8: c = c+ 1;

9: else

10: c = max{c− 1, 0};
11: if c < 2 then

12: ω = 2ω;

13: else if c > 5 then

14: ω = ω/2;

15: end if

16: end if

V. SIMULATION RESULTS

In this section, we evaluate the impact of various parame-

ters on the sum achievable rate performance. Our simulation

parameters are set with reference to [7], [10]. We assume the

BS and the RIS are placed at (0, 0) and (5, 2) in a rectangular

coordinate system, respectively. The users are uniformly and

randomly scattered in a circle centered at (400, 0) with radius

of 4 m. The AoD of users are randomly generated from [0, 2π)
and these angles will be fixed after initial generation. The

large-scale path loss model is modeled in dB as [7]:

PL = PL0

(
D

D0

)−κ

, (25)

Fig. 2: The downlink sum achievable rate versus P with b = 1

under PSO.

where PL0 is the path loss at the reference distance D0, D is

the link length in meters, and κ is the path loss exponent. Here,

we set the model parmeters as [10]: D0 = 1, PL0 = −30 dB,

the path loss exponents of the BS-to-RIS and RIS-to-k-th-user

links are κBI = κIUk
= 2.8, ∀k. Unless otherwise stated, our

simulation parameters are set as follows: number of users of

K = 6, number of antennas at the BS of M = 64, number

of reflecting elements of the RIS of N = 16, transmit power

of P = 30 dBm, noise power of σ2 = −104 dBm, Rician

factor of KG = 1, Kk = 10, ∀k. We also set d = λ
2 in order

to mitigate the spatial correlation between antennas. The main

parameters for PSO are: L = min{100, 10N}, T = 200N ,

vmax = 2π, ω = 0.9, c1 = c2 = 1.49.

It is observed from Fig. 2 that the derived results are consis-

tent with the Monte-Carlo simulation results, which verify the

correctness of the derived results. Specifically, we illustrate the

downlink sum achievable rates versus transmit power, where

one of the curves considers the hardware imbalance, while

the other does not and naively regards the actual hardware

imbalance as perfect. Specifically, for the conventional naive

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on August 01,2021 at 11:55:27 UTC from IEEE Xplore.  Restrictions apply. 



1089-7798 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2021.3097208, IEEE

Communications Letters

5

Fig. 3: The downlink sum achievable rate versus the number of
quantization bits of DACs.

Fig. 4: The downlink sum achievable rate versus the number of
quantization bits of phase shifts at the RIS.

scheme, we first obtain the beamforming solution under the

perfect hardware case, and then substitute the obtained solution

into the SINR expression with actual hardware impairment. It

is observed from this figure that the proposed algorithm is

robust to the hardware impairment.

Fig. 3 shows the downlink sum achievable rate versus the

resolution of DACs b. As shown in this figure, the achievable

rates increase with b in both cases of CPSs and DPSs. The

larger the quantization error, the lower the data rate. Moreover,

the rates gradually converge to a constant, which is the

achievable rate obtained in the case of b→∞. It shows that

four quantization bits are enough to capture a large portion of

the performance of the ideal perfect DACs case.

In fig. 4, we fix b = 1 and compare the sum achievable rate

with the number of quantization bits of phase shifts at the RIS

under different N . The sum rate increases rapidly when B is

small, while the curve gradually saturates when B becomes

VI. CONCLUSION

In this paper, a multi-user massive MIMO system aided by

a RIS has been discussed, in which each transmit antenna

of the BS is equipped with a DAC. The simulation results

larger. In addition, when N is large, B has a marginal impact

on sum rate.

have proved the correctness of the derived achievable rate and

the superiority of using the algorithm when considering low-

resolution DACs. A DAC with almost four bits is sufficient

to achieve the same rate as an ideal DAC, which verify the

rationality of using low-resolution DAC in the system.
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