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Abstract

Different distributed cyber-physical systems must han-
dle aperiodic and periodic events with diverse require-
ments. While existing real-time middleware such as Real-
Time CORBA has shown promise as a platform for dis-
tributed systems with time constraints, it lacks flexible con-
figuration mechanisms needed to manage end-to-end tim-
ing easily for a wide range of different cyber-physical sys-
tems with both aperiodic and periodic events. The primary
contribution of this work is the design, implementation and
performance evaluation of the first configurable component
middleware services for admission control and load balanc-
ing of aperiodic and periodic event handling in distributed
cyber-physical systems. Empirical results demonstrate the
need for, and the effectiveness of, our configurable com-
ponent middleware approach in supporting different appli-
cations with aperiodic and periodic events, and providing
a flexible software platform for distributed cyber-physical
systems with end-to-end timing constraints.

1 Introduction

Many distributed cyber-physical systems (CPS) must
handle a mix of aperiodic and periodic events, including
aperiodic events with end-to-end deadlines whose assurance
is critical to the correct behavior of the system. Computer-
integrated manufacturing is representative of many dis-
tributed CPS. For example, in an industrial plant monitoring
system, an aperiodic alert may be generated when a series
of periodic sensor readings meets certain hazard detection
criteria. This alert must be processed on multiple proces-
sors within an end-to-end deadline, e.g., to put an industrial
process into a fail-safe mode. User inputs and other sensor
readings may trigger other real-time aperiodic events.

*This work was supported in part by NSF grant CCF-0615341 and NSF
CAREER award CNS-0448554.

While traditional real-time middleware such as Real-
Time CORBA [20] and Real-Time Java [5] have shown
promise as distributed software platforms for systems with
time constraints, existing middleware systems lack the flex-
ibility needed to support cyber-physical systems with di-
verse application semantics and requirements. For exam-
ple, load balancing is an effective mechanism for handling
variable real-time workloads in a distributed cyber-physical
system. However, its suitability for cyber-physical systems
highly depends on their application semantics. Some digi-
tal control algorithms (e.g., proportional-integral-derivative
control) for physical systems are stateful and hence not
amenable for frequent task re-allocation caused by load bal-
ancing, while others (e.g., proportional control) do not have
such limitations. Similarly, job skipping (skipping the pro-
cessing of certain instances of a periodic task) is an ad-
mission control strategy for dealing with transient system
overload. However, job skipping is not suitable for certain
critical control applications in which missing one job may
cause catastrophic consequences on the controlled system.
In contrast, other applications ranging from video reception
to telecommunications may be able to tolerate varying de-
grees job skipping [17].

Therefore, a key open challenge for distributed cyber-
physical systems is to develop a flexible middleware infras-
tructure that can be easily configured to support the diverse
requirements of cyber-physical systems. Specifically, mid-
dleware services such as load balancing and admission con-
trol must support a variety of strategies. Furthermore, the
configuration of those strategies must be supported in a flex-
ible yet principled way, so that system developers are able to
explore alternative configurations but invalid configurations
cannot be chosen by mistake.

Providing middleware services with configurable strate-
gies thus faces several important challenges: (1) services
must be able to provide configurable strategies, and con-
figuration tools must be added or extended to allow con-
figuration of those strategies; (2) the specific criteria that
distinguish which service strategies are preferable must be



identified, and applications must be categorized according
to those criteria; and (3) appropriate combinations of ser-
vices’ strategies must be identified for each such application
category, according to its characteristic criteria. To address
these challenges, and thus to enhance support for diverse
cyber-physical systems with aperiodic and periodic events,
we have designed and implemented a new set of component
middleware services including end-to-end event scheduling,
admission control, and load balancing. We have also devel-
oped configuration tools to integrate these service compo-
nents for each particular application according to its specific
criteria.

Research Contributions: In this work, we have (1) devel-
oped what is to our knowledge the first set of configurable
component middleware services supporting multiple admis-
sion control and load balancing strategies for handling ape-
riodic and periodic events; (2) developed a novel component
configuration pre-parser and interfaces to configure real-
time admission control and load balancing services flexibly
at system deployment time; (3) defined categories of cyber-
physical applications according to specific characteristics,
and related them to suitable combinations of strategies for
our services; and (4) provided a case study that applies dif-
ferent configurable services to a domain with both aperiodic
and periodic events, offers empirical evidence of the over-
heads involved and the trade-offs among service configura-
tions, and demonstrates the effectiveness of our approach
in that domain. Our work thus significantly enhances the
applicability of real-time middleware as a flexible infras-
tructure for distributed cyber-physical systems.

Section 2 introduces the middleware systems and
scheduling theory underlying our middleware services.
Section 3, 4 and 5 present our middleware architecture,
configurable strategies, and component implementations for
supporting end-to-end event handling in cyber-physical sys-
tems. Section 6 describes our new configuration engine
extensions, which can flexibly configure different strate-
gies for our services according to each application’s re-
quirements. Section 7 evaluates the performance of our ap-
proach, including trade-offs among different service strat-
egy combinations, and characterizes the overheads intro-
duced by our approach. Section 8 presents a survey of re-
lated work, and we offer concluding remarks in Section 9.

2 Background

Task Model: We consider cyber-physical systems com-
prised of physical systems generating aperiodic and peri-
odic events that must be processed on distributed computing
platforms subject to end-to-end timing constraints. Hence-
forth the processing of a sequence of events is referred to
as a task. A task T; is composed of a chain of subtasks
T;,;(1 < j < n;) located on different processors. The

release for execution of a subtask 7; is triggered by the
completion of its predecessor T j_1, where processing one
event on the sequence implements a subtask. Each release
of a subtask is called one subjob, and each release of a task
is a job composed of a chain of subjobs. A task is sub-
ject to an end-to-end deadline that is its maximum allow-
able response time. A subtask has a specified execution
time, which is the maximum execution of all the subjobs
in it. The period of a periodic task is the interarrival time of
consecutive subjobs of the first subtask in the periodic task.
Aperiodic tasks do not have periods. Their interarrival times
between consecutive subjobs of the first subtask may vary
widely and, in particular, can be arbitrary small. The execu-
tion time of every subtask, the end-to-end deadline of every
task, and the period of every periodic task in the system are
known.

Component Middleware: Component middleware plat-
forms are an effective way of achieving customizable reuse
of software artifacts. In these platforms, components are
units of implementation and composition that collaborate
with other components via ports. The ports isolate the com-
ponents’ contexts from their actual implementations. Com-
ponent middleware platforms provide execution environ-
ments and common services, and support additional tools
to configure and deploy the components.

In previous work we developed the first instantiation of a
middleware admission control service supporting both ape-
riodic and periodic events [30] (on TAO, a widely used
Real-Time CORBA middleware). However, our previous
admission control service only included a fixed set of strate-
gies. As is shown in Section 4, a diverse set of inter-
operating services and strategies is needed to support cyber-
physical systems with different application semantics. Un-
fortunately, it is difficult to extend implementations that rely
directly on distributed object middleware such as our orig-
inal admission control service. Specifically, in those mid-
dleware systems changing the supported strategy requires
explicit changes to the service code itself, which can be te-
dious and error-prone in practice.

The Component-Integrated ACE ORB (CIAO) [14] im-
plements the Light Weight CCM specification [21] and is
built atop the TAO [15] real-time CORBA object request
broker (ORB). CIAO abstracts real-time policies as instal-
lable and configurable units. However, CIAO does not sup-
port aperiodic task scheduling, admission control or load
balancing. To develop a flexible infrastructure for cyber-
physical systems, in this work we develop new admission
control and load balancing services, each with a set of alter-
native strategies on top of CIAO. Furthermore, we extended
CIAO to configure and manage both services.

DAnCE [9] is a QoS-enabled component deployment
and configuration engine that implements the Object Man-
agement Group (OMG)’s Light Weight Deployment and



Configuration specification [21]. DAnCE parses compo-
nent configuration/deployment descriptions and automati-
cally configures and deploys ORBs, containers, and server
resources at system initialization time, to enforce end-to-
end QoS requirements. However, DAnCE does not provide
essential features needed to configure our admission con-
trol and load balancing services correctly, e.g., to disallow
invalid combinations of service strategies.

Aperiodic Task Support: Aperiodic tasks have been stud-
ied extensively in real-time scheduling theory, including
work on aperiodic servers that integrate scheduling of ape-
riodic and periodic tasks [24]. New schedulability tests
based on aperiodic utilization bounds [1] and a new ad-
mission control approach [4] also were introduced recently.
In our previous work [30], we implemented and evaluated
an admission control services for two suitable aperiodic
scheduling techniques (aperiodic utilization bound [1] and
deferrable server [25]) on TAO. Since aperiodic utilization
bound (AUB) has a comparable performance to deferrable
server, and requires less complex scheduling mechanisms
in middleware, we focus exclusively on the AUB scheduling
technique in this paper. Our experiences with AUB reported
in this paper show how configurability of other techniques
can be integrated within real-time component middleware
in a similar way.

With the AUB approach, three kinds of strategies must
be made configurable to provide flexible and principled sup-
port for diverse cyber-physical systems with aperiodic and
periodic tasks: (1) when admissibility is evaluated (to trade-
off the granularity and thus the pessimism of admission
guarantees), (2) when the contributions of completed jobs
of subtasks can be removed from the schedulability analy-
sis used for admission control (to reduce pessimism), and
(3) when tasks can be assigned to different processors (to
balance load and improve system performance).

In AUB [1], the set of current tasks S(t) at any time ¢ is
defined as the set of tasks that have been released but whose
deadlines have not expired. Hence, S(t) = {T;|4; < ¢ <
A;+ D;}, where A; is the release time of the first subtask of
task 7}, and D; is the deadline of task T;. The synthetic uti-
lization of processor j at time t, U;(t), is defined as the sum
of individual subtask utilizations on the processor, accrued
over all current tasks. According to AUB analysis, a system
achieves its highest schedulable synthetic utilization bound
under End-to-end Deadline Monotonic Scheduling (EDMS)
algorithm under certain assumptions. Under EDMS, a sub-
task has a higher priority if it belongs to a task with a shorter
end-to-end deadline. Note that AUB does not distinguish
aperiodic from periodic tasks. All tasks are scheduled using
the same scheduling policy. Under EDMS task T’; will meet

its deadline if the following condition holds [1]:

ng
Z UVu‘il UUVU/Q) <1 (1)
=1 TV
where V;; is the jth processor that task 7T; visits. A task (or
an individual job) can be admitted only when this condition
continues to be satisfied for all admitted tasks and this task.
Since applications may or may not tolerate job skipping,
whether this condition is checked only when a task first ar-
rives or whenever each job arrives should be configurable.
Note that a task remains in the current task set even if
it has been completed, as long as its deadline has not ex-
pired. To reduce the pessimism of the AUB analysis, a
resetting rule is introduced in [1]. When a processor be-
comes idle, the contribution of all completed subtasks to the
processor’s synthetic utilization can be removed without af-
fecting the correctness of the schedulability condition (1).
Since the resetting rule introduces extra overhead, it should
be made configurable whether the contribution of only ape-
riodic subtasks or of both aperiodic and periodic subtasks
can be removed early. Under AUB-based schedulability
analysis, load balancing also can effectively improve sys-
tem performance [1]. However some applications require
persistent state preservation between jobs of the same task,
so it should be made configurable whether a task can be re-
allocated to a different processor at each release.

3 Overview of Middleware Architecture

To support end-to-end aperiodic and periodic events in
diverse cyber-physical applications, we have developed a
new middleware architecture for task management, and a
corresponding front-end configuration engine. The key fea-
ture of our approach is a configurable component frame-
work that can be customized for different sets of aperi-
odic and periodic tasks. Our framework provides config-
urable admission controller (AC), idle resetter (IR) and
load balancer (LB) components which interact with appli-
cation components through task effector (TE) components.
The AC component provides on-line admission control and
schedulability tests for tasks that arrive dynamically at run
time. The LB component provides an acceptable task as-
signment plan to the admission controller if the new arrival
task is admittable. The IR component reports all completed
subtasks on one processor to the AC component when the
processor becomes idle, so the AC component can remove
their expected utilization to reduce the pessimism of the
AUB analysis at run-time.

Figure 1 illustrates our distributed middleware architec-
ture. All processors are connected by TAO’s federated event
channel [13] which pushes events through local event chan-
nels, gateways and remote event channels to the events’
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Figure 1. Distributed Middleware Architecture

consumers sitting on different processors. We deploy one
AC component and one LB component on a central task
manager processor, and one IR component and one task
effector (TE) component on each of multiple application
processors. Figure 1 shows an example end-to-end task T;
composed of 3 consecutive subtasks, 75 1, T; 2 and Tj 3, ex-
ecuting on separate processors. 1j 1 and T; o have dupli-
cates on other application processors. When task 7; arrives
at an application processor, the task effector component on
that processor pushes a “Task Arrive” event to the AC com-
ponent and holds the task until it receives an “Accept” com-
mand from the AC component. The AC component and
LB component decide whether to accept the task, and if so,
where to assign its subtasks. The solid line and the dashed
line show two possible assignments of subtasks. If the first
subtask 73 1 is not assigned to the processor where T; ar-
rived, we call this assignment a task re-allocation.

An advantage of this centralized AC/LB architecture is
that it does not require synchronization among distributed
admission controllers. In contrast, in a distributed architec-
ture the AC components on multiple processors may need to
coordinate and synchronize with each other in order to make
correct decisions, because admitting an end-to-end task may
affect the schedulability of other tasks located on the multi-
ple affected processors. A potential disadvantage of the cen-
tralized architecture is that the AC component may become
a bottleneck and thus affect scalability. However, the com-
putation time of the schedulability analysis is significantly
lower than task execution times in many distributed cyber-
physical systems, which alleviates the scalability limitations

of a centralized solution [30]. In summary, while our real-
time component middleware approach can be extended to
use a more distributed architecture, we have adopted a cen-
tralized approach with less complexity and overhead, which
allows us to focus on achieving system flexibility through
component middleware services.

4 Mapping CPS Characteristics to Middle-
ware Strategies

A key contribution of this paper is categorizing a set of
characteristics of different cyber-physical systems and map-
ping them to suitable middleware service strategies. In this
section, we present a set of criteria used to categorize cyber-
physical systems, and analyze how to map those criteria to
different service strategies supported by our middleware.

4.1 CPS Characteristics

Three criteria distinguish how different cyber-physical
systems with aperiodic tasks should be supported: Job skip-
ping (criterion C1); State persistency (criterion C2); and
Component replication (criterion C3).

Job Skipping means that some jobs of a task are executed
while other jobs of the same task may not be admitted.
Some applications, such as video streaming, and other loss-
tolerant forms of sensing can tolerate job skipping, while in
critical control applications, once a task is admitted, all its
jobs should be allowed to execute.

State Persistency means that states are required to be pre-
served between jobs of a same task. For proportional con-
trol systems [22], task are stateless and only require current
information, so jobs can be re-allocated dynamically. How-
ever, for integral control systems [22], tasks require incre-
mental calculation and are not suitable for job re-allocation.
Component Replication depends on an application’s
throughput requirements. Replication is used here to reduce
latency through load distribution, not for fault tolerance pur-
poses. Only those applications with replicated components
can support task re-allocation, whereas those that cannot be
replicated (e.g. due to constraints on the locality of sensors
or actuators) cannot support task re-allocation.

According to these different application criteria, the AC,
IR and LB components can be configured to use different
strategies. For each component, which strategy is more suit-
able depends on these criteria and the application’s over-
head constraints. Table 1 shows how these criteria help to
classify CPS applications, which in turn allows selection of
corresponding middleware strategies. We have designed all
strategies with corresponding configurable attributes, and
provide a configuration pre-parser and a component con-
figuration interface to allow developers to select and con-
figure each service flexibly, according to each application’s



specific needs. We now examine the different strategies for
each component and the trade-offs among them.

No Yes
C1:Job Skipping AC per Task | AC per Job
C2:State Persistency LB perJob | LB per Task
C3:Component Replication No LB LB

Table 1. Criteria and Middleware Strategies

4.2 Admission Control (AC) Strategies

Admission control offers significant advantages for sys-
tems with aperiodic and periodic tasks, by providing on-
line schedulability guarantees to tasks arriving dynamically.
Our AC component supports two different strategies: AC
per Task and AC per Job. AC per Task performs the ad-
mission test only when a task first arrives while AC per
Job performs the admission test whenever a job of the task
arrives. Only applications satisfying criterion C1 are suit-
able for the second strategy, since it may not admit some
jobs. Moreover, the second strategy reduces pessimism at
the cost of increasing overhead. The application developer
thus needs to consider trade-offs between overhead and pes-
simism in choosing a proper configuration.

AC per Task: Considering the admission overhead and the
fixed inter-arrival times of periodic tasks, one strategy is to
perform an admission test only when a periodic task first
arrives. Once a periodic task passes the admission test, all
its jobs are allowed to be released immediately when they
arrive. This strategy improves middleware efficiency at the
cost of increasing the pessimism of the admission test. In
the AUB analysis [1], the contribution of a job to the syn-
thetic utilization of a processor can be removed when the
job’s deadline expires (or when the CPU idles if the reset-
ting rule is used and the subjob has been completed). If ad-
mission control is performed only at task arrival time, how-
ever, the AC component must reserve the synthetic utiliza-
tion of the task throughout its lifetime. As a result, it cannot
reduce the synthetic utilization between the deadline of a
job and the arrival of the subsequent job of the same task,
which may result in pessimistic admission decisions [1].
AC per Job: If it is possible to skip a job of a periodic task
(criterion C1), the alternative strategy to reduce pessimism
is to apply the admission test to every job of a periodic task.
This strategy is practical for many systems, since the AUB
test is highly efficient when used for AC, as is shown in
Section 7.3 by our overhead measurements.

4.3 Idle Resetting (IR) Strategies

The use of a resetting rule can reduce the pessimism of
the AUB schedulability test significantly [1, 30]. There are

three ways to configure IR components in our approach.
The first of these three strategies avoids the resetting over-
head, but is the most pessimistic. The third strategy re-
moves the contribution of completed aperiodic and periodic
subjobs more frequently than the other two strategies. Al-
though it has the least pessimism, it introduces the most
overhead. The second strategy offers a trade-off between
the first and the third strategies.

No IR: The first strategy is to use no resetting at all, so that
if the subjobs complete their executions, the contributions
of completed subjobs to the processor’s synthetic utiliza-
tion are not removed until the job deadline. This strategy
avoids the resetting overhead, but increases the pessimism
of schedulability analysis.

IR per Task: The second strategy is that each IR compo-
nent records completed aperiodic subjobs on one proces-
sor. Whenever the processor is idle, a lowest priority thread
called an idle detector begins to run, and reports the com-
pleted aperiodic subjobs to the AC component through an
“Idle Resetting” event. To avoid reporting repeatedly, the
idle detector only reports when there is a newly completed
aperiodic subjob whose deadline has not expired.

IR per Job: The third strategy is that each IR component
records and reports not only the completed aperiodic sub-
jobs but also the completed subjobs of periodic subtasks.

4.4 Load Balancing (LB) Strategies

Under AUB-based AC, load balancing can effectively
improve system performance in the face of dynamic task
arrivals [1]. We use a heuristic algorithm to assign subtasks
to processors at run-time, which always assigns a subtask
to the processor with the lowest synthetic utilization among
all processors on which the application component corre-
sponding to the task has been replicated (criterion C3). !
Since migrating a subtask between processors introduces
extra overhead, when we accept a new task, we only de-
termine the assignment of that new task and do not change
the assignment plan for any other task in the current task
set. This service also has three strategies. The first strategy
is suitable for applications which cannot satisfy criterion
C3. The second strategy is most applicable for applications
which only satisfy C3, but can not satisfy criterion C2. The
third strategy is most suitable for applications which satisfy
both C3 and C2.

No LB: This strategy does not perform load balancing.
Each subtask does not have a replica and is assigned to a
particular processor.

LB per Task: Each task will only be assigned once, at its
first arrival time. This strategy is suitable for applications

IThe focus here is not on the load balancing algorithms themselves.
Our configurable middleware may be easily extended to incorporate LB
components implementing other load balancing algorithms according to
each application’s needs.



which must maintain persistent state between any two con-
secutive jobs of a periodic task.

LB per Job: The third strategy is the most flexible. All jobs
from a periodic task are allowed to be assigned to different
processors when they arrive.

4.5 Combining AC, IR and LB Strategies

When we use the AC, IR and LB components together,
their strategies can be configured in 18 different combina-
tions. However, some combinations of the strategies are in-
valid. The AC-per-Task/IR-per-Job combination is not rea-
sonable, because per job idle resetting means the synthetic
utilizations of all completed subjobs of periodic subtasks
are to be removed from the central admission controller,
but per task admission control requires that the admission
controller reserves the synthetic utilization for all accepted
periodic tasks, so an accepted periodic task does not need
to go through admission control again before releasing its
jobs. These two requirements are thus contradictory, and
we can exclude the corresponding configurations as being
invalid. Removing this invalid AC/IR combination means
removing 3 invalid AC/IR/LB combinations, so there are
only 15 reasonable combinations of strategies left. Look-
ing to this degree of complexity to make “right” performant
design decision, an application developer needs definitely
some kind of cognitive support. An advantage of our mid-
dleware architecture and configuration engine is that they
allow application developers to configure middleware ser-
vices to achieve any valid combination of strategies, while
disallowing invalid combinations.

As Figure 2 shows, we divided scheduling of real-time
tasks into three axes of configurability: admission control,
idle resetting and load balancing. Different configuration
options in each of these axes and the impact they may have,
as well as conflicting configurations, are delineated thor-
oughly in this section.

5 Component Implementation

Configurable component middleware standards, such as
the CORBA Component Model (CCM) [19], can help
to reduce the complexity of developing distributed cyber-
physical systems by defining a component-based program-
ming paradigm. They also help by defining a standard con-
figuration framework for packaging and deploying reusable
software components. The Component Integrated ACE
ORB (CIAO) [28] is an implementation of the Light Weight
CCM specification [21] that is suitable for distributed cyber-
physical systems. To support the different strategies de-
scribed in Section 4, and to allow flexible configuration
of suitable combinations of those strategies for a variety
of applications, we have implemented admission control,

Admission

Control
Job
Pe)
Task
Per.

Qo -

2
o = .
SN
5 ~
c
£y :
m + 7

. P
T o e
A =
-} 7 a

° // // e

c

S p ,/

/ //
None Per Task Per Job

Idle Resetting

Figure 2. Middleware Services and Strategies

idle resetting and load balancing in CIAO as configurable
components. Each component provides a specific service
with configurable attributes and clearly defined interfaces
for collaboration with other components, and can be instan-
tiated multiple times with the same or different attributes.
Component instances can be connected together at run-
time through appropriate ports to form a distributed cyber-
physical system.

As Figure 3 illustrates, we have designed and imple-
mented 6 configurable components to support distributed
real-time aperiodic and periodic end-to-end tasks, using
ACE/TAO/CIAO version 5.6/1.6/0.6. The Task Effector
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Figure 3. Component Implementation

(TE) component holds the arriving tasks, waits for the AC
component decision and releases tasks. The Admission
Control (AC) component decides whether to accept tasks.
The Load Balancing (LB) component computes task allo-
cations so as to balance the processors’ synthetic utiliza-
tions. The First/Intermediate (F/I) Subtask component exe-
cutes the first or an intermediate subtask at a given priority.
The Last Subtask component executes the last subtask at a
given priority. The Idle Resetting (IR) component reports



the completed subtasks when a processor goes idle.

Each component may have several configurable at-
tributes, so that it can be instantiated with different proper-
ties, like its criticality and execution time (for application
components) or its strategy (for AC, IR and LB compo-
nents). As we discussed in Section 3, our admission con-
trol and load balancing approaches adopt a centralized ar-
chitecture, which employs one AC component instance and
one LB component instance running on a central processor
(called the “Task Manager” processor).

Each application processor contains one instance of a TE
component and one instance of an IR component. The TE
component on each processor reports the arrival of tasks on
that processor to the AC component, which then releases or
rejects the tasks based on the admission control decision.
Each end-to-end task is implemented by a chain of F/I Sub-
task components and one Last Subtask component. We now
describe the behavior of each component in detail.

Task Effector (TE) Component: When a task arrives, the
TE component puts it into a waiting queue and pushes a
“Task Arrive” event to the AC component. When the TE
component receives an “Accept” event from the AC com-
ponent, the corresponding task waiting in the queue will be
released immediately. The TE component has two config-
urable attributes. One is a processor ID, which distinguishes
TE component instances deployed on different processors.
The other is the Per-job/Per-task attribute, which indicates
whether before releasing any job of a periodic task the TE
component will hold it until receiving an “Accept” event
from the AC component. If the attribute is set to be Per-
task, when a periodic task is admitted, all subsequent jobs
from that periodic task can be released immediately. These
attributes can be set at the creation of a TE component in-
stance and also may be modified at run-time.

First/Intermediate (F/I) and Last Subtask Components:
Both the F/I and Last Subtask components execute applica-
tion subtasks. The only difference between these two kinds
of components is that the F/I Subtask component has an ex-
tra port that publishes “Trigger” events to initiate the ex-
ecution of the next subtask. The Last Subtask component
does not need this port, since the last subtask does not have
a next subtask. Each instance of these kinds of components
contains a dispatching thread that executes a particular sub-
task at a specified priority. Both kinds of components have
three configurable attributes. The first two attributes are the
task execution time and priority level, which are normally
set at the creation of the component instances as specified
by application developers. The third attribute is No-IR, IR-
per-task, or IR-per-job, which means the resetting rule ei-
ther is not enabled or is enabled per task or per job respec-
tively. Per-task means the Idle Resetting component will
not be notified when periodic subjobs complete. Since each
job of an aperiodic task can be treated as an independent

aperiodic task with one release, the idle resetting compo-
nent is notified when aperiodic subjobs complete. Both F/I
Subtask and Last Subtask components call the “Complete”
method of the local IR component instance when needed.
The dispatching threads in a F/I Subtask or a Last Subtask
component are triggered by either a “Release” method call
from the local TE component instance or a “Trigger” event
from a previous F/I Subtask component instance.

Idle Resetting (IR) Component: It receives “Complete”
method calls from local F/I or Last Subtask components,
and pushes “Idle Resetting” events to the AC component.
It has one attribute, the processor ID, which distinguishes
component instances sitting on different processors.

Admission Control (AC) Component: It consumes “Task
Arrive” events from the TE components and “Idle Reset-
ting” events from the IR components. It publishes “Ac-
cept” events to the TE components to allow task releases.
It makes “Location” method calls on the LB component to
ask for proposed task assignment plans. The AC compo-
nent has a No-LB/LB-per-task/LB-per-job attribute, which
indicates whether load balancing is enabled, and if it is en-
abled whether it is per task or per job. If that attribute is
set to LB-per-task, once a periodic task is admitted its sub-
task assignment is decided and kept for all following jobs.
However, aperiodic tasks do not have this restriction as they
are only allocated at their single job arrival time. A value
of LB-per-job means the subtask assignment plan can be
changed for each job of an accepted task.

Load Balancing (LB) Component: It receives “Location”
method calls from the AC component, which ask for assign-
ment plans for particular tasks. The LB component tries to
balance the synthetic utilization among all processors, and
may modify a previous allocation plan for a task when a
new job of the task arrives. It returns an assignment plan
that is acceptable and attempts to minimize the differences
among synthetic utilizations on all processors after accept-
ing that task. Alternatively, the LB component may tell the
AC component that the system would be unschedulable if
the task were accepted.

6 Deployment and Configuration

While our configurable components is a step towards
flexible middleware services for handling aperiodic and pe-
riodic events, CPS developers still face the challenges of
choosing the best combinations of strategies, assembling
and deploying the components, which are tedious and error-
prone if performed by hand. Therefore, we have devel-
oped a tool that automates the selection, deployment, and
configuration of these components. Our tool has two key
advantages: (1) it allows application developers to spec-
ify the characteristics of the CPS and automatically map



them to suitable middleware strategies, and (2) it identi-
fies incorrect combinations of service strategies to prevent
erroneous middleware configurations. CIAO’s realization
of the OMG’s Light Weight Deployment and Configuration
specification [21] is called the Deployment and Configura-
tion Engine (DAnCE) [9]. DAnCE can translate an XML-
based assembly specification into the execution of deploy-
ment and configuration actions needed by an application.
Assembly specifications are encoded as descriptors which
describe how to build cyber-physical systems using avail-
able component implementations. Information contained
in the descriptors includes the number of processors, what
component implementations to use, how and where to in-
stantiate components, and how to connect component in-
stances in an application.
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Front-end Configuration Engine: Although tools such as
CoSMIC [12] are provided to help generate those XML
files, those tools do not consider the configuration require-
ments of the new services we have created. We therefore
provide a specific configuration engine that acts as a front-
end to DAnCE, to configure our services for application
developers who require configurable aperiodic scheduling
support. This extension to DAnCE helps to alleviate com-
plexities associated with deploying and configuring our ser-
vices. The application developer first provides a workload
specification file which describes each end-to-end task and
where its subtasks execute. Then our front-end configura-
tion engine allows the application developer to specify the
characteristics of the CPS.

(1) Does your application allow job skipping?

(2) Does your application have replicated components?

(3) Does your application require state persistence?

(4) How much extra overhead can you accept as it poten-
tially improves schedulability? [none (N), some per task

(PT), some per job (PJ)]

The front-end configuration engine parses the workload
specification file and automatically maps application char-
acteristics specified by the developer to proper configura-
tion settings for the admission control, idle resetting and
load balancing services. Finally an XML-based deployment
plan is generated, which can be recognized by DAnCE. As
an example, Figure 4 shows an example set of answers to
those four questions. Based on the answers, the AC, IR and
LB services should all be configured using per-task (PT)
strategy. Figure 4 also shows part of the XML file gen-
erated by our configuration engine, with the LB strategy
(LB_Strategy) setting of PT, which is due to the developer’s
answers to second and third questions.

To enforce end-to-end deadline monotonic scheduling,
the F/I Subtask and Last Subtask components both expose
an attribute called “priority”. When our configuration en-
gine reads the workload specification file, it assigns priori-
ties in order of tasks’ end-to-end deadlines, and writes this
priority information into the generated XML deployment
plan, to be parsed by DAnCE later. Our front-end configura-
tion engine not only generates well formed assembly spec-
ifications, according to the application developers’ instruc-
tions, but it also performs a feasibility check on configura-
tion settings, to ensure correct handling of dependent con-
straints. For example, per task admission control with per
job idle resetting would be contradictory as we mentioned
in Section 4. Since a developer might specify incompatible
service configuration combinations, our approach should be
able to detect and disallow them. If application character-
istics are not provided by the developers, our configuration
engine can supply default configuration settings, i.e., per
task admission control, idle resetting and load balancing.

We have used the <configproperty> feature of DAnCE
to extend the set of attributes that can be configured flexi-
bly according to other configuration settings. For example,
if the load balancing service is configured using the per-
task strategy, the corresponding property of the AC compo-
nent should also be set to per-task. DAnCE’s Plan Launcher
parses the XML-based deployment plan and stores the prop-
erty name (LB _Strategy) and value in a data structure (Prop-
erty) which is a field of the AC instance definition struc-
ture. The definitions of the AC instance and all other
component instances comprise a deployment plan (Deploy-
ment::DeploymentPlan) that is then passed to DAnCE’s Ex-
ecution Manager for execution. The Execution Manager
propagates the deployment plan data structure to DAnCE’s
Node Application Manager, which parses it into an initial-
ization data structure (NodelmplementationInfo). Finally,
the Node Application Manager passes the initialization data
structure to the Node Application. When the Node Appli-
cation installs the AC component instance, it also initial-
izes the LB_Strategy attribute of the AC component through



a standard Configurator interface (set_configuration), using
the initialization data structure it received.

7 Experimental Evaluations

To validate our approach, and to evaluate the perfor-
mance, overheads and benefits resulting from it, we con-
ducted a series of experiments which we describe in this
section. The experiments were performed on a testbed con-
sisting of six machines connected by a 100Mbps Ethernet
switch. Two are Pentium-IV 2.5GHz machines with 1G
RAM and 512K cache each, two are Pentium-IV 2.8GHz
machines with 1G RAM and 512K cache each, and the other
two are Pentium-1V 3.4GHz machines with 2G RAM and
2048K cache each. Each machine runs version 2.4.22 of the
KURT-Linux operating system. One Pentium-1V 2.5GHz
machine is used as a central task manager where the AC and
LB components are deployed. The other five machines are
used as application processors on which TE, F/I Subtask,
Last Subtask and IR components are deployed.

7.1 Random Workloads

We first randomly generated 10 sets of 9 tasks, each in-
cluding 4 aperiodic tasks and 5 periodic tasks. The number
of subtasks per task is uniformly distributed between 1 and
5. Subtasks are randomly assigned to 5 application proces-
sors. Task deadlines are randomly chosen between 250 ms
and 10 s. The periods of periodic tasks are equal to their
deadlines. The arrival of aperiodic tasks follows a Poisson
distribution. The synthetic utilization of every processor is
0.5, if all tasks arrive simultaneously. Each subtask is as-
signed to a processor, and has a duplicate sitting on a dif-
ferent processor which is randomly picked from the other 4
application processors.

In this experiment, we evaluated all 15 reasonable com-
binations of strategies, since it is convenient to choose and
run different combinations with the help of our configura-
tion engine. We ran 10 task sets using each combination
and compared them. The performance metric we used in
these evaluations is the accepted utilization ratio, i.e., the
total utilization of jobs actually released divided by the total
utilization of all jobs arriving. To be concise, we use cap-
ital letters to represent strategies: N when a service is not
enabled in this configuration; T when a service is enabled
for each task; and J when a service is enabled for each job
of a task. In the following figures, a three element tuple
denotes each combination of settings for the three config-
urable services: first for the admission control service, then
for the idle resetting service, and last for the load balancing
service.

The bars in Figure 5 show the average (mean) results
over the 10 task sets. As is shown in Figure 5, enabling
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Figure 5. Accepted Utilization Ratio

either idle resetting or load balancing can increase the uti-
lization of tasks admitted. Moreover, the experiment shows
that enabling IR per job (*_J_*) significantly outperforms
the configurations which enable IR per task (*_T_*) or not
at all (*_N_*). This is because IR per job removes the con-
tribution of all completed periodic subjobs to the synthetic
utilizations which greatly helps to admit more jobs. En-
abling all three services per job (J_J_J) performed compa-
rably to the other (J_J_*) configurations (averaging higher
though the differences were not significant) and outper-
formed all other configurations significantly, even though
the J_J_J configuration introduces the most overhead. We
also notice the difference is small when we only change the
configuration of the LB component and keep the configura-
tion of other two services the same. This is because when
we randomly generated these 10 task sets, the resulting syn-
thetic utilization of each processor was similar. To show the
potential benefit of the LB component, we designed another
experiment that is described in the next section.

7.2 Imbalanced Workloads

In the second experiment, we use an imbalanced work-
load. It is representative of a dynamic CPS in which a sub-
set of the system processors may experience heavy load.
For example, in an industrial control system, a blockage in
a fluid flow valve may cause a sharp increase in the load
on the processors immediately connected to it, as aperiodic
alert and diagnostic tasks are launched. In this experiment,
we divided the 5 application processors into two groups.
One group contains 3 processors hosting all tasks. The other
group contains 2 processors hosting all duplicates. 10 task
sets are randomly generated as in the above experiment, ex-
cept that all subtasks were randomly assigned to 3 applica-
tion processors in the first group and the number of subtasks
per task is uniformly distributed between 1 and 3. The syn-
thetic utilization for any of these three processors is 0.7.



Each subtask has one replica sitting on one processor in the
second group.

Each of 10 task sets was run for the 15 different valid
combinations, and for each combination we then averaged
the utilization acceptance ratio over the 10 results. These
15 combinations can be divided into 5 sets. Each set con-
tains three combinations represented by three adjacent bars
in Figure 6. In each set, we kept the admission control and
idle resetting strategies the same, but changed the load bal-
ancing strategy from none to per task, then to per job. As
figure 6 shows, load balancing per task provides a signifi-
cant improvement when compared with the results without
load balancing. However, there is not much difference be-
tween load balancing per task vs. per job.

1 IR
0.8

Job

0.4

—
—
—_—
—
—
—_—

021 = = | F o M

Average accepted utilization ratio of all accepted tasks

D A D A D A )
N &? A A7 é? /N7 «? A K7
7

K7 K7 A7 K7 N7 NI NI N2 DN2D S
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From these two experiments, we found that configuring
different strategies according to application characteristics
can have a significant impact on the performance of a cyber-
physical system with aperiodic and periodic events. Our
design of the AC, IR and LB services as easily configurable
components allows application developers to explore and
select valid configurations based on the characteristics and
requirements of their applications, and based on the trade-
offs indicated by these empirical results.

7.3 Overheads of Service Components

To evaluate the efficiency of our component-based mid-
dleware services, we measured overheads using 3 of the
processors to run application components and another pro-
cessor to run the AC and LB components. The workload is
randomly generated in the same way as described in Sec-
tion 7.1, except that the number of subtasks per task is uni-
formly distributed between 1 and 3. Each experiment ran
for 5 minutes. We examined the different sources of over-
head that may occur when a task arrives at TE component
TE1, after which AC and LB components run the task in
component TE1 or re-allocate it to another TE component,
TE2. Figure 7 shows how the total delay for each service

includes the costs of operations located in several compo-
nents. Figure 8 lists the operation numbers shown in Fig-
ure 7 to provide a detailed accounting of the delays result-
ing from different combinations of service configurations.
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Figure 7. Sources of Overhead/Delay

mean max

AC without LB (14+2+4+2+5) 1114 | 1248
AC with LB (1+2+3+2+5) 1116 | 1253
(no re-allocation)

AC with LB (1+2+3+2+6) 1201 | 1327

(re-allocation)
LB (no re-allocation) (142+3+2+5) | 1113 | 1250
LB (re-allocation) (14+2+3+2+6) 1198 | 1319

IR (on AC side) (8) 17 18
IR (other part) (7+2) 662 683
Communication Delay (2) 322 361

Figure 8. Service Overheads (us)

To calculate the delays for AC without LB, AC with LB
without re-allocation and LB without re-allocation, we can
simply calculate the interval between when one task arrives
on a processor and when the task is released on the pro-
cessor. However, if the LB component re-allocates the first
subtask on a different processor using its duplicate, as in the
case of AC with LB, it is difficult to determine a precise time
interval between when one task arrives on one processor and
when it is released on another processor, because our exper-
iment environment does not provide sufficiently high reso-
lution time synchronization among processors, which is an
inherent limitation for many distributed cyber-physical sys-
tems. We therefore measure the overheads on all involved
processors individually, then add them together plus twice
the communication delays (step 2 in Figure 7) between the
processors. Three processors are involved: the processor



where the task arrives (step 1), the central task manager
processor (steps 3 and 4) and the processor where the du-
plicate task is released (step 6). We ran this experiment
using KURT-Linux version 2.4.22, which provides a CPU-
supported timestamp counter with nanosecond resolution.
By using instrumentation provided with the KURT-Linux
distribution, we can obtain a precise accounting of operation
start and stop times and communication delays. To measure
the communication delay between the application proces-
sor and the admission control processor on our experimen-
tal platform, we pushed an event back and forth between
the application processor to the admission control proces-
sor 1000 times, then calculated the mean and max value
among 1000 results. We then divided the round trip time by
2 to obtain the approximate mean and maximum commu-
nication delays between the application processor and the
admission control processor.

The total delay for LB when reallocation happens, is
measured in the same way as for the case of AC with
LB with reallocation. To calculate the delay from the IR
component, we divide its execution into two parts. The
small overhead on the admission control processor must be
counted in the overall delay. The large overhead on the ap-
plication processor and the communication delay only hap-
pen during CPU idle time, and although it represents an ad-
ditional overhead induced by the IR component, it does not
affect performance, which is why we report the two parts
separately in Figure 8. From the results in Figure 8, we can
see that all of the delays induced by our configurable com-
ponents are less than 2 ms, which is acceptable for many
distributed cyber-physical systems. For applications with
tight schedules, a developer can make further decisions on
how to configure services based on this delay information
and based on the effects of the different configurations on
task management, which we discussed in Section 4.

8 Related Work

Component Middleware: The architectural patterns used
in the CORBA Component Model (CCM) [26] are also used
in other popular component middleware technologies, such
as J2EE [27, 3]. Among the existing component middle-
ware technologies, CCM is the most suitable for distributed
cyber-physical systems since CORBA is the only standards-
based COTS middleware that explicitly considers the real-
time requirements of distributed cyber-physical systems.

QoS-aware middleware: Quality Objects (QuO) [23, 31]
is an adaptive middleware framework developed by BBN
Technologies that allows developers to use aspect-oriented
software development techniques to separate the concerns
of QoS programming from application logic in distributed
cyber-physical systems. A Qosket is a unit of encapsula-
tion and reuse for QuO systemic behaviors. In comparison

to CIAO, Qoskets and QuO emphasize dynamic QoS pro-
visioning where CIAO emphasizes static QoS provisioning
and integration of various mechanisms and behaviors during
different stages of the development lifecycle. The dynamic-
TAO [16] project applies reflective techniques to reconfig-
ure Object Request Broker (ORB) components at run-time.
Similar to dynamicTAO, the Open ORB [11] project also
aims at highly configurable and dynamically reconfigurable
middleware platforms to support applications with dynamic
requirements. Zhang et al. [29] use aspect-oriented tech-
niques to improve the customizability of the middleware
core infrastructure at the ORB level.

QoS-aware component Middleware: Component middle-
ware’s container architecture enables meta-programming of
QoS attributes in component middleware. For example,
aspect-oriented techniques can be used to plug in different
systemic behaviors [6]. This approach is similar to CIAO in
that it provides mechanisms to inject aspects into systems at
the middleware level. de Miguel’s work [8] further develops
the state of the art in QoS-enabled containers by extend-
ing a QoS EJB container interface to support a QoSCon-
text interface that allows the exchange of QoS-related infor-
mation among component instances. To take advantage of
the QoS-container, a component must implement QoSBean
and QoSNegotiation interfaces. However, this requirement
increases dependence among component implementations.
The QoS Enabled Distributed Objects (Qedo) [10] project
is another effort to make QoS support an integral part of
CCM. Qedo’s extensions to the CCM container interface
and Component Implementation Framework (CIF) require
component implementations to interact with the container
QoS interface and negotiate the level of QoS contract di-
rectly. Although this approach is suitable for certain appli-
cations where QoS is part of the functional requirements, it
tightly couples the QoS provisioning and adaptation behav-
iors into the component implementation, which may limit
the reusability of the component. In comparison, CIAO ex-
plicitly avoids this coupling and composes the QoS aspects
into applications declaratively. There have been several
other efforts to introduce of QoS in conventional component
middleware platforms. The FIRST Scheduling Framework
(FSF) [2] proposes to compose several applications and to
schedule the available resources flexibly while guaranteeing
hard real-time requirements. A real-time component type
model [7], which integrates QoS facilities into component
containers also was introduced, based on the EJB and RMI
specifications. A schedulability analysis algorithm [18] for
hierarchical scheduling systems has been introduced for de-
pendent components which interact through remote proce-
dure calls. None of these approaches provides the config-
urable services for mixed aperiodic and periodic end-to-end
tasks offered by our approach.



9 Conclusions

The work presented in this paper represents a promising
step towards configurable admission control and load bal-
ancing support for a variety of distributed cyber-physical
systems with aperiodic and periodic events. We first ana-
lyzed a set of key characteristics of different cyber-physical
systems and mapped them to suitable strategies for mid-
dleware services. We then have designed and implemented
configurable middleware components that provide effective
on-line admission control and load balancing and can be
easily configured and deployed on different processors. Our
front-end configuration engine can automatically process
the user’s specification file and generate a corresponding
deployment plan for DAnCE, thus making it easier for de-
velopers to select suitable configurations, and to avoid in-
valid ones. Empirical results we obtained showed that (1)
our configurable component middleware is well suited for
satisfying different applications with a variety of alterna-
tive characteristics and requirements, and (2) our compo-
nent middleware services are appropriately efficient on a
Linux platform.
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