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Abstract
Photonic neural network has been sought as an alternative solution to surpass the efficiency and speed bottlenecks of
electronic neural network. Despite that the integrated Mach–Zehnder Interferometer (MZI) mesh can perform vector-
matrix multiplication in photonic neural network, a programmable in-situ nonlinear activation function has not been
proposed to date, suppressing further advancement of photonic neural network. Here, we demonstrate an efficient in-
situ nonlinear accelerator comprising a unique solution-processed two-dimensional (2D) MoS2 Opto-Resistive RAM
Switch (ORS), which exhibits tunable nonlinear resistance switching that allow us to introduce nonlinearity to the
photonic neuron which overcomes the linear voltage-power relationship of typical photonic components. Our
reconfigurable scheme enables implementation of a wide variety of nonlinear responses. Furthermore, we confirm its
feasibility and capability for MNIST handwritten digit recognition, achieving a high accuracy of 91.6%. Our accelerator
constitutes a major step towards the realization of in-situ photonic neural network and pave the way for the
integration of photonic integrated circuits (PIC).

Introduction
Artificial Neural Network (ANN) is a computational

model for mimicking the human brain in information
processing1. It consists of massive nodes, namely “neu-
rons” connected to each other through synapses. The
computational complexity of ANN in model iterations
requires large computational ability for multiply-and-
accumulate (MAC) operation2. With the continuous
advancement of ANN, the past decade has witnessed an
exponential rise in the demand for high computing speed
and low energy consumption3,4. As this demand con-
tinues, graphics processing unit (GPU) and even central
processing unit (CPU)/GPU heterogenous architectures

become attractive options for the ANN acceleration since
they offer more computational parallelism than CPU5.
Besides, more electronics architectures have been also
developed, such as Application-Specific Integrated Circuit
(ASIC) and Field-Programmable Gate Array (FPGA) chips
to increase the ANN computing speed and efficiency6–8.
However, these architectures are still limited by electrical
interconnects with resistance and capacitance (RC)
parasitic effects and the twilight of Moore’s law for CMOS
technology9. As an alternative to electronics, photonics
has been considered as a promising archetypal solution to
address these issues, with ultra-low computation loss,
sub-nanosecond latencies and abundant computing par-
allelism10,11. Moreover, photonics can deliver higher
bandwidth, better energy-efficiency, and more complex
functionality12.
Recent works have demonstrated the potential of pho-

tonic neural network in the acceleration of ANN. The first
photonic ANN was implemented on a free-space light
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platform with optical lens13. However, it has a disadvantage
of low integration. Along with the rapid development of
integrated photonics, the combination of Micro-Ring-
Resonator (MRR)-based weighting bank and Photo-
detector arrays achieves small-scale matrix multiplication
with the assistance of Wavelength Division Multiplexing
technology14,15, but this method is not efficient enough due
to the large footprint of MRRs. To enlarge the matrix
computation scale, MZI mesh on an integrated photonic
chip has been proposed for MAC operations16,17. This
corresponds to one of the basic functions of ANN,
weighting layer, to interpret incoming signals, with super-
ior propagation speed and power efficiency18. However, the
lack of another necessary basic function, applying in-situ
nonlinear activation function to the sum of weighted inputs
after MAC functions, remains an open challenge in pho-
tonic neural network. It results in insufficient performance,
including low recognition accuracy and slow convergence
rate19. This originates from the limited and invariable
network complexity. Although the number of linear layers
can be increased, the linear photonic ANN model still
cannot fit the real physical world problems, which hardly
follow straightforward linearity.
To address this challenge, several approaches for in-situ

nonlinear activation accelerator in photonics have been
proposed and extensively investigated, providing suitable
paths for achieving a complete suite of ANN in photonics.
For example, two-section distributed-feedback (DFB)
lasers20, vertical-cavity surface-emitting laser (VCSEL)21

and disk lasers22 have shown promising results, but they
are bottlenecked by network scale, frequency of access
and power consumption. Moreover, their nonlinear acti-
vation responses tend to be fixed during accelerator fab-
rication, but the nonlinear activation forms should be
reprogrammed according to different ANN models and
data sets23. Thus, as a complementary approach, a more
straightforward and flexible implementation is attained by
calculating the nonlinear functions in CPU, which con-
nects physical photonic neural networks through
electrical-to-optical (E/O) and optical-to-electrical (O/E)
converters24,25. Unfortunately, it still suffers from the
limitations of low efficiency and high latency with fre-
quent access, due to poor performance of parallel com-
putation26. Another challenge associated with this
approach is the adoption of highly efficient optical-to-
electrical and electrical-to-optical converter devices,
which greatly influence the power consumption of the
whole system27,28. Therefore, to address these issues, one
should concurrently research both sides: suitable devices
to achieve direct communication between photon and
electron, as well as efficient and programmable nonlinear
activation accelerator structure.
Herein, we have proposed an optical-to-optical non-

linear activation accelerator in an optical-electrical hybrid

structure which alleviates the aforementioned challenges
on both device and accelerator structure sides. This
accelerator has been developed based on a unique Opto-
Resistive RAM Switch, whose memristive behaviour is
sensitive to incident light, using solution-processed 2D
MoS2. The solution processed technology has an advan-
tage of the ease of large-scale integration with a low
thermal budget, which is critical in processing with highly
sensitive optical components on a chip. Furthermore, the
Opto-Resistive RAM Switch switching voltage from high
resistance state to low resistance state shows a linear
dependence to the input optical power, bridging the
Opto-Resistive RAM Switch to the photonic ANN for
nonlinear activation accelerator. Based on this unique
photosensitive device, our proposed accelerator features a
variety of nonlinear activation response. The nonlinear
accelerator consists of Opto-Resistive RAM Switch, low-
power control unit, and MZI with tunable phase change
material (PCM). Additionally, this structure allows for the
possibility of active tunability of nonlinear response under
different initial conditions. In this way, we demonstrate
the availability of our Opto-Resistive RAM Switch-based
nonlinear activation accelerator in a multi-class MNIST
handwritten digit recognition using photonic neural net-
work, with high accuracy and fast convergence rate.

Results
Architecture of the novel photonic neural network
Our overall approach is summarized in Fig. 1. ANN

necessitates multiple hidden layers, each with a weighting
layer to compute weighting matrix and summation, and a
nonlinear layer to execute nonlinear activation function.
In the photonic neural network, a programmable MZI
mesh contains inner phase-shifters (marked with blue
colour) and outer phase-shifters (marked with orange
colour) to multiply optical signal from input layer by an
assigned weight value and sum over it. Following MZI
mesh, nonlinear accelerators apply nonlinear activation
functions to the output of the MZI mesh. By repeating
such combination of MZI mesh and nonlinear accel-
erators, photonic neural network achieves in-situ ANN
computation with a large number of nodes and connec-
tions. The diagram shown in Supplementary Fig. S1
visualises the performance of the photonic neural network
equipped with nonlinear accelerators (“PIC+ nonlinear
accelerator”) against other acceleration architectures for
the performance benchmark on ANN acceleration29,30. It
can be intuitively and conveniently identified that pho-
tonic neural network equipped with nonlinear accel-
erators has better overall performance than other
computation architectures, including CPU, GPU, FPGA,
ASICs and PIC.
MZI-mesh based weighting layer is configured with

some 2 × 2 MZIs as marked with a dash box in Fig. 1a. It
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has been demonstrated that MZI unit can perform all
rotations in unitary group of degree two, U(2), by
adjusting PCMs θ and φ31,32. In this regard, any weighting
matrix can be decomposed into the product of several
U(2)s. Thus, MZI mesh is capable of adding any weighting
matrix into optical input. The unitary transformation U(2)
of MZI can be given by33

UMZI ¼ 1
2

eiθ eiφ � 1ð Þ eiθ eiφ þ 1ð Þ
i eiφ þ 1ð Þ 1� eiφ

" #
¼ u11 u12

u21 u22

� �

ð1Þ
where θ and φ are the phase shifts in PCMs (Fig. 1a). The
detail of proposed nonlinear accelerator is shown in the
magnified view of the nonlinear layer. It contains an
optical coupler to split a fraction of light into the bent
sub-waveguide from the main waveguide route, a micro-
mirror to divert light into the top of sub-waveguide, a
Opto-Resistive RAM Switch with MoS2 switching mate-
rial to capture the optical information in terms of optical
power and incident wavelength, an electrical control unit
(ECU) to drive Opto-Resistive RAM Switch and MZI
simultaneously, and a MZI with PCM to achieve a
feedback loop modulating the light passing through the
main route. The principle of its operation will be
explained later in the article. There is no need for extra
footprint space for control unit compared with other
methods introduced above, since control unit is small
enough that can just occupy gaps within photonic
network. Here, Opto-Resistive RAM Switch, integrated
with micro-mirror, plays a key role in the accelerator
function. The schematic of Opto-Resistive RAM Switch is
shown in a detailed view in Fig. 1b. Opto-Resistive RAM
Switch consists of an ITO-MoS2-Au sandwich-like
structure (Supplementary Fig. S2).

Opto-Resistive RAM Switch characteristic
Opto-Resistive RAM Switch employs solution-

processed MoS2 switching material, which is a film spin-
coated on the bottom electrode from a MoS2 high-
concentrated ink. The ink is prepared through ion-
intercalation-driven exfoliation of a MoS2 bulk. How-
ever, MoS2 should meet requirements on thickness
(1–5 nm) and roughness (≤2 nm) to avoid excessive
driving voltage and optical loss and should enable
incident-angle-independent absorption at certain wave-
length. Surface morphology of stack of 2D MoS2 sheets
measured using Atomic Force Microscopy (AFM) is
shown in Supplementary Fig. S3. AFM-image demon-
strates that MoS2 film has low roughness of 1.2 nm, which
meets the low refraction loss requirement of fabricating
Opto-Resistive RAM Switch34. This MoS2 synthesis
technology allows Opto-Resistive RAM Switch to be
fabricated on the top of sub-waveguide. The Raman
spectra, collected from MoS2 film on SiO2/Si substrate,
shows strong peaks at 383.5 cm−1 (E12g) and 408.2 cm−1

(A1g) (Supplementary Fig. S4), which are consistent with
previous reports35,36, and it indicates the multi-layered
structure of the MoS2 2D sheets. Moreover, MoS2 exhibits
incident-angle-independent absorption of light at wave-
lengths <600 nm (Supplementary Figs. S5–6). The ana-
lyses above raise a possibility of integrating Opto-Resistive
RAM Switch with integrated photonic circuit. For accu-
rate resistance switching characterization, an Opto-
Resistive RAM Switch device is prepared on SiO2/Si
substrate.
Figure 2a, b shows the bipolar resistance switching

characteristics of Opto-Resistive RAM Switch activated
by different optical power of 520 nm and 405 nm guided
light, respectively. For the typical current-voltage (I-V)
measurement without light input (orange lines in
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Fig. 1 Photonic neural network architecture. a The schematic structure of photonic neural network integrated with nonlinear accelerator, which
achieves nonlinear activation functions. b The schematic of the Opto-Resistive RAM Switch. (ECU Electrical Control Unit, PCM Phase Change Material,
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Fig. 2 Electrical characteristic of Opto-Resistive RAM Switch. a, b Current-voltage photoresponse characteristic of Opto-Resistive RAM Switch
under a series of illumination from 0 to 353.7 pW·μm−2 at the wavelength of (a) 520 nm and (b) 405 nm, respectively. The inset shows the zoom-in of
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Fig. 2a, b), a DC voltage is applied to the Au top elec-
trode and the ITO bottom electrode is grounded. Dur-
ing the voltage sweep from 0 to 3 V, an obvious abrupt
increase of current can be observed while applied vol-
tage reaches a threshold voltage, which is defined as
VSET (e.g. VSET ≈ 2.7 V without illumination), and Opto-
Resistive RAM Switch is switched from high resistance
state to low resistance state. In the reversed sweep,
negative voltage (−2.2 V) makes Opto-Resistive RAM
Switch completely return to high resistance state,
termed as RESET process. The VSET signifies that at this
voltage the electrical resistance state of Opto-Resistive
RAM Switch, with capacity of non-volatile memory, can
be changed as previously reported resistance switching
devices37,38. This switching characteristic is conducted
under different optical power with a fixed wavelength
irradiance as shown in Fig. 2a, b. The light is absorbed in
the MoS2 material after transmission through bottom
ITO electrode, as the photon energy of 2.38 eV and
3.06 eV are larger than the bandgap of MoS2 material at
room temperature (1.29–1.88 eV). Carrier concentra-
tion increases with increasing optical power that leads to
the increase of high resistance state current with fixed
wavelength (inset in Fig. 2a). Remarkably, during the
SET process, VSET steadily decreases from 2.7 to 0.6 V
with the increased optical power from 70.7 to
282.9 pW·μm−2 at 520 nm wavelength, followed by a
saturation of VSET. The similar phenomenon can be
observed for 405 nm wavelength illumination as shown
in Fig. 2b: VSET declines from 2.7 to 1.2 V with increased
optical power from 0 to 70.7 pW·μm−2 before a
saturation of VSET. This effect related to input optical
power is summarized in Fig. 2c, d for 520 nm and
405 nm, respectively, and it can be fitted perfectly in
straight line with high coefficient of determination (R2),
0.9635 and 0.9994 for 520 nm and 405 nm respectively.
This linear relationship can be expressed as,

V ¼ kPabs þ b ð2Þ

where k is the slope, Pabs is absorbed optical power of
Opto-Resistive RAM Switch, and b is the intercept. This
allows the optical power to be converted into the electrical
signal (VSET) linearly. As for the working function in the
process of the acceleration, the response of Opto-Resistive
RAM Switch is nonlinear since briefly it is a sudden
change of output in terms of current, which is a necessary
signal driving the accelerator. Thus, Opto-Resistive RAM
Switch’s optical characteristic is unique and different from
normal photodetectors39,40, which detect and convert the
optical power into current in a linear way. The unique
characteristic of our Opto-Resistive RAM Switch is
critical to to the realization of the nonlinear activation
accelerator.

As discussed above, the frequent access to nonlinear
activation accelerator requires that Opto-Resistive RAM
Switch can maintain its switching characteristic in many
cycles. Furthermore, the resolution (R) of Opto-Resistive
RAM Switch depends on the variation of its characteristic
at each optical power input, which is defined as bellow,

R ¼ argmax
n

V1;V2;V3;V4; ¼Vn 2 Vrf gj j;Vi \ Vj

¼ ;; i≠ j � n

ð3Þ
where |x| represents the number of elements in a set x. Vi

means the VSET variation of the ith input power state, and
Vr corresponds to the range of possible VSET. To
maximize the power perception resolution, the variation
of VSET at each optical power input should be as small as
possible. Cycle-to-cycle evaluation of the Opto-Resistive
RAM Switch at room temperature has been carried out.
As shown in Fig. 2e–h, the Opto-Resistive RAM Switch
exhibits stable and uniform switching over 200 cycles with
negligible cycle-to-cycle variation in resistance states and
switching voltages under both dark (Fig. 2g) and light
circumstances (Fig. 2h) Moreover, the variation of VSET

ranges from 0.03 to 0.08 V for different optical input
power, which means Opto-Resistive RAM Switch can
differentiate up to 39 optical power independent states.
Fig. 2i shows the comparison of switching characteristic
for different input wavelength but with the same optical
power at 70.7 pW·μm−2. Obviously, higher input photon
energy induces lower VSET and smaller switching window.

Opto-Resistive RAM Switch operation mechanism
The resistance switching characteristic and optical

response are contributed to the vacancy migration and
photon-induced heat generation. The resistance
switching processes are explained in Fig. 3a–c and
corresponding energy band diagrams at different states
are shown in Fig. 3d–f. For the MoS2 solution-
processed material, sulphur vacancies are created at
the edge of each 2D sheets during solution-exfoliation
process as evidenced by our previous work41. The
electron affinity of MoS2 is around 3.0 eV42, lower than
work functions of Au and ITO (5.1 eV and 4.7 eV,
respectively)43, leading to the formation of Schottky
barrier contacts on both interfaces of Au/MoS2 and
MoS2/ITO. In this case, only few electrons can pass
over or tunnel through the barrier and no sulphur
vacancies filament is formed. In the SET process, the
external bias reduces the width and height of Schottky
barrier and therefore increases the electron thermal
emission and tunnelling probability, resulting in the
improved current. Simultaneously, the positively
charged sulphur vacancies migrate along the edge of
MoS2 sheets under voltage bias, bridge the top and
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bottom electrodes and finally form a conducive path
across the MoS2 layers. The resistance states transit
from the high resistance state to low resistance state
due to much increased tunnelling electrons with higher
vacancy defect concentration (quasi-continuous defect
level) in the pathway. For photon-response behaviour of
Opto-Resistive RAM Switch, by absorbing photons in
the interfaces, photoelectric effect creates electron-hole
pairs, and the generated electrons are excited into sul-
phur vacancies defect level and conductance band in
the room temperature. Besides, photogating effect that
originates from trapped photogenerated electrons can
further lower the Schottky barriers44. Thus, under
illumination, the current increases with increasing
carrier concentration (3.3 times as shown in the inset of
Fig. 2a) and it produces more heat from joule heating.
Current-induced Joule heating and optical power dis-
sipation accelerate the sulphur vacancies movement to
form the defect level with higher concentration. It
reduces the dependency on external bias and thus VSET

decreases under illumination.

Accelerator structure based on Opto-Resistive RAM Switch
Due to the ability of photon-sensitive nonlinear

switching, Opto-Resistive RAM Switch plays an important
role in photon-electron communication in the nonlinear
accelerator. Schematically the accelerator structure shown
in Fig. 1b can be represented by Fig. 4a, where the grey
lines and black lines represent optical waveguides and
electrical pathways, respectively. At the beginning, optical
signal propagating through MZI (Psub) enters a directional
coupler which couples a portion (β) of signal into Opto-
Resistive RAM Switch through bent sub-waveguide. The
Opto-Resistive RAM Switch absorbs the light with
absorption coefficient (α) and switches the resistance at

VSET, which is an indicator of the Pabs with linear rela-
tionship. Here, we assume input optical signal is with
electric field intensity (E) and the corresponding optical
power is given by

P ¼ ab
4
E2 1

ZTE
ð4Þ

ZTE ¼ ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λ=λCð Þ2

q ð5Þ

η ¼
ffiffiffiffiffiffiffi
μ=ε

p ð6Þ

λC ¼ 2a ð7Þ

where a and b are width and depth of the rectangular
waveguide respectively, ε is dielectric constant, μ is magnetic
permeability. The voltage driving Opto-Resistive RAM
Switch is provided by electrical control unit, whose circuit
constitution is given by Fig. 4b. Positive (V1) and negative
(V2) power supplies power the Opto-Resistive RAM Switch
through a reversed switch-pair, constituted by a PMOS
transistor (T1) and a NMOS transistor (T2), after a specified
RC delay (τ=R1C1, where τ is RC time constant). Next, it is
followed by a trans-impedance amplifier (U1) to convert
current into voltage, a hysteresis comparator (U2) to judge
the state of Opto-Resistive RAM Switch (low or high
resistance state), and a voltage reverser (U3). Initially
increasing voltage VC1 is applied to Opto-Resistive RAM
Switch with T1 on and T2 off, and while the current of
Opto-Resistive RAM Switch (IORS) suddenly increased due
to the Opto-Resistive RAM Switch switching under
illumination, output voltage of U3 reverses and induces T1
off and T2 on. In this case, VC2 starts to be pulled down by
V2. Besides, simultaneously, another route generates a pulse
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state, e SET process without optical input, and (f) SET process with optical input
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activated by reversed output of U3 through a specified RC
delay (τ=R7C2) and a comparator (U4). This pulse opens
one transistor switch (T3) within the pulse time to “read” the
maximum voltage of VC1 (VSET) using a voltage follower
(U5) and this VSET is applied back to PCM on one arm of
MZI to modulate the light go through the main route. The
electrical modulation of MZI can be calculated as

~Eo ¼
~EI

2
e�j πV

Vπð Þ þ e�jδ
� �

ð8Þ

Vπ ¼ λ

n3
1
r
d
L

ð9Þ

where ~EI and ~Eo are the input and output electrical fields
of MZI respectively and Vπ is the half-wave voltage, which

causes phase change π of phase shifter. And λ is the input
wavelength, n is the corresponding refractive index, r is
electro optic coefficient, L is the length of interferometric
arms and d is the thickness of PCM. Combining the
expressions above, the mathematical form of nonlinear
activation function achieved by nonlinear accelerator can
be written explicitly as

PO ¼ PI

2
cos2

π kαβPoþbð Þ
Vπ

þ δ

2

 !
ð10Þ

To explain the process of such runtime architecture
intuitively, time-series diagram is plotted in Fig. 4c and
Supplementary Fig. S7. While VC1 increases before reaching
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at VSET (t) (Fig. 4d), VMZI (t-1) is applied constantly to PCM.
Until VSET changes the state of Opto-Resistive RAM Switch,
VMZI (t-1) suddenly turns into VMZI (t) controlled by one
pulse of VU4. Subsequently, it is followed by a decreasing
VC1 (Fig. 4e) to VRESET, at which Opto-Resistive RAM
Switch switches back from low resistance state to high
resistance state but VMZI (t) is still held until next cycle of
resistance switching in Opto-Resistive RAM Switch (Fig. 4f).
As shown in Fig. 4c, a perfect response of input optical signal
in several loops can be viewed, and such nonlinear accel-
erator easily satisfies one important requirement for pho-
tonic neural network: response frequency (voltage sweeping
frequency) must be higher than optical signal changing
frequency, since the voltage sweeping frequency depends on
controllable R1C1 delay. The formula for sweeping voltage is
given by

VC1 ¼
ðV1 � V2Þ 1� e

�t
R1C1

� �þ V2;VRESET<VC1"<VSET

ðV2 � V1Þ 1� e
�t

R1C1
� �þ V1;VRESET<VC1#<VSET

(

ð11Þ

Moreover, a benefit of having an adjustable PCM (δ) in
another arm of MZI as shown in Fig. 4a is that, in principle,
this nonlinear accelerator can be programmed to synthesize
different activation functions. Figure 4g–i show various
nonlinear activation functions, sigmoid, softplus and
clamped rectified linear unit (ReLU), at different initial δ
values. Notably, every loop in Fig. 4c corresponds to differ-
ent states of nonlinear function in Fig. 4g. This reconfigur-
ability opens up the possibility of selecting suitable nonlinear
functions for different specific tasks and distinguishes this
method from previous nonlinear function approaches20,45.

Discussion
To validate the functionality of the proposed nonlinear

accelerator, a fully connected photonic neural network
using Opto-Resistive RAM Switch-based nonlinear
accelerator is implemented in the simulation. The sche-
matic of this network for the MNIST handwritten digits
classification task is shown in Fig. 5a. This MNIST dataset
contains 70,000 greyscale images with 28 × 28 pixel, which
is a representative database for neural network model
training.
To reduce the input data dimension, Fast Fourier

Transform (FFT) and edge-removal are used to convert
real images into k-space images. The FFT of 2D image is
given by the following equation

F kx; ky
� � ¼ XM�1

m¼0

XN�1

n¼0

f ðm; nÞe�j2π kxmMþky nNð Þ ð12Þ

where F(kx, ky) is the value of the images in frequency
domain corresponding to the coordinates kx and ky, f(m, n)

is the real pixel at coordinates (m, n), and M and N are the
dimensions of the image. The dimension of images is
unchanged (28 × 28) after FFT, and the features of images
experience centralization since FFT represents spatial
frequency distribution of grey level gradients with the
lowest frequency in the centre and the highest frequency
at four corners. Afterwards, removal of fours edges in each
image reduces the dimension from 28 × 28 into 8 × 8 but
preserves most of frequency features. The reasons for
using FFT include not only dimensionality reduction but
also the feasibility of FFT in integrated photonics46,47.
At the input of photonic neural network using Opto-

Resistive RAM Switch-based accelerator, input images in
a form of 8 × 8 pixel array are reconfigured into 64 × 1
array. This photonic neural network starts from several
staggered weighting layers (WL) and nonlinear layers
(NL) to drop layer (DL), which maps 64 inputs into 10
outputs for ten dights recognition. At the end, photo-
detectors (PD) convert optical signal into electrical signal
for backpropagation calculation, which will optimize
weighting layers in the training process. It is worth
mentioning, here, the nonlinear layer adopts softplus
nonlinear function as shown in Fig. 4h. On account of
using nonlinear accelerator, this photonic neural network
architecture is more efficient and simplified compared
with other photonic neural networks in previous works16,
which consume more energy and generate more delay
during optical-to-electrical and electrical-to-optical con-
versions. And the previous methods are limited by on-
chip space or complexity of network connection with
CPU. Specifically, compared with previous methods for
nonlinear activation function, our accelerator reduces the
average power consumption by 20.2× and shrinks the
footprint by around 40%.
To observe the dependence of recognition accuracy on

the layer number, Fig. 5b shows the testing accuracy of
the photonic neural network with different number of
weighting-nonlinear layers. The accuracy reaches a peak
at 91.6% with 5 weighting-nonlinear layers. The corre-
sponding loss has an abrupt dropdown, equivalently fast
iteration, before 50 epochs with a batch size of 500 in
network training as shown in Fig. 5c. The confusion
matrix for 5-layer photonic neural network computed
over the testing dataset (Fig. 5d) shows the correct pre-
diction for each digit image. Overall, these demonstrate
the possibility of accelerating photonic neural network
using proposed Opto-Resistive RAM Switch-based non-
linear accelerator.
This nonlinear accelerator based on MoS2 Opto-

Resistive RAM Switch provides a promising approach
for the realization of in-situ photonic neural network.
Meanwhile, its simple architecture, low energy con-
sumption and small chip size make it practical to have a
wide field of application with good prospects. It can be
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further extended into the acceleration of more types of
neural network that in photonics there has been a number
of research works about, such as convolutional neural
networks48, recurrent neural networks49 and long short
term memory networks50. Moreover, with the incor-
poration of Wavelength Division Multiplexing technol-
ogy, it may be capable of computing with high parallelism
using different wavelengths, as shown in Fig. 2i.
In conclusion, we have developed a programmable

nonlinear accelerator based on Opto-Resistive RAM
Switch, which consists of solution-processed MoS2. By
cleverly leveraging the linear relationship that exists
between the input optical power and the voltage that leads
to abrupt resistance switching, Opto-Resistive RAM
Switch proves the advantage of having the unique func-
tionality to perform as a nonlinear switch that is critical to
the functionality of the accelerator, compared to typical

photonic components, like photodetector. Using this
novel Opto-Resistive RAM Switch, our proposed non-
linear accelerator offers remarkable flexibility to use,
because it allows generation of different nonlinear acti-
vation functions programmatically. The implementation
of our nonlinear accelerator surpasses the limitation of
outsourced nonlinear activation functions and achieves a
comparable classification accuracy and fast iteration on an
in-situ fully connected photonic neural network for
MNIST classifier application. On the other hand, from a
viewpoint of architecture, our nonlinear accelerator has
the potential to significantly outperform the previous
nonlinear activation architectures in terms of energy
efficiency and complexity. In addition, it is very compact
with small footprint. It paves the way for promising in-situ
photonic neural network with ultra-high computation
speed and parallelism.
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Materials and methods
Solution-processed MoS2 preparation
High-quality semiconducting MoS2 nanosheets were

fabricated with an electrochemical intercalation assisted
exfoliation method51. Subsequently, the exfoliated MoS2
nanosheets were dispersed in isopropanol to obtain the
final MoS2 ink, which as used for device fabrication.

Opto-Resistive RAM Switch fabrication and
characterization
Solution-processed MoS2 is spin-coated on p-Si wafer

with 90 nm SiO2 layer, followed by electron beam litho-
graphy and rapid thermal annealing. The surface height
image is characterized by Atomic Force Microscopy and
the Raman spectroscopy. ITO (40 nm) was deposited by
sputtering system followed by lithography patterning and
ICP-RIE etching to form electrodes. Top Au electrode
(40 nm) is formed by electron beam photolithography and
deposition using electron beam evaporator followed by
lift-off process. The electrical and optical measurements
were conducted by Agilent parameter analyzer B1500A
and Lakeshore Cryogenic probe station with fixed-
wavelength lasers.

Accelerator and photonic neural network simulation
Accelerator architecture function is analysed using co-

simulation of Cadence PSpice design tool and Synopsys
OptSim platform. The Neuroptica Python package is used
for photonic neural network simulation. In MNIST digit
classification task, input port number of MZI mesh is
set to 64.
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