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Reconfigurable Multilevel Phase-Shift Keying
Encoder–Decoder for All-Optical Networks

M. R. Mokhtar, M. Ibsen, P. C. Teh, and D. J. Richardson

Abstract—We demonstrate the application of a uniform Bragg
grating as a dynamically reconfigurable phase encoder–de-
coder for optical systems. Precise discrete phase modulation
between chips is obtained simply by heating segments along the
grating with fine resistive wires. Its reliability to generate and
recognize various phase code sequences is demonstrated in a
16-chip 20-Gchip/s quaternary phase-shift keying coherent optical
code-division multiple access experiment. The bit-error-rate
response is also included to highlight its performance.

Index Terms—Code-division multiplexing, gratings, matched fil-
ters, optical fiber communication.

I. INTRODUCTION

O
PTICAL MULTIPLEXING techniques have been

adopted to cater to higher speed and bandwidth re-

quirements of future optical networks. Wavelength-division

multiplexing (WDM) and time-division multiplexing (TDM)

have been successfully deployed. However, these conventional

techniques generate spectrally inefficient systems through ded-

ication of one wavelength per user and require strict temporal

synchronization of the networks, respectively. The depletion of

the available frequencies in the transmission band of an optical

fiber calls for more appropriate multiplexing techniques.

Recently, optical code-division multiple access (OCDMA) has

been identified as an alternative technique to solve the future

wavelength resource problems. OCDMA can be overlaid onto

the existing WDM networks to enhance network versatility.

Moreover, it allows flexible bandwidth management, asyn-

chronous operation, improved system security, and the potential

for much higher connectivity [1].

OCDMA systems have advanced to a stage where 255-chip

systems have been experimentally demonstrated, utilizing su-

perstructured fiber Bragg grating (SSFBG) technology [2].

Nevertheless, definite advancement of the optical transmis-

sion systems to dynamically reconfigurable networks brings

about the need for this multiplexing system to include tuning

capabilities. Recently, we proposed a practical dynamically re-

configurable encoder–decoder based on a uniform fiber Bragg

grating (FBG) to suit this requirement [3]. The continuous

phase-shifting property of this device can be further explored

to enhance the capacity of a highly flexible optical network

through multilevel phase-shift keying operation.
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In this letter, we have simplified the construction of the device

configuration and increased its code sequence generation, and

demonstrate its application in a 16-chip 20-Gchip/s quaternary

phase-shift keying (QPSK) OCDMA experiment. Autocorrela-

tion and cross correlation signatures are presented to show the

reliability of code sequence generation and recognition of the

device. We also present its bit-error-rate (BER) measurements

to support its applicability in data transportation.

II. DEVICE PRINCIPLE AND DESCRIPTION

Advances in fiber grating fabrication technology enables pre-

cise control of the grating amplitude and spatial phase. A dis-

crete phase shift is typically achieved by shifting the phase of

the rapidly varying refractive index during the grating inscrip-

tion process. This has been successfully exploited for phase en-

coding of data signals in OCDMA systems [2]. On the other

hand, a confined chirp will also produce similar effect as a result

of the change in the local propagation constant. The chirp can

be caused either by variation in the grating period or the effec-

tive refractive index, following the phase matching condition. In

fact, both variations occur when the temperature of the grating

is elevated, as dictated by the second term of the following [4]:

(1)

where is the shift in the Bragg grating center wavelength,

is the effective refractive index of the fiber core, is the

grating period, is the length expansion, and is the tem-

perature change. However, the contribution of the thermo-optic

effect is greater than the thermo-elastic effect in silica. More-

over, the induced effective index variation is impermanent as

long as the temperature does not exceed the grating erasure tem-

perature ( 150 C). Apparently, a fine electric conductor with

an applied voltage can adequately provide the required heat and

can thus be used to induce a controllable chirp.

Based on this concept, a phase encoder with multiple tun-

able phase shifts can be formed from a single uniform FBG.

The local phase profile in this device is altered by varying the

temperature along the grating according to a desired code se-

quence. In this demonstration, a uniform FBG is written using

our continuous grating writing technique operated with contin-

uous wave ultraviolet light at 244 nm [5]. The grating is 80 mm

long and is written in a standard telecom compatible fiber with

a numerical aperture (NA) of approximately 0.12. It has also

been preannealed at a temperature that exceeds 200 C to de-
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Fig. 1. Schematic structure of the reconfigurable encoder–decoder.

liberately weaken the strength and consequently becomes very

stable when operating below this temperature. The peak reflec-

tivity of the fiber grating is then about 57% corresponding to

a uniform coupling coefficient in the grating of approximately

12 m . Low reflectivity ensures signal light to penetrate its full

length and also the coded pulse sequences will have the same

amplitude.

A length of tungsten wire (18- m diameter), in series with

a variable potentiometer is laid across the fiber to provide an

adjustable localized heating. A 16-chip encoder–decoder with

a chip duration of 50 ps is thus constructed by positioning 15

parallel wires 5 mm apart along the fiber grating with the first

wire being placed 5 mm into the grating (Fig. 1). Additionally,

the fiber grating is mounted on a stretcher to allow tuning of the

grating central wavelength. The values of electrical current re-

quired to induce the desired phase shifts to the back-reflected

light are predetermined through observation of the spectral dy-

namic behavior of the grating being heated in the center [3].

Recognizing that the phase shift is in fact proportional to the

product of the heated length and the associated Bragg wave-

length modulation, it is expected to roughly show linear depen-

dence with the applied current, as the heated region is extremely

narrow. The values of electrical current used to generate 0.5 ,

, and 1.5 are found to be 30, 60, and 90 mA, respectively. The

highest operating temperature of the wires is thus measured to

be only around 27 C above the room temperature.

III. OCDMA SYSTEM EXPERIMENT AND RESULTS

In order to test the application of our proposed reconfigurable

encoder–decoder, a simple OCDMA system is constructed.

The experimental setup is shown in Fig. 2. The transmitter

consists of a tunable laser operated at 1548 nm, an electroab-

sorption modulator (EAM), an electrooptic modulator (EOM),

and a reconfigurable optical encoder (as described above).

The EAM, driven with a 10-GHz sinusoidal signal is used to

convert the continuous light from the tunable laser to a 10-GHz

pulse train with the full-width at half-maximum (FWHM)

of 20 ps. The pulse train is then modulated by an EOM at a

data rate of 622 Mb/s in response to the electrical data from a

pseudorandom pattern generator (PPG). After phase-encoding

performed by the reconfigurable encoder, the encoded signal

stream is diverted into two arms of a 3-dB coupler, each having

a unique four-level phase-encoded superstructured grating.

Subsequently, the reflected pulses in each arm are observed on

an oscilloscope and an error detector.

Fig. 2. Experimental setup.

Fig. 3. Traces of the intensity auto and cross correlation (solid lines: measured;
dashed lines: calculated) for (a) address code #1 and (b) address code #2.

The optical encoding is performed in the time domain, a pro-

cedure that is known as the direct sequence OCDMA. Each

signal pulse is directly transformed into a coded pulse sequence

upon reflection from the reconfigurable encoder. The device is

set to the inverse code sequence with respect to either one of

the SSFBG decoders so that a time-reversal operation can be

performed. The reflected pulses are configured to a desired ad-

dress code by independently adjusting the electrical current flow

at the chip boundaries to their associated values. The 16-chip

QPSK coded pulse stream is individually matched filtered by

the SSFBGs at the receiver, both operating at the same central

wavelength of 1548 nm. Fig. 3(a) shows the relative intensity

distribution of a bit of the decoded signal in the matched and

unmatched cases for the SSFBG with address code #1 ( , , ,

0.5 , 0.5 , 1.5 , 0.5 , 1.5 , , 0, 0.5 , 1.5 , , 1.5 , 0, 0). On

the other hand, Fig. 3(b) represents that of the SSFBG with ad-

dress code #2 (1.5 , 1.5 , 0.5 , 0, , 0.5 , 1.5 , 0.5 , 0, 1.5 ,

0, , 1.5 , 0.5 , 1.5 ). These codes belong to the Family se-

quences [6]. The overall extinction ratio between auto and cross

correlation is found to be approximately 71%.
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Fig. 4. BER curves of the 622 Mb/s signals (RFBG: reconfigurable encoder;
SSFBG: fixed-code decoder). Inset shows eye diagrams of the decoded signals
for address code #1 (left) and address code #2 (right).

The thermal distribution is believed to resemble the shape

of hyperbolic secant. Consequently, the analytical spectral

response of the device can be readily obtained by introducing

gradual phase shift at the chip boundaries using the transfer

matrix models. The Fourier transform of the product of the

resulting complex reflection coefficients with the spectral

response of the SSFBG (discrete phase shift) represents the

auto/cross correlation. These results are overlaid with their

corresponding experimental time responses in Fig. 3. Extended

simulation analysis reveals that the autocorrelation intensity is

slightly less in the case of match filtering process that employs

a reconfigurable encoder, relative to that using only SSFBGs.

It may stem from the fact that the phase shift is not totally

discrete as it is distributed over a finite length. This prediction is

confirmed by the BER measurements for the two address codes,

shown in Fig. 4. A power penalty of approximately 2.5 dB

with respect to the laser back-to-back response is observed.

Minor uncertainties of the current values for the phase shifts of

interest may also attribute to this measured value. Nevertheless,

good autocorrelations (Fig. 3) and eye diagrams (inset in

Fig. 4) measured in this demonstration, strongly justify its

practical implementation. This also indicates high tolerance of

the device to offsets in the phase shifts. In another independent

empirical observation, the switching interval between code

reconfiguration is found to be only a matter of seconds in a

temperature-controlled environment.

IV. CONCLUSION

We have demonstrated the application of a reconfigurable

encoder–decoder in a 16-chip 20-Gchip/s QPSK coherent

OCDMA system. Our results verify the possibility of channel

expansion through exploitation of the continuous phase-tuning

capability of our proposed device. Good auto/cross correla-

tion obtained through match filtering with a phase-encoded

superstructured fiber grating indicates very precise dynamic

code sequence generation and recognition by the device. BER

measurements also show excellent data transportation.
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