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ABSTRACT Recently, the fifth generation of cellular mobile communications (5G) network has been

deployed and become pervasive. 5G offers a significant increase in terms of bandwidth and data rate

compared to the previous generations. In addition, new technologies such as millimeter-wave (mmWave)

technology and massive MIMO (mMIMO), have been proposed to meet the demand. However, some

inevitable challenges still exist. In mmWave frequency, path loss and shadowing become more severe

due to the radio electromagnetic (EM) wave characteristics. In this paper, we propose the utilization

of reconfigurable intelligent surface (RIS) to aid wireless communications to overcome path loss and

shadowing issues, by using a compressive sensing-based adaptive beamforming algorithm. To validate

the theory, hypothesis, and simulation results, we have designed, fabricated, and conducted experiments

with a 1-bit RIS testbed. The results show that the bit error rate (BER) and signal-to-noise ratio (SNR)

of the received signal are significantly improved when the proposed RIS is employed. Further, we have

also demonstrated a video streaming application aided by the proposed RIS as one of the potential RIS

deployment scenarios. The video clip for the video streaming by using the RIS can be seen in [1].

INDEX TERMS 5G networks, 1-bit reconfigurable intelligent surface, wireless communications, adaptive

beamforming, compressive sensing

I. INTRODUCTION

S
INCE the launch of the first national commercial 5G

network in the world in 2019 [2], the race for exploring

next-generation communications technologies for beyond

5G and 6G networks to achieve faster and more reliable

mobile communications has already been started. Reconfig-

urable intelligent surface (RIS) is one of these promising

technologies. RIS, which consists of hundreds to thousands

of unit cells, has recently gained much attention, both from

academia and industry. While NTT DoCoMo and Metawave

demonstrated their first 28 GHz reflectarray in 2018 [3],

Samsung also explored the potential of RIS in its 6G Vision

white paper, where one of its primary purposes is to provide

a propagation path when no line of sight (LoS) exists [4].

Since the very first generation of mobile communications,

the operating frequency range has constantly moved to

higher frequencies. Consequently, the path loss and shad-

owing in the last two generations are significantly higher

than their predecessor due to the characteristics of the

electromagnetic (EM) wave. The path loss and shadowing

problem cause attenuation, which can easily degrade the

data transmission quality. Since the next generation of

mobile communications is designed to work at millimeter-

wave (mmWave) frequency or even terahertz frequency, one

can expect that the attenuation problem will become more

severe. A simple obstacle such as a wall, furniture, or even
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FIGURE 1. Indoor RIS aided wireless communications scenario.

a human standing between the transmitter and receiver can

easily deteriorate the quality of service (QoS).

RIS is one of the technologies that can be used to

overcome this attenuation problem. RIS is able to adap-

tively reconfigure the wireless environment in an intelligent

manner by changing the frequency, phase, amplitude, or

polarization of the incident EM wave [5]. In wireless

communications, RIS can be used as an alternative path

provider when the direct communication path between the

transmitter and receiver is unavailable due to obstacles

between them or as a quality enhancer when the channel

quality between the transmitter and receiver is too low.

Several works show the benefit of the RIS-aided network.

For example, [6] investigates the benefit of joint non-

orthogonal multiple access (NOMA) and RIS techniques.

The results show significant benefit of RIS-aided network

from NOMA Furthermore, RIS generally does not need

any active elements such as power-hungry radio frequency

(RF) chains to reflect, steer, focus, or scatter the impinging

EM wave. This makes an RIS significantly cheaper, less

complex, and has lower energy consumption compared to

any phased array antenna or relay [7], [8]. Moreover, based

on the scaling laws and numerical simulations, [9] shows

that despite the reduced implementation quality, sufficiently

large RIS still can outperform relay-aided systems in terms

of the data rate. In addition, the state of RIS can be

configured simply by turning its control elements such as

positive-intrinsic-negative (PIN) diodes on or off. Due to

its structural simplicity, and thanks to its thin structure,

RIS can be attached to walls or ceilings to improve the

communication quality, as shown in Fig. 1.

In order to focus the impinging wave adaptively toward

the receiver, one should estimate the channel between each

unit cell and the receiver. The authors of [10], [11], and [12]

have proposed and analyzed a theoretical method to estimate

the metasurface channel by turning each unit cell to the ON

state while keeping the others in the OFF state during the

training phase. This seems to work fine in theory. However,

this method might be impractical when RIS consists of a

massive number of unit cells since the reflected signal from

one unit cell is too feeble compared to that from all other

unit cells. Therefore, in this work, instead of changing the

state of every unit cell sequentially, a set of random training

patterns for the whole unit cells is used to estimate the RIS

channel.

In our previous work [13], we proposed a fractal pro-

grammable metasurface operating at 5.8 GHz, consisting

of 1-bit 16 × 16 unit cells for wireless power transfer

application. In that work, an adaptive beamforming method

based on the Hadamard matrix training is proposed. How-

ever, to obtain the optimal pattern, the required number of

training patterns is equal to the number of unit cells since

the channel of each unit cell needs to be derived separately.

Consequently, the training overhead is quite large, which

can be a problem if the size of metasurface is large or the

mobility of the receiver is high.

In this paper, we proposed an RIS-aided wireless commu-

nications based on compressive sensing adaptive beamform-

ing algorithm. One of the main limitations of the current

typical RIS is that the phase shift is discrete rather than

continuous. The phase shift resolution of the RIS is limited

by the number of available states. Therefore, an ideal phase

shift cannot be achieved with discrete states. This limitation

can be minimized by designing an RIS with a larger number

of bits. For example, by designing a 2-bit RIS, a 90◦

phase shift can be obtained rather than a 180◦ phase shift

of 1-bit RIS. However, the hardware cost and complexity

is proportional to the number of control bits. Moreover,

some researches have shown that the difference in the gain

between the 2-bit and 1-bit RISs is not very significant. For

example, 2-bit RIS in [14] achieves only 2 dB gain over

the RIS with 1-bit elements [15]. Therefore, in this work,

we design a 1-bit 5.8 GHz RIS that consists of 16 × 16

low-cost passive unit cells. Each of the unit cells has two

states, ON and OFF, which correspond to 0◦ and 180◦ phase

shifts of the incident EM wave, respectively. The state of
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each unit cell can be controlled by turning on or off the PIN

diode that is connected to each unit cell. By adjusting the

state appropriately, one can adaptively steer and focus the

impinging wave towards the receiver direction.

The authors of [14] have shown the RIS capability to aid

wireless communications by achieving a 21.7 dBi and 19.1

dBi antenna gain at 2.3 GHz and 28.5 GHz, respectively.

However, no adaptive beamforming method is proposed. In

this work, we also propose a compressive sensing-based

adaptive beamforming algorithm. Compressive sensing (CS)

is a technique to capture and represent compressible signals

at a rate significantly below the Nyquist rate [16], which

employs non-adaptive linear projections that preserve the

structure of the signal, then reconstructed the signal from

these projections by using an optimization process [17],

[18]. The channel estimation is one example of sparse

approximations, which can theoretically be done by using

the CS technique. In mobile communications with high

carrier frequencies, the propagation path tends to have a

few scattering clusters. Hence, the communication channel

usually can be sparsely represented in the delay-Doppler

domain or the angular domain [19]. The authors [20],

[21] reveal the limited scattering clusters in the angular

domain on their experiments performed in the millimeter-

wave spectrum. Moreover, in the millimeter-wave [22],

[23] or massive multi-input multi-output (MIMO) [24],

[25] system model, where the transceiver is equipped with

antenna array, the channel can be represented in the angu-

lar domain due to the spatial resolvability and minimum

scattering effect from the environment [26]. Several authors

have worked on CS-based beamforming. When the wireless

channel can be represented in the sparse model, CS-based

channel estimations can significantly perform better than

the conventional channel estimation. The authors of [27]

have proposed CS-based beamforming for the orthogonal

frequency division multiplexing (OFDM) systems. In [28]

and [29], adaptive beamforming based on the CS technique

for a sparse receiving array is proposed. The work [30] has

proposed a CS-based channel estimation for massive MIMO

systems. However, none of them has employed the CS-based

beamforming for the RIS.

Matching pursuit (MP) is a greedy CS technique that

exploits the sparsity of a signal to estimate and reconstruct

the signal with a significantly lower number of samples

compared to the Nyquist sampling theorem. Due to its

simplicity, MP requires a relatively light computation. Since,

in wireless communications, especially in the far-field, the

channel tends to be sparse, one can use the MP algorithm

to estimate the channel. By doing so, the wireless channel

involving RIS can be estimated and reconstructed by using

a set of random training patterns. Thus, the beam can

be focused on the receiver to increase the transmission

quality. The proposed algorithm is then implemented in the

proposed RIS prototype testbed. By extracting the phase of

the obtained channel, quantizing it, and loading it on the

RIS, the impinging EM wave on the RIS can be reflected

toward the receiver position.

In addition to the simulation, we fabricated the pro-

posed RIS design, implemented the proposed algorithm, and

conducted experiments to validate the simulation results.

Based on the experiments results, the proposed system can

adaptively steer and focus the beam towards the receiver

direction from −50◦ to 50◦, and significantly improve an

indoor OFDM communications quality. In terms of the BER

and SNR, it is observed that the proposed model can reduce

the BER from 4.69E-6 to 1.44E-8 in QPSK modulation,

from 6.86E-4 to 5.74E-6 in 16-QAM, and from 2.71E-2

to 4.58E-4 in 64-QAM. Further, the proposed model can

aid an indoor 1920 × 1080 pixels (FHD) video streaming.

Compared to 14.54 dB of SNR in the transmission without

the proposed model (cannot be streamed), by using the pro-

posed model, the SNR can be improved to 27.19 dB (smooth

transmission), which is 12.65 dB of SNR improvement. The

video streaming process can be seen in [1].

In summary, the contributions of this work are as follows.

• First, by exploiting the channel sparsity, we propose

a compressive sensing-based RIS beamforming algo-

rithm. We used the compressive sensing approach

to reduce the required number of training patterns.

Compared to our previous work [13], the proposed

algorithm is able to reduce the required number of

training patterns by 1/16 with a negligible perfor-

mance difference. Considering the real-world wireless

communications scenario where real-time tracking is

needed to maintain communication quality, this reduc-

tion rate is quite significant in terms of training over-

head. Further, the sub-array approach is able to mitigate

the compressive sensing performance degradation in

the near-field region.

• Second, we designed and fabricated a 1-bit 5.8 GHz

RIS prototype testbed to validate the theory and sim-

ulation through a series of experiments. From the

experiment resuls, it is verified that the proposed model

is able to estimate the wireless channel. Further, the

proposed model can significantly improve the quality

of wireless communications in terms of SNR and BER.

Moreover, a video is streamed through the proposed

model to demonstrate a real-world application scenario.

The rest of this paper is organized as follows. Section

II explains the system model and problem formulation.

Section III introduces the proposed CS-based beamforming

algorithm. Section IV explains the RIS testbed hardware

design. In the Section V, we present the simulation results.

Section VI present the experiment setup followed by exper-

iment results to evaluate the proposed model. Finally, the

conclusion of this work is presented in Section VII.

Notations: We use the following notations throughout the

paper. We let a lowercase letter (e.g., 0), boldface lowercase

letter (e.g., a), and boldface uppercase letter (e.g., A) repre-

sent the scalar, vector, and matrix, respectively; (·)) , (·)� ,

and (·)−1 denote the transpose, conjugate transpose, and
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inverse of a matrix, respectively; Finally, [A]<,= denotes

the (<, =)-th element of matrix A.

II. SYSTEM MODEL

A. RIS ARCHITECTURE

RIS Layer

RF Choke Layer
Control Layer

Base 

Station
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Controller
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FIGURE 2. General RIS architecture.

In this subsection, the general RIS architecture and its

general principles are explained. An RIS can be described

as a planar array that consists of hundreds to thousands of

passive unit cells. The geometric parameters of unit cells

(i.e., size, arrangement, orientation, and shape) are designed

properly to achieve desired signal responses such as the shift

of frequency, phase, amplitude, or polarization. A typical

RIS thickness usually is in the order of subwavelength of

the signal of interest.

In the past, the surface is designed in a non-reconfigurable

manner, usually designed for serving a specific purpose.

Therefore, once it is fabricated, it cannot be reconfigured.

However, the dynamic characteristic of time-varying wire-

less channels, caused by the user mobility and variable envi-

ronment, makes a non-reconfigurable surface difficult to be

utilized. Thus, a reconfigurable surface that can be tuned in a

real-time manner is needed to aid wireless communications.

As aforementioned, electronic approach such as PIN diodes

and varactor is widely used to reconfigure the reflection

coefficients of the unit cells due to its low cost, fast response

time, and low reflection loss. In the guided-wave type of

unit cell, the incident free-space wave is converted into a

guided wave, then reflected and radiated again to the air as

the reflected free space wave.

A typical architecture of RIS consists of three layers

and an RIS controller (see Fig. 2). The top layer acts

as a manipulator to directly control the impinging EM

waves. It consists of a massive number of reconfigurable

conductive patches on a dielectric substrate. In addition,

for the practical implementation, one can attach dedicated

RF sensors to sense the radio signals on this layer to

aid the intelligent RIS configuration mechanism since the

conventional RIS cannot sense any surrounding radio signals

directly. Then, an RF choke structure is placed in the middle

layer to minimize the RF signal leakage. Finally, the control

elements to reconfigure the reflecting elements in a real-

time manner are located at the bottom layer. These control

elements can be tuned by a controller such as FPGA or

microcontroller. Moreover, this controller can also interact

with other network components such as user equipment or

base station through the backhaul communication links.

B. BASIC RIS THEORY

As aforementioned, by changing the state of the unit cell, the

characteristic of the impinging EM wave such as the phase,

can be changed. Hence, by controlling the RIS appropriately,

one can manipulate an incident EM wave to the RIS. The

scattering field of the x- or y- polarized incident EM wave

to the RIS with " × # unit cells, mathematically can be

modeled as follows [31].

� (\, i) =
"−1∑
<=0

#−1∑
==0

�<=4
9 U<= · |Γ<= |4 9 q<= · 5<= (\, i)

× 4 9:0 (<3G sin \ cos i+=3H sin \ cos i) ,

(1)

where �<=, U<= are the relative illuminating amplitude

and phase concerning each unit cell, |Γ<= | and q<= are,

respectively, the reflection amplitude and phase of unit cell

(<, =), 5<= (\, i) is the scattering pattern of the unit cell,

and 3G and 3H are the spacing between the unit cell in x-

and y- directions, respectively.

It is noted from (1) that by adjusting the reflection ampli-

tude |Γ<= | and phase q<= of each unit cell, the scattering

EM wave from the RIS can be controlled. Assuming that the

reflection magnitude is identical, the reflection phase matrix

of the RIS can be modeled as

� =

©«

q11 q12 · · · q1#

q21 q22

. . . q2#

...
...

. . .
...

q"1 q"2 · · · q"#

ª®®®®®¬
. (2)

Then, the optimal phase compensation of unit cell (<, =)
can be obtained by [32]:

q<= = : ( |p − r<= | + |q − r<= |), (3)

where : is the wavenumber, p is the location of the EM

source, q is the focusing point location, and r<= is the

position of unit cell (<, =).
While the above-computed phase is the ideal continuous

phase shift of each unit cell, those phase shifts cannot be

achieved exactly in the RIS due to the limited available

states [33]. Hence, the optimal phase should be quantized

according to the available states of the RIS. In the 1-bit unit

cell RIS, the available states are “0” and “1” only, which

correspond to the 0◦ and 180◦ phase shift, respectively.

Thus, the phase quantization can be calculated as

q<,= =

{
c, if c

2
≤ q<= ≤ 3c

2
,

0, otherwise.
(4)

Subsequently, the reflection coefficient of unit cell (<, =) is
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derived as

Γ<,= = |Γ<,= | exp ( 9q<,=). (5)

The received signal at the receiver of the RIS-aided wireless

communications system is expressed as

H =

(
"∑
<=1

#∑
==1

ℎTx-RIS-Rx
<,= Γ<,= + ℎTx-Rx

)
GTx + [, (6)

where ℎTx-RIS-Rx
<,= is the cascade channel gain from the

transmitter to the unit cell (<, =) and the receiver, ℎTx-Rx is

the direct channel between the transmitter and receiver,GTx

is the transmitted signal, [ is the additive white Gaussian

noise. The above equation can be rewritten in a matrix form

as

H =
(
h) g + ℎTx-Rx

)
G + [, (7)

where h and g are, respectively, the column vectors of size

"# of the channel gain vector and reflection coefficient

vector obtained by vectorization of ℎTx-RIS-Rx
<,= and Γ<,=. In

ordering the components for vectorization for two indices

< and =, the first index < is major and the last index = is

minor. In this work, we assume that the direct channel from

the transmitter to receiver is deteriorated by severe blocking

by obstacles. Hence, the direct channel term in (7) can be

neglected. The received signal can be rewriten as

H̃ = h) g + [, (8)

where H̃ = H/G. In order to estimate the channel gain of the

system, % training patterns that consist of % different vector

g are designed. Let G is the matrix of size "# × % that is

made by stacking % different vector g. Hence, we have

Y = h) G + [, (9)

where Y is the received signal vector of size % correspond-

ing to the % training pattern. Since the environment scat-

tering effect is limited in high frequency wireless channels

[19], channel estimation can be seen as a typical example

of a sparse estimation problem. In this case, the problem

is to estimate the vector h from a set of Y values from the

measurement results that correspond to % number of training

patterns g. The problem is to find h such that Y = hTG,

which can be solved by using a CS technique such as an

MP algorithm.

III. COMPRESSIVE SENSING-BASED CHANNEL

ESTIMATION ALGORITHM

In this section, the channel estimation algorithm is briefly

explained. In the first subsection, a simple Hadamard beam-

forming algorithm from [13] is explained. Although the

wireless channel can be accurately estimated by using this

method, the channel of each unit cell needs to be derived

separately. Therefore, the required number of training pat-

terns is equal to the number of unit cells. This situation

might cause a training and computational overhead in a large

RIS. In the second subsection, we introduce the compressive

sensing-based channel estimation algorithm to reduce the re-

quired number of training patterns. The sub-array approach

is proposed to tackle the performance degradation when the

receiver is located within the near-field region of the RIS.

A. HADAMARD BEAMFORMING ALGORITHM

In this subsection, we explain a Hadamard-based channel

estimation algorithm. In this algorithm, a Hadamard matrix

is used to build a set of sensing patterns G. The Hadamard

matrix is a square orthogonal matrix all entries of which

are either 1 or −1. Let 	 be a Hadamard matrix of order

: , then [
	 	

	 −	

]
(10)

is a partitioned matrix of the Hadamard matrix with order

2: . This observation can be repeated to build a sequence of

matrices as follows.

	1 =
[
1
]
, 	2 =

[
1 1

1 −1

]
, 	2: =

[
	2(:−1) 	2(:−1)

	2(:−1) −	2(:−1)

]
.

(11)

Let us assume that the number of unit cells of the RIS (i.e.,

"#) is the power of 2. Then, the Hadamard matrix is used

as the sensing matrix G = 	"# , with the size "# ×"# .

Therefore, the channel measurements for ℎTx-RIS-Rx
<,= should

be conducted 2"# times. Then, the estimated channel h is

obtained as

h =
G

)
Y

"#
+

G
)
(
′
;

"#
, (12)

where G
)
(
′
;
/("#) is the Gaussian noise vector.

B. SUB-ARRAY TRAINING OF MATCHING

PURSUIT-BASED BEAMFORMING ALGORITHM

It has been shown and proved in many literature that the

propagation paths tend to be clustered, and the environment

scattering effect is limited in wireless channels (i.e., [19]

and [34]). Therefore, the channel can be represented in the

delay-Doppler domain or angular domain. If the Doppler

spreads and the maximal delay are large and only a few

dominant paths are left, the channel can be modeled as a

sparse vector [35]. The author [36] proposed a compressive

sensing and deep learning approach to estimate the channel

in a large intelligent surface (LIS). However, several active

sensor elements are required to be attached to the LIS

structure. These sensors are needed to sense the signals and

estimate the channel. Similar work has been done in [37].

Differently from these works, in our proposed model, the

signal is sensed by the receiver. Hence, no active elements

are required on the RIS side. Moreover, both of those works

proposed a machine learning assisted channel estimation,

which is relatively heavy in computation, especially when

the RIS size is large.

Since in this work, we deploy the proposed model in an

indoor scenario to improve the indoor transmission quality,

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3124319, IEEE Access

M. M. Amri, et al.: Reconfigurable Intelligent Surface-Aided Wireless Communications

we might face a challenge regarding the sparsity level due to

the limited size of the indoor area environment. Specifically,

end-user devices might be located in the near-field region

of the RIS, especially in the large-scale RIS system. Indeed,

this situation reduces the sparsity of the channel. Since the

MP algorithm is heavily dependent on the channel sparsity

level, we expect that the typical MP algorithm performance

might be degraded significantly when the transmitter and

receiver are close to RIS. Hence, we have come up with a

sub-array training for matching pursuit-based beamforming

algorithm.

The near-field and far-field depends on the largest dimen-

sion of the antenna, which in the case of square RIS is the

diagonal. Thus, we logically divide the whole array into

multiple sub-arrays, each of which has a smaller aperture.

This division guarantees the far-field condition of the overall

system. As illustrated in Fig. 3, the training pattern is loaded

to each sub-array first. Then, the channel is estimated by

using the MP algorithm based on the measured received

signal. Finally, the phases of the reflection coefficients are

set to the quantized and conjugated phases of the estimated

channels.

FIGURE 3. Sub-array training method: Train each sub-array
first then obtain the whole-array optimal pattern.

In this subsection, we propose an MP algorithm to exploit

the sparsity of the angular domain of RIS channel gain

vector h. MP is one of the greedy sparse estimation algo-

rithms that was first introduced in [38] which finds the most

matching projections of the data into the span of an over-

complete dictionary. MP algorithm decomposes a signal into

a linear set of basis functions. Through the iterations, the

MP algorithm chooses the basis functions that best match

the signal in a greedy manner, removes the signal component

having the form of the selected basis function, and obtains

the residual.

As in (9), the model in this work can be expressed as

Y = h) G. Therefore, to exploit the sparsity value, first, the

model should be transformed by using a Fourier transform.

This transformation is performed to transform the RIS

channel gains into the angular domain. Hence, the model

can be expressed as

Y = h) FF−1G, (13)

h) F =
Y

F−1G
, (14)

where F is the discrete Fourier transform matrix, and F−1

is the inverse of the discrete Fourier transform matrix. The

transformation matrix F with #-points is formulated as

F =

1
√
#



1 1 1 1 1

1 l l2 · · · l#−1

1 l2 l4 · · · l2(#−1)

...
...

...
. . .

...

1 l#−1 l2(#−1) · · · l (#−1) (#−1)


, (15)

where l = 4−2c8/# is a primitive #th root of unity in

which 82 = −1. The h) F vector obtained from (14) is then

used in the MP algorithm as explained in Algorithm 1.

As aforementioned, the MP algorithm is a greedy sparse

estimation algorithm that utilizes the highest correlation

between the transmitted signals and the residual, where in

this case, the received signal Y is used as the initial residual.

Thus,

;̃ = argmax
;=1,...,(

|Y) ·GF−1 |2∑ |GF−1 |2

= argmax
;=1,...,(

(GF−1); · Y)

(GF−1)) ; · (GF−1);
.

(16)

where the ( is the sparsity level indicating the iteration

number, and ;̃ is the index of the vector with maximum

correlation value. The new residual at the gth iteration is

then calculated as

Yg = Yg−1 − (GF−1);̃ · (h) F);̃ . (17)

The above steps (16) and (17) are then repeated ( times.

Then, the optimal channel can be calculated as

h)
= F−1 · h) F. (18)

The optimal phase is then extracted from the channel as

� = ∠h∗. (19)

Due to the limited number of the RIS state, the phase is

then quantized to two available states as in (4). After the

quantized optimal phase is obtained, the phase is then loaded

to the RIS. The flowchart of the proposed MP beamforming

algorithm is depicted in Fig. 4.

IV. RIS HARDWARE DESIGN

In this section, the hardware design of the proposed RIS

testbed is presented. The RIS testbed can be seen in Fig.

5(a). The RIS board is connected to a separate power board

to receive regulated power. As shown in Fig. 5(b), the RIS

testbed consists of four identical sub-boards. Each sub-board

has 64 unit cells, formed in 8 × 8 unit cell formation. In

total, the RIS has 256 unit cells (i.e., 16 × 16 unit cells).

The sub-board is designed as a modular board such that the

number of unit cells in the RIS can be extended easily in

a “plug-and-play” manner, as simple as attaching another

sub-board to the existing RIS.
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FIGURE 4. Matching pursuit beamforming algorithm flowchart.

Algorithm 1: Matching Pursuit Algorithm

Input : Measured sensing signal Y

Dictionary columns of GF
∗

(z;
denotes the ;th column of GF

∗
)

Sparsity level (

Output : Vector of estimated channel h.

Initialization: Initialize � as an empty matrix;

Yg ← Y;

1 for g ← 1 to ( do

2 ;∗ ← argmax;=1,...,"# |z�; r|2/|z�
;

z8 |;
3 �← [z8∗ ];
4 h← �

�
r/(��

�);
5 Yg ← Yg − �h;

6 end

7 return h;

A. UNIT CELL DESIGN

The unit cell is designed in a rectangular shape (Fig. 6(a)).

As shown in Fig. 6(b), a unit cell consists of three layers.

The unit cell parameter values (see Table 1) are obtained

from the simulation and optimization by using CST Studio

software. The proposed RIS is designed to work in 5.8 GHz

and fabricated on a ROGERS RO4350B substrate with loss

tangent (tan X) 0.0031 and permittivity (YA ) 3.6. Albeit some

works show that RIS is useful to mitigate the path loss in

the mmWave frequency band, we decided to conduct the

experiment at 5.8 GHz. We selected 5.8 GHz as the target

operating frequency since 5.8 GHz frequency is a part of the

free and pervasive industrial, scientific, and medical (ISM)

band. In addition, 5.8 GHz is chosen as the operating fre-

quency to minimize the challenges of the experiment setup

that might occur in the mmWave band. These challenges

include the high cost of the mmWave transceiver and the RIS

design complexity. Moreover, one of the main contributions

of this paper is to validate the theory and hypothesis that

the RIS improves wireless communications quality through

the experiment rather than to implement the model itself in

the mmWave frequency band.

To control phase of the incident wave, a PIN diode is

RIS

Power
Board

(a) RIS testbed

(b) RIS layout

FIGURE 5. Structure of the RIS.

connected to each of the unit cells. As displayed in Fig.

6(a), in the ON state, the PIN diode is equivalent to the

series circuit of resistance and inductance, while in the OFF

state, it is equivalent to the series of the capacitance and

inductance. Therefore, under the EM wave illumination, the

VOLUME 4, 2016 7
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7.5 mm

12.88 

mm

Equivalent Circuit

7  0.03 pF

0.03 nH0.03 nH

ON OFF

(a) Unit cell design

Patch (RIS) Layer PIN Diode

RO4350B

FR-4 Epoxy

RF Choke Layer

(b) Lateral view

FIGURE 6. RIS unit cell structure.

TABLE 1. Unit Cell Specification

Specifications Values

Operation frequency (GHz) 5.8

Dimensions , × ! × ) (mm3) 36.2 × 36.2 × 1.642

RIS substrate ROGERS RO4350B

RIS relative permittivity (YA1) 3.6

Control board substrate FR-4 epoxy

Control board relative permittivity

(YA2)

4.2

Pin diode MADP-000907-

14020W

PIN diode impedance can be modeled as

/! =

{
' + 9l!, ON state,

9l! + 1
9l�

, OFF state.
(20)

The reflection coefficient can be obtained from

Γ =
/! − /'

/! + /'

=| Γ | 4 9 q , (21)

where /' is the radiation impedance of the unit cell. The

structure of the unit cell is designed such that it can provide

the appropriate value of /' to obtain a 180◦ phase shift

between ON and OFF states at the operating frequency. With

the proposed design, 180◦ phase shift between ON and OFF

states at 5.8 GHz can be achieved (see Fig. 7). This result is

in accordance with the measurement result of the fabricated

unit cell. In the simulation result, a 180◦ phase difference

between ON and OFF states at 5.8 GHz is achieved, while

in the measurement result, the frequency with the correct

phase shift value is slightly lowered. The imperfection of

measurement setup causes this slight difference, which is

acceptable.

As shown in Fig. 6, a butterfly stub RF choke is designed

for every unit cell and is placed in layer 3 of the RIS part

to prevent the RF power from leaking to the DC source,

which might affect the performance of the RIS itself. Fig. 8

FIGURE 7. Unit cell phase characteristic.

displays the RF choke simulation result. It is observed that

the (12 and (21 values are dropped at 5.8 GHz due to the

presence of butterfly stub RF choke.

FIGURE 8. RF choke simulation result.

B. CONTROL CIRCUIT DESIGN

In order to control the state of each unit cell, a control

board consists of a combination of 8-bit D-flip flop IC, 8-

bit decoder IC, and 8-bit shift register IC (see Fig. 9) is

designed. We use the shift register IC to load the state of

each unit cell (i.e., ON or OFF). Then, the output of each

shift register IC is connected in parallel to the D-flip flop

ICs. Each output pin of the D-flip flop IC is connected to the

input of the PIN diode for controlling the state of the unit

cell. One D-flip flop IC corresponds to one column. Since

there are eight columns, eight D-flip flop ICs have been

used. Finally, to enable the selected column, an 8-bit decoder

IC is used. In addition, since the shift register IC is equipped

with an output for cascade shift register configuration, we

make use of it to connect one sub-board to another. The

control board layout is presented in Fig. 9.

8 VOLUME 4, 2016
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FIGURE 9. Control board layout.

x

y
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Rx

Tx

RIS
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𝛉
𝝓

FIGURE 10. RIS model in the Cartesian and spherical coor-
dinate system.

V. SIMULATION RESULTS

To simulate the proposed model, first, we have made the

RIS simulator environment by using the MATLAB software.

Then, we conducted some simulation tests and analyzed the

results. Fig. 10 shows the coordinate systems for the RIS and

the antennas. Note that in the model, a spherical coordinate

system is used for the simulations and experiments. The

transmitting and receiving antenna locations are denoted

by (A, \, q) with respect to the RIS position. The RIS is

located at (0 m, 0◦, 0◦). In the simulation, the whole-array

MP training algorithm is implemented on an RIS with 16

× 16 unit cells. For the first test, we want to validate the

capability of the proposed algorithm to focus the beam at

the designated angle. Hence, we vary the q of the receiver

from 10◦ to 50◦ and set the value of r and \ of the receiver

to 10 m and 90◦, respectively. In addition, the transmitter is

placed at (2 m, 90◦, -30◦).
The result is shown in Fig. 11. From the estimated phase

window, it is observed that the proposed algorithm can

estimate the actual (theoretical) phase accurately. On the

“True Magnitude (FFT)” window, the peak of the focused

beam is displayed and is also estimated accurately by the

proposed algorithm (see “Estimated Magnitude (FFT)”).

This focused beam location corresponds to the receiver

position. The peak of the beam when we steer it to 30◦

is located in the middle of the window because at 30◦,
the reflected beam is right at the specular reflection angle

of the RIS since the transmitter is located at -30◦. In this

test, 256 sparsity levels and 128 training patterns are used.

The sparsity level denotes the sparsity that is taken into

account in the MP algorithm. A smaller value of sparsity

level means we assume that the channel value is sparser. In

the algorithm, the sparsity level corresponds to the number

of iterations. As displayed in Fig. 11, when the iteration

is increasing, the received power is starting to improve.

Even though we set the sparsity level to 256, the received

power starts to reach its steady-state at around 40 iterations.

The iterations needed to reach its steady-state is inversely

proportional to the actual channel sparsity. A sparser channel

means smaller iterations required to achieve the steady-state.

In this test, 40 iterations is needed to achieve the steady-

state, which means the channel is not quite sparse. However,

the proposed algorithm can still estimate the channel and

steer the beam to the designated angle.

To validate the hypothesis that the sparsity is proportional

to the distance, the receiver distance from the RIS is varied.

In this test, 128 sparsity level is used. As shown in Fig.

12, when the receiver distance is increased, the phase

is changing from the spherical shape into a more plane

shape. This is in line with the radiation pattern theory,

where the spherical wave in the near-field tends to be a

plane wave in the far-field. Then, as the channel becomes

sparser, we expect to see a smaller high-power region in

the magnitude in the angular domain. This matches with

the result displayed in the “Magnitude (FFT)” window in

Fig. 12, where the high-power region of the beam is getting

smaller according to the distance.

VI. EXPERIMENTAL RESULT

A. EXPERIMENT SETUP

In this section, we present the experimental results of the

RIS-aided communications. The devices used in the exper-

iments are shown in Fig. 13(a). In this work, a software-

defined radio (SDR) NI USRP 2944 with a frequency range

from 10 MHz to 6 GHz is used. In addition, a pair of

horn antennas are used, each of which is for the transmit

and receive antennas. A software code for testbed control

consisting of OFDM transmitter code, OFDM receiver code,

BER and SNR calculation code, UDP video streamer, RIS

MP algorithm code, and RIS controller code is written

in LabVIEW NXG. We then measure the received signal,

compare it to the transmitted signal, calculate the BER

and SNR, and plot the constellation. Moreover, three RF

absorber walls are used to create a controlled environment

isolated from the external multipath, thus making it easier to

analyze the proposed model characteristic and performance.

To display the pattern of the RIS, an LED indicator is

connected to each of the unit cells of the RIS, which is

turned on when the state of the unit cell is ON. The overall

experiment setup is shown in Fig. 13(b).

Considering our objective to aid the indoor wireless com-

munications quality, we limit the receiver distance from the

RIS. However, due to the relatively low channel sparsity in

the near-field, the challenge is that the MP algorithm might

not work in this kind of environment. Hence, we conducted
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FIGURE 11. Simulation result of the proposed algorithm with angle variation of the receiver.
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FIGURE 12. Simulation result of distance variation.

experiments to prove whether the algorithm can perform

well in an indoor scenario. In addition, we intentionally

made a challenging environment by transmitting the signals

in a low transmit power level and receive gain.

In the experiments, we conducted several tests. First, we

validate the steering capability of the proposed model by

fixing the transmitter position at (1.2 m, 90◦, -30◦) relative

to the RIS, and vary the receiver position (q) from 10◦

to 50◦. We also conducted a cross-polarization test. After

that, we compare the performance of the proposed sub-array

MP training algorithm with the whole-array MP training

algorithm and Hadamard beamforming algorithm. We then

vary the number of training patterns. After that, we vary

the receiver distance from the RIS. For the modulation test,

we transmitted the signal with three different modulation

schemes and analyze the received signals. Further, for the

practical application, we also streamed a video through the

RIS.

The whole peer-to-peer communication scheme is shown

in Fig. 14. One USRP is used to transmit and receive the

signals. In the software code, the performance metrics such

as BER, BLER, FER, SNR, and constellation are calculated.

In addition, a video is streamed through a wireless channel

with user datagram protocol (UDP).

The communication code is divided into two parts, the

transmitter stage, and the receiver stage. In the transmitter

code, user data, which can either be random ones or video

data, is generated in the host computer (PC). Then, headers

such as length indicator (LI) and sequence number (SN) are

added. After that, by using DMA FIFO, the data is passed

to the USRP FPGA. In the FPGA, the data goes through

channel coding (CRC and LDPC) and modulation. After the

modulation step, the reference, pilot, and sync symbols are

added to the data. The reference and pilot symbols are used

for the channel estimation. In addition, the sync symbol is

generated by using the Zadoff-Chu sequence and added to
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FIGURE 13. RIS experiment testbed.

the start of a frame for the time synchronization function.

After that, a guard band is added. Lastly, we implemented

IFFT transformation and add a cyclic prefix (CP) to the data

before passing it to the transmit antenna.

Then, the signal is passed through the wireless channel,

reflected by the RIS, and received by the receive antenna.

The receiver stage process is quite the opposite of the

transmitter stage. After the antenna of the USRP receives

the signal, the synchronization step is implemented by

matching the received signal to the reference sync signal.

Then, a frequency compensation process is implemented

to compensate for the frequency drift. After that, the CP

is removed, and an FFT transformation is implemented.

Then, the guard band, sync symbol, and pilot symbol are

removed. After the removal, the data is passed through the

equalization step by utilizing the channel gain obtained by

using the reference symbol. Then, the data goes through the

demodulation and channel decoding steps. Finally, the data

is passed to the PC using DMA FIFO and displayed on the

monitor, which can be either a streaming video or a set of

random data. In the PC, the constellation diagram is then

displayed. Furthermore, the BER and SNR are calculated

by using (23)-(24). Note that a weighted moving average

filter is used to calculate the BER as follows.

BER =
Number of bit error

Number of transmitted bit
, (22)�BER8 = BER8 × U + (1 − U)BER8−1, (23)

SNR = 10 · log10 [
∑=G−1

0

∑=H−1

0
[A (G,H) ]2∑=G−1

0

∑=H−1

0
[A (G,H)−C (G,H) ]2

], (24)

where �BER8 represent the filtered BER8 value, BER8 rep-

resent the BER value at the index 8th, U represent the

moving average coefficient, C (G, H) is the transmitted data,

and A (G, H) is the received data.

B. EXPERIMENT RESULTS

First, we validate the steering capability of the RIS with

the proposed MP algorithm by measuring the radiation

pattern. Note that the spacing between elements is extended

to 0.7 _ instead of 0.5 _ to minimize the inter-element

coupling. Consequently, a relatively large grating lobe has

been observed (see Fig. 15). Furthermore, it is observed that

for the case of 40◦ and 50◦, the sidelobe is larger than the

other cases. However, as we can see in Fig. 15, the RIS is

still capable of steering the beam to various elevation angles,

from 0◦ to 50◦ by using an MP algorithm.

In this work, the RIS board is designed to work as a

linear polarization reflector. Hence, if we rotate the receiving

antenna, we expect the RIS cannot work well. To validate

it, a test is conducted. We turn the receiving antenna 90◦

under the same test environment and measure the radiation

pattern. As shown in Fig. 16, even though the RIS still

can form the beam toward the designated receiver angle

when the receiving antenna is rotated (cross-polarization),

the magnitude is very weak.

After validating the capability of the proposed RIS, we

then compared the performance of the proposed algorithm

with the adaptive Hadamard beamforming algorithm used in

[13]. We placed the transmit antenna at (1.2 m, 90◦, -30◦)
and the receive antenna at (2 m, 90◦, 20◦) relative to the RIS.

As mentioned before, although the Hadamard beamforming

algorithm is expected to obtain the channel better, there is

a training overhead. Since the number of training patterns

is equal to the number of unit cells, the training time is

proportional to the number of unit cells, which can be a

problem when the number of unit cells is large or when the

receiving device moves relatively fast. On the other hand,

since the MP-based channel estimation exploits the sparsity

level, usually the number of measurements, or in this case

training patterns, is significantly smaller.

As displayed in Figs. 17 and 18, the sub-array MP training

algorithm (MP sub) can achieve a performance almost as

good as Hadamard beamforming algorithm with 1.233E-8

and 1.204 dB of BER and SNR difference, respectively,

but with only 64 training patterns instead of 256 training

patterns in Hadamard training. This result means that the

number of training patterns can be reduced by 75% with

negligible performance degradation. Note that there is a
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FIGURE 14. Diagram of the wireless communications used in the experiments.
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FIGURE 15. Focusing capability result and its corresponding
optimal pattern.

transition gap between the optimal steady-state and when

the training time is finished in the BER plot. This result

does not reflect the performance or the characteristics of the

algorithm. The gap occurred because, in the BER calculation

(24), a weighted moving average filter is used. Therefore,

although the BER has changed instantly after the training

has been done, it appears that the BER result takes time

to reach the filtered BER steady-state due to the moving

average filter.

Further, the proposed whole-array MP training algorithm

(MP whole) cannot achieve the optimal state. This result is

expected and in line with the theory. Since the receiver is

located in the near-field of the whole-array RIS, the channel

sparsity is low. Consequently, even though we used 256

training patterns, the MP algorithm cannot work well. In this

test, 256 and 64 sparsity levels are used for the MP whole

and MP sub, respectively. In this work, the sparsity level

15o 30o

45o

0o

45o30o

15o

FIGURE 16. Radiation pattern for cross-polarization and co-
polarization of the receiver.

defines the sparsity level assumption taken into account in

the MP algorithm. The sparsity level is corresponds to the

number of iterations, which proportional to the algorithm

complexity. Since the following experiments are conducted

in the same indoor environment, sub-array MP training

algorithm will be used. In addition, 64 sparsity level will be

used since the algorithm complexity is not a critical concern

in the experiments. The QPSK constellation diagram result

of this test is presented in Fig. 19.

One of the main advantages of CS is that the number

of measurements required to estimate the signals accurately

is small. Hence, we vary the number of training patterns,

which equal the number of measurements in the MP algo-
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FIGURE 19. QPSK constellation diagram of different beam-
forming algorithms.

rithm, and observe how it affects the beamforming algorithm

performance. The transmitter is placed at (1.2 m, 90◦, -

30◦), while the receiver is placed at (1.75 m, 90◦, 20◦)
with respect to the RIS. The number of training patterns is

proportional to the training time. However, when the number

of training patterns is reduced, there is an inevitable perfor-

mance trade-off, which at a certain level, the performance

degradation is intolerable. As depicted in Fig. 20, despite

50% faster training time, when the number of training

patterns is reduced to 32, there is a slight BER and SNR

degradation compared to when 64 training patterns are used.

However, when the number of training patterns is reduced

again to 16, which is only 25% of 64 training patterns,

the performance difference compared to when 32 training

patterns are used, is negligible. This phenomenon can occur

due to the random training pattern. Since we generated

a randomized training pattern to reconstruct the wireless

channel, there is a possibility that in every training cycle,

the performance of the algorithm might slightly fluctuate.

However, with only around 1 dB difference between 64 and

16 training patterns, we might conclude that we are able to

reduce the number of training patterns by 1/16 compared to

[13] with a negligible performance difference. Hence, with

our RIS testbed, the training time can be reduced from 0.3

ms to 0.02 ms. This result is constrained by the hardware

specifications and might vary in a different setup. However,

in terms of training time and computation, this reduction rate

is significant, especially if we consider real-world mobile

communications where the channel should be estimated in

a real-time manner to maintain the communication quality.

Further, when the number of training patterns is reduced

again to 8, the algorithm cannot work anymore. This because

the number of training pattern is insufficient to properly

estimate the channel. In a scenario when training time is

critical and slight performance degradation is acceptable,

a smaller number of training patterns can be used. Since

training time is not critical in the experiments, for the next

tests, 32 training patterns are always used. Note that while

the number of training patterns affects the training time, the

sparsity level (iteration) affects the algorithm complexity.

Therefore, the number of training patterns and sparsity level

should be carefully decided by considering the application

type.

In the next experiment, while we keep the transmitter

position at (1.2 m, 90◦, -45◦), we vary the receiver distance

A from the RIS from 1 m to 5 m. In each distance variation,

we re-do the training, transmit an OFDM signal with QPSK

modulation, then calculate and plot the BER and SNR

results. As expected, when the distance is larger, the received

signal power is reduced. However, the proposed model still

manages to improve transmission quality significantly. As

depicted in Fig. 21, when the proposed model is used, we

can achieve the BER as low as 6.322E-8 (in the case 1 m)

compared to 0.153 when the RIS is not trained (all states

are OFF). The improved SNR result is depicted in Fig. 22.

From the constellation figure (Fig. 23), it is evident that the

proposed model can significantly improve the transmission

quality.

We then transmitted an OFDM signal with three different

modulation schemes. The transmitter is placed at (1.2 m,
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Optimal stateMP 
training

RIS off

64 patterns

17.26

24.42

23.26

23.18

10.98

32 patterns
16 patterns

8 patterns

FIGURE 20. SNR result of number of training patterns varia-
tion.

Optimal stateMP 
training

RIS off

0.26

0.0069

3.34E-5

3.38E-5

1.41E-6

6.32E-8

0.15

FIGURE 21. BER result of distance variation.

Optimal stateRIS off MP 
training

0.67

0.03

-1.01

1.88

-1.66

22.56

18.49

14.52
14.67

8.41

FIGURE 22. SNR result of distance variation.

90◦, -30◦), while the receive antenna is placed at (1.5 m,

90◦, 15◦) with respect to the RIS. As presented in (24), the

proposed model can reduce the BER significantly to 1.44E-8

with QPSK modulation, 5.74E-6 with 16-QAM, and 4.58E-

4 with 64-QAM. In terms of SNR, the proposed models

can improve the SNR up to approximately 6 dB in any

modulation scheme (Fig. 25). In line with the modulation

theory, the BER of the QPSK is the lowest among those

three modulation schemes, followed by 16-QAM and 64-

QAM, respectively. As shown in the constellation diagram

(see Fig. 26), intuitively, it is observed that the proposed

model can significantly improve the communications qual-

ity.

R
IS

 o
ff

C
S

 M
P

1 meter 2 meter 3 meter 4 meter 5 meter

FIGURE 23. QPSK constellation diagram of distance variation
experiment.

Optimal stateMP 
training

RIS off

4.69E-6

6.86E-4

0.0271

1.44E-8

5.74E-6

4.58E-4

FIGURE 24. BER result of different modulation order.

In the last experiment, we streamed a video with 1920

× 1080 pixels (FHD) resolution, 60 fps, and 3445 kbps

data rate for testing the practical application scenario. It is

observed that when the RIS is employed, the video SNR can

be improved by 12.65 dB to 27.19 dB (smooth transmission)

compared to 14.54 dB without the proposed model (cannot

be streamed at all). The video transmission process can be

seen on [1].

VII. CONCLUSION

In this paper, a 1-bit 5.8 GHz RIS-aided indoor wireless

communications model has been proposed. We designed and

fabricated a 1-bit RIS testbed consists of 16 × 16 unit cells.

We also proposed a CS-based MP adaptive beamforming
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Optimal stateMP
training

RIS off

17.61

24.37

FIGURE 25. SNR result of different modulation order.

R
IS

 o
ff

C
S

 M
P

QPSK 16-QAM 64-QAM

FIGURE 26. Constellation diagram of different modulation
order.

algorithm that can steer and focus the beam toward the

receiver position. We then transmitted an OFDM signal

with QPSK, 16-QAM, and 64-QAM modulation schemes

to demonstrate the proposed system. By implementing an

MP-based beamforming algorithm on the RIS testbed as

a reflector between the transmitter and receiver, the BER

and SNR of the communications can be significantly im-

proved. In addition, an RIS-aided video streaming is also

demonstrated. In the video streaming demonstration, it is

observed that the proposed RIS is able to aid the streaming

quality in a notable manner. Finally, we expect that the RIS

employment can be used to improve the quality of the future

wireless communications.
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