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Functional coupling across distributed brain regions varies across task contexts,

yet there are stable features. To better understand the range and central ten-

dencies of network configurations, coupling patterns were explored using

functionalMRI (fMRI) across 14distinct continuouslyperformed task states ran-

ging from passive fixation to increasingly demanding classification tasks. Mean

global correlationprofiles across the cortex ranged from0.69 to 0.82between task

states. Network configurations from both passive fixation and classification

tasks similarly predicted task coactivation patterns estimated frommeta-analy-

sis of the literature. Thus, even across markedly different task states, central

tendencies dominate the coupling configurations. Beyond these shared com-

ponents, distinct task states displayed significant differences in coupling

patterns in response to their varied demands. One possibility is that anatomical

connectivity provides constraints that act as attractors pulling network configur-

ations towards a limited number of robust states. Reconfigurable coupling

modes emerge as significant modifications to a core functional architecture.

1. Introduction
Recorded under similar conditions over an extended period of time, the human

brain possesses a stable set of functionally coupled networks that echo many

known features of anatomical organization [1–13]. The same ‘usual suspects’—

that is, large-scale, distributed cortical and subcortical networks—tend to recur.

This observation emphasizes stability in the spatial patterns of functional

connectivity MRI (fcMRI) signals.

However, reconfigurations can be directly induced by changing the behav-

ioural task or behavioural context [14–39]. For example, employing a pattern

classification approach, Shirer et al. [27] distinguished functional connectivity

patterns obtained from four covert cognitive task states. These patterns could

be identified across independent cohorts of subjects with high accuracy.

Such reliable changes raise the question of which cognitive state(s), if any,

produce the most representative patterns of functional coupling [36], and

what dynamic range should be expected across substantially varied beha-

vioural paradigms. Intrinsic fluctuations of activity within, as well as outside,

task-relevant brain regions have been observed to affect subsequent behaviour

[40–42]. These empirical observations underscore the point that intrinsic fluctu-

ations and changes in connectivity are functionally relevant [43–52]. However,

they also complicate efforts to use functional connectivity approaches to deter-

mine which features of network organization are invariant across states and

which are state-dependent.

This paper explores both stable and reconfigurable features of functional organ-

ization to provide insight into this question (see also [37]). Our goals are both

conceptual and practical. In terms of conceptual goals, we sought to understand

& 2014 The Author(s) Published by the Royal Society. All rights reserved.
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hownetwork configurations change across a broad range of task

states tobetter characterizewhat is stable andwhat is reconfigur-

able in terms of network organization. Data from 14 short,

continuous tasks were collected from a large sample of partici-

pants (N ¼ 48). Two features of the experimental design were

central to our investigation. First, the tasks were all continu-

ous—subjects engaged trial after trial of the same task without

jittered gaps or longpauses to create, to the degree possible, con-

stant task states. Second, the studied tasks differed markedly

along multiple dimensions to maximally survey a broad range

of task states. Tasks ranged from passive activities to stimulus-

drivenclassificationparadigmswithauditoryandvisual stimuli.

Some tasks were made to be difficult and others easy, and some

demanded attention to single modalities while others required

multiple modalities. In terms of practical goals, this diversity

of tasks also allowed us to ask a basic question: since fcMRI is

so widely used in the field to glean insight into network

organization, to what degree are results reported in the

literature dependent on the specific task used at acquisition?

To foreshadow the findings, we observed that reconfi-

gurations varied around a central tendency of coupling

patterns that was evident across all tasks. Relevant to the

practical use of fcMRI to identify network organization, cer-

tain broad properties appear to be robust across a wide

range of acquisition states, probably because they reflect

the most stable, anatomically constrained configurations.

However, details differ from task state to task state and it is

unclear whether any particular state provides a privileged

view of cortical organization. Our discussion of the impli-

cations of these observations is motivated by several recent

papers that have also grappled with the observation of both

stable and dynamic components of functional network

configurations [48–53].

2. Material and methods

(a) Participants
Participants (N ¼ 48) were scanned across a battery of 14 short
tasks in a single session (ages 18–35; mean age 20.8; 46% male).
Participants had no history of mental illness and had normal or
corrected-to-normal vision and normal hearing. Written informed
consent in accordance with guidelines set by institutional review
boards of Harvard University was obtained from each subject
prior to data collection.

(b) Behavioural tasks
Participants completed one run each of 14 continuous tasks.
Tasks were run in separate scans and were grouped into three
domains: Passive (4), Sensory (6) and Word (4). These domains
were counterbalanced across participants. Each set of tasks
within each domain was also counterbalanced. While the task
demands and stimuli varied across domain sets, an important
feature common to all tasks is that they were run in continuous
blocks that contained no extended inter-trial intervals or null
events besides extended (30 s) periods of passive fixation at the
beginning and end of each run. Participants performed each
task once.

A central fixation crosshair (plus sign) was present through-
out all runs. Runs always began with a passive fixation period
lasting 30 s. Following this, the word START appeared indicating
that participants should begin performing the task. Task blocks
lasted 180 s. Participants were instructed to perform the task con-
tinuously until the word STOP appeared, after which they

returned to passively fixating for the remainder of the run
(27 s). Subjects were only included in analyses if good-quality
data (temporal signal-to-noise ratio (SNR) . 100; [54]) were
available for all 14 tasks, resulting in a final sample size of 48 par-
ticipants (58 participants were enrolled and 10 participants were
excluded for low SNR or for incomplete sessions).

(i) Passive tasks
The Passive tasks were a set of tasks that manipulated cognitive
processes through instruction without introducing different
stimuli or demanding any overt motor responses. The Count task
was a silent, self-paced counting task in which participants
counted backwards from 1000 by threes. In the Imagine task, par-
ticipants were told to imagine living out the next day, starting
from the time they woke. A third Fixate task consisted of passively
fixating the central crosshair. Finally, the Monitor task required
participants to continue to fixate the centre crosshair while broad-
ening their attention covertly to monitor for the possible
appearance of a rare, briefly presented small dot. In no instance
were dots actually presented during the run, rendering this task
perceptually identical to the other tasks. Thus, in all of the Passive
tasks, the actual stimulus presented and run structure were identi-
cal. What the participants did passively during the middle 180 s
blocks differed across tasks based on pre-scan instructions and
on subject expectations (see [55] for a similar paradigm design).
Note that the use of the term ‘passive’ is intended to refer to the
absence of external (motor) response requirements in this set of
tasks, as well as the absence of externally delivered stimuli. See
the electronic supplementary material for additional discussion
and details of the tasks.

(ii) Sensory tasks
Participants completed two runs of anAuditory detection task, two
runs of a Visual discrimination task and two runs of a combined
Auditory/Visual task. In each run pair, one run contained high-
fidelity stimuli (high volume complex tones, high visual contrast
Gabor gratings, or both in the auditory/visual case) and the
other contained low-fidelity stimuli (weak tones, gratings or
both). Low-fidelity volume and contrast levels were set individu-
ally prior to the experimental run according to participants’
discrimination thresholds (see the electronic supplementary
material).

In all Sensory tasks, the low-fidelity stimuli caused longer
response times and lower accuracy, as expected. Hence, the
term ‘easy’ is used throughout to designate task conditions that
used high-fidelity stimuli, and ‘hard’ designates tasks that used
low-fidelity stimuli.

In the auditory detection task, participants indicated with a
left- or right-hand button press whether they perceived a com-
plex tone on the left or right side.

In the visual discrimination task, participants judged the
orientation of peripherally presented Gabor contrast gratings
(presented 78 off-centre). Responses were made with the index
or middle finger of the hand congruent to the visual stimulus.

In the combined auditory/visual task, the tone and Gabor
stimuliwere alwayspresentedon congruent sides.TheGabor stimu-
lus preceded the tone by approximately 40 ms to increase the
likelihood that theywouldbeperceived simultaneously [56]. Partici-
pants were instructed to respond to the Gabor gratings in the
same manner as the visual discrimination task. They were infor-
med that the tone would always appear on the same side as
the grating. Additional details can be found in the electronic
supplementary material.

(iii) Word tasks
In the Semantic task runs, participants classified single, centrally
presented nouns as describing either an abstract concept or a
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concrete object (adapted from [57]). In one run of the task,
stimuli consisted of 90 unique words (Semantic—New), whereas
in another run only 10 words were used, which were repeated
throughout the block (Semantic—Repeat). Response times and
accuracies confirmed that classification of new words was more
effortful than classification of repeated words.

N-Back tasks comprised the final pair (adapted from [58]). For
the 2-Back task, participants were instructed to press one key if
the current word matched the word that was presented two
words prior, and another key if it did not. For the 0-Back task,
one word was designated the ‘target’. Participants were to
press one key when the target word appeared, and another key
if the current word did not match the target.

In all Word tasks, trials consisted of 1 s word presentation
followed by 1 s fixation. Each run contained 90 trials. Lists of
abstract and concrete words were drawn from a previously used
set [59]. Words were counterbalanced across the four tasks. Text
was centrally presented (black on awhite background) and partici-
pants responded with the index and middle fingers of their left
hands. A short practice block preceded each task. Full details can
be found in the electronic supplementary material.

(c) MRI data acquisition and preprocessing
Imaging data were acquired on a 3-T Tim Trio scanner (Siemens,
Erlangen, Germany) using the vendor-supplied 12-channel
phased-array head coil. Functional data consisted of gradient-echo
echo-planar images sensitive to blood oxygenation level-dependent
contrast [60,61]. Parameters for the functional scanswere: repetition
time (TR) 3000 ms, echo time (TE) 30 ms, flip angle 858, 3 � 3 �
3 mm voxels, field of view 216 and 47 axial slices collected with
interleaved acquisition. Slices were oriented along the anterior
commissure–posterior commissure plane. Functional runs lasted
3.95 min (79 time points). Structural data included a multiecho
T1-weighted magnetization-prepared gradient-echo image [62].

Functional connectivity analysis was conducted only on
frames obtained during the active task period of each run. As
such, the first 15 (corresponding to the fixation period, start
cue and first four frames of the task) and last 10 frames (corre-
sponding to the end cue and final fixation period) of each run
were discarded. Subsequent processing steps included (i) correct-
ing for slice acquisition-dependent time shifts in each volume
with SPM2 (Wellcome Department of Cognitive Neurology,
London, UK), (ii) correcting for head motion using rigid body
translation and rotation parameters (FSL [63,64]), (iii) removing
linear trends over each run and (iv) a low-pass temporal filter
to retain frequencies below 0.08 Hz. Spurious variance was
removed using linear regression with terms for head motion,
whole-brain signal, ventricle signal, white matter signal and
their derivatives.

Individual participants’ T1 scans were reconstructed into
surface representations using FREESURFER (http://surfer.nmr.
mgh.harvard.edu). Functional data were registered to structural
images using FREESURFER’s FsFast package ([65]; http://surfer.
nmr.mgh.harvard.edu/fswiki/FsFast). The structural preproces-
sing and structural–functional data alignment steps are detailed
in [12]. Functional data were smoothed on the surface using a
6-mm full-width half-maximum kernel and were downsampled
to a 4-mm mesh.

(d) Analysis of network configurations
Comparing network organization between tasks is inherently a
tricky enterprise because either assumptions about region defi-
nition or parcellations need to be made, or global coupling
properties must be compared at the level of voxels/vertices,
which makes recovering the origins of matrix differences diffi-
cult. To circumvent the limitations of each kind of analysis, we

took multiple approaches. All approaches converged on the
same basic results, bolstering confidence in our conclusions.

(i) Region-based matrix analysis
To explore differences in network properties in relation to com-
monly described functional networks, we constructed a large set
of regions based on the parcellation of resting-state data in Yeo
et al. [12]. Using the 17-network parcellation as a reference, we
defined 114 regions that surveyed all 17 networks with multiple,
separate regions per network. Correlation matrices were con-
structed that included all region pairs for each of the tasks as
well as differences between tasks. Within the matrices, regional
correlations were ordered within networks to allow patterns of
change and similarity to be easily appreciated (figure 1; similar
to [66,67]). Multiple comparisons between tasks were statistically
corrected using the network-based statistic method described in
Zalesky et al. [68]. Differences between the tasks compared were
all significant at p, 0.001 for a range of thresholds. For visualiza-
tion purposes, the maps in figure 1 were thresholded at t ¼ 3.5
(d.f. ¼ 47, p, 0.001).

(ii) Cluster-based parcellation
The above analysis is biased because it begins with a set of regions
derived froma specific parcellation solutionobtained fromaunique
task state (eyes open rest). As an alternative means to visualize
variations and stability in network configurations, we computed
network parcellation estimates for each task state directly. In
addition to providing another way to visualize alternative
network configurations, this analysis approach alsoprovides practi-
cal information about howsensitive networkparcellations are to the
acquisition state.

Clustering of functional data was performed for each task sep-
arately following the procedure in Yeo et al. [12]. For each subject,
the Pearson’s product moment correlation was computed between
each surface vertex (N ¼ 18 715) and 1175 regions of interest spread
evenly over the cortical surface. The regions consisted of single ver-
tices spaced approximately 16 mm apart. The ‘connectivity profile’
of eachsurfacevertex is its functional coupling to these regions.Each
participant’s 18 715 � 1175 matrix of correlations was binarized to
retain the top10%of correlationsbefore averaging for thegroupesti-
mates. The connectivity profiles were clustered using a mixture of
vonMises–Fisher distributions [12,69]. For details see Yeo et al. [12].

Parcellation of cerebellar volumetric data was performed as
in Buckner et al. [70]. For each task, each voxel in the cerebellum
was assigned to its ‘best-fit’ cerebral cortical network based on
that voxel’s correlation matrix to the cerebral cortical surface.

Using these approaches, the number of clusters must be
specified a priori. Because Yeo et al. [12] found solutions with
7- and 17-network clusters to be particularly stable, and in
order to compare task parcellations to these previous resting-
state parcellations, we adopted 7- and 17-network clustering
for this study. This practical choice should not be taken to
imply that these network solutions are more meaningful than
alternatives. The 7-network cerebral cortical parcellations were
used to assess the stability of network border locations across
tasks (figure 2). Representative 7-network task parcellations are
also displayed in figure 9. The 17-network parcellations were
used to quantify the relationship between cerebral and cerebellar
network representation (figure 9) as well as to illustrate how
lateralized asymmetries in the parcellations arise in certain task
contexts (electronic supplementary material, figure S4).

(iii) Global coupling profile correspondence
As another strategy to explore functional coupling differences,
the global correlation profile of each task was compared with
the remaining 13 to assess agreement across tasks. This was
achieved in two ways: (i) calculating the global correlation
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between each possible pair of tasks (figure 3) and (ii) calculating
the agreement between whole-cortex correlations in each task to
the mean correlation profile computed from the other tasks
(figure 4). Each comparison was performed on the full, 18
715 � 18 715 correlation matrix representing the complete con-
nectivity profile of the cortical surface. We ranked the tasks in
terms of their agreement to the other tasks (figure 4; electronic
supplementary material, figure S1).

(iv) Seed-based maps
Finally, seed-based maps were constructed to identify specific
regions that exhibited changes in whole-cortex connectivity as
a function of task (figures 5–7 and the electronic supplementary
material, figure S2). We identified regions on the cortical surface
that had varied correspondence between a given task and the

average of the remaining tasks (see figures 3 and 4). Using
these regions as seeds, we plotted the whole-brain correlation
maps from individual tasks. Each seed was a single surface
vertex (approx. 4 � 4 mm). For these maps, the vertex-level cor-
relation pattern from each task was displayed on the cortical
surface for each seed region.

(e) Comparison between functional connectivity MRI

and task coactivation
An intriguing finding in the literature is that intrinsic functional
connectivity networks measured at rest correspond to task-based
coactivation patterns ([71–73], but see [30]). An interesting ques-
tion is whether rest has a privileged position such that functional
coupling measured during passive fixation or during rest is the

(a)

(b)

10–8

10–6 10–6

10–8

default

control

vent attn

dors attn

som/mot

vis

limbic

salience

imagine

count

default

control

vent attn

dors attn

som/mot

vis

limbic

salience

monitor

default

control

vent attn

dors attn

som/mot

vis

limbic

salience

monitor – imagine

fixate

count – fixate

Figure 1. Functional coupling within and between functional networks reveals similarities and differences across task states. Regions of interest obtained from the

17-network parcellation in Yeo et al. [12] were arranged by network membership. Correlation matrices were computed for four passive, continuous tasks collected in

48 subjects. Tasks were perceptually matched across conditions and required no overt responses. Tasks consisted of an external attention task (monitor), a backwards

counting task (count), an episodic imagining task (imagine) and a passive fixation task (fixate). (a) Across all tasks, positive correlations predominantly fall along the

diagonal, indicating that the arrangement according to network captures much of the structure of the coupling patterns in each task. (b) Examples of direct

comparisons between task variants reveal differences in coupling within (along diagonal) and between (off-diagonal) functional networks.
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best way to ascertain stable underlying functional network
configurations. One possibility is that the network repertoire
measured during passive fixation is a better predictor of diverse
coactivation states because it is absent contamination of a par-
ticular configuration elicited by active task demands. An
alternative possibility is that every task state, including passive
visual fixation or rest, is an arbitrary state with its own idiosyn-
cratic demands and thus not inherently more appropriate for
coupling analysis than other task states.

To investigate whether passive fixation and active task states
equally predict task coactivation data, we used a previously pub-
lished dataset (N ¼ 16 [24,74]) consisting of two runs each of
passive fixation and of the same abstract/concrete word classifi-
cation task described above. We calculated the correlation
between the whole-cortex coupling patterns in these data and
the whole-cortex coactivation patterns available from the Neuro-
Synth database (figure 8). Briefly, NeuroSynth [75] (http://
neurosynth.org/) permits automated extraction of coordinates
from a large set of published functional MRI (fMRI) articles.

These can be interrogated for term-based or coactivation-based
meta-analyses.

( f ) Visualization
Parcellation and seed-based correlation maps were transformed
from FREESURFER surface space to the inflated PALS cortical
surface using CARET software [76,77].

3. Results

(a) Functional coupling is modified by task state
A central finding that will emerge in multiple ways throughout

the results is that different task states modify functional coup-

ling patterns while at the same time they show strong central

tendencies. To illustrate this point, figure 1 displays the func-

tional coupling matrices for the four Passive task states

(imagine, count, monitor and fixate). Like the earlier work of

Shirer et al. [27], these task states present a particularly interest-

ing contrast because the stimulation (a visual crosshair) and

response demands are held constant. What does differ across

the tasks is the participant expectations and, presumably,

internal cognitive states.

The first observation is that the couplingmatrix between the

114 regions is highly similar across the four tasks (figure 1a).

However, significant differences emerge when the direct con-

trasts between the task states are analysed (figure 1b). These

differences include coupling changes that are within-network

(effects along the diagonal of the matrix) as well as differences

between networks (effects away from the matrix diagonal).

As another means to quantify similarity and differences,

network parcellations were estimated as a proxy for network

stability. The 7-network clustering solution for each task was

estimated and the boundaries of derived networks extracted.

Figure 2 depicts network boundary locations as a count reflect-

ing the number of tasks that had a boundary in common at

each location. The agreement between any given task and the

other 13 tasks’ network boundary locations was similar

across all tasks (mean overlap was 64–67%). The passive fix-

ation task (fixate) agreement to the other tasks was not

exceptional in this respect (mean overlap ¼ 66%).

Global coupling profile correspondence was next com-

pared between all possible task pairs (91 pairs) across the

full cerebral cortex. Mean global correlations between task

14/141/14

visual-hcountfixate

boundary overlap

Figure 2. Network transitions vary across functional states. 7-Network clustering parcellations were computed separately for all 14 tasks (N ¼ 48). Heatmap indi-

cates number of tasks (out of 14) for which a transition between networks falls at a given location on the lateral left hemisphere. Black lines indicate the location of

network boundaries for the three particular tasks shown. Some border locations are highly consistent across tasks—e.g. transitions occurring near pre-central cortex

and between inferior parietal and occipital regions. Other locations consistently do not contain network transitions, for instance in parts of medial prefrontal,

somatomotor and occipital cortex. Certain regions in prefrontal, temporal and parietal cortex exhibit considerable variability of network topography across

tasks. The agreement between any given task and the other 13 tasks’ network boundary locations was similar across all tasks (mean overlap was 64–67%).

The passive fixation task (fixate) agreement to the other tasks was not exceptional in this respect (mean overlap ¼ 66%). h, hard.

monitor versus 2-back

(0.69) (0.82)

0.35 0.85

z(r)

monitor versus fixate(b)(a)

(c) (d )

Figure 3. Global coupling profiles are substantially similar across tasks. Across

all possible pairs of tasks (91 pairs), the lowest and highest mean correlation

of whole-cortex global connectivity profiles ranged between 0.69 and 0.82.

(a,c) The global connectivity correspondence between the monitor and 2-

back (hard) tasks, the task pair with the lowest global coupling correspon-

dence (0.69). (b,d ) The agreement between the monitor and fixate tasks,

the pair with the highest (0.82) agreement. Lateral surface views of the

left hemisphere are shown on (a,b) and medial views are at (c,d ).

A large proportion of the correlation structure is shared, even across these

distinct task states.
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coupling patterns were statistically significant (t90 ¼ 210.28,

p, 0.001) and ranged between 0.69 and 0.82 across all poss-

ible pairs. Grubbs’ test did not detect any outliers at an alpha

of 0.05, suggesting that no task pairs were exceptional; rather,

the range of correlations followed an approximately normal

distribution. The correspondence between the monitor and

2-back tasks was the poorest, whereas the agreement between

the monitor and fixate tasks was the highest. These two

extremes are illustrated in figure 3.

When comparing each task with the average correlation

profiles of the remaining 13 tasks, the 2-back task was also

found to be least similar to the average of the others (mean

correlation ¼ 0.60). The 0-back task was most similar to the

average of the other tasks (mean correlation ¼ 0.71). The differ-

ence in correspondence between the 2-back and 0-back

conditions to each of the other tasks was significant (t11 ¼

7.79, p, 0.001). The left hemisphere correspondence maps of

global coupling patterns between each task and the remaining

13 are shown in figure 4 and the electronic supplementary

material, figure S1.

(b) Coupling differences vary around a central tendency
While the central tendency in coupling patterns across tasks is

apparent from the above results, it is also clear that different

states produce different configurations. We plotted the seed-

based correlation maps from individual tasks (figures 5–7

and the electronic supplementary material, figure S2) to the

average across tasks, using seed regions that had variable

degrees of correspondence. These examples illustrate the

extent of variation that occurs in the coupling patterns of

individual tasks relative to the average.

For example, a seed region in right lateral temporal cortex

was correlated with anterior inferior prefrontal cortex, the

inferior parietal lobule and caudal dorsal prefrontal cortex

in the task-averaged matrix (figure 5). This region’s coupling

profile exhibited relatively little variation across tasks, with

individual task correspondence ranging between 0.72 and

0.83 to the task-averaged map. The intraparietal sulcus

region depicted in figure 6 had greater variation in the

extent to which individual tasks agreed with the averaged

global profiles, with agreement ranging between 0.57 and

0.87. Figure 7 shows variation around coupling patterns

associated with a dorsolateral prefrontal seed region. In this

region, the auditory–hard task had the highest agreement

to the task-averaged result, whereas the fixate condition

had the lowest. Note that the ranking of worst-to-best agree-

ment between each of the tasks and the remaining tasks

differs across the three examples in figures 5–7.

The electronic supplementary material, figure S2, shows

three additional examples. Each case was selected to empha-

size particular features of variation. Figure S2a in the

2-back

count imagine monitor fixate

(0.60)

(0.63) (0.66)
z(r)

0.35 0.85

(0.69) (0.70)

(0.71)

0-back

(b)

(a)

Figure 4. Global fcMRI coupling structure is shared across task variants. A substantial portion of the coupling structure in each task is common across all tasks.

(a) Correlation of whole-cortex correlation profiles computed between each task and the average of the remaining 13 tasks. The lowest and highest mean corre-

spondence belonged to the 2-back (mean ¼ 0.60) and 0-back (mean ¼ 0.71) tasks, respectively. (b) Correlation between the global connectivity profiles of the four

passive tasks to the remainder of the 13 tasks. Within the four passive tasks, average correlations ranged between 0.63 and 0.70.
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electronic supplementary material depicts an example in

which different tasks emphasize different components relative

to the task-averaged correlation map. A seed region in left pos-

terior prefrontal cortex couples to an extended region in lateral

parietal cortex in the external attention task (monitor), but

favours higher correlations to extended portions of lateral pre-

frontal cortex in the semantic–new task. In figure S2b of the

electronic supplementary material, a seed region in right tem-

poro-parietal junction differentially couples to the anterior

insula, prefrontal cortex and inferior parietal sulcus across

two passive task variants (count and monitor). Finally, a strik-

ing example of attenuation relative to the average is shown in

figure S2c of the electronic supplementary material. The task-

averaged correlation map for a region placed in left anterior

insular cortex contains regions in caudal and lateral prefrontal

cortex aswell as the temporo-parietal junction and inferior par-

ietal sulcus. Correlations to these regions were robust in the

audio/visual tasks but attenuated in the count task.

Stimulus-driven coactivation probably affects the coupling

patterns we observed across tasks. However, as is shown in the

electronic supplementarymaterial, figure S3, coincident stimu-

lation does not necessarily lead to merging of networks. While

the 2-back and fixate tasks have substantially different evoked

response patterns, seed-regions placed in task-evoked regions

had broadly similar coupling profiles across the two tasks

(electronic supplementary material, figure S3). These findings

emphasize that, while coupling patterns are modified by task

context, there is a broadly similar, robust underlying scaffold-

ing that is converged upon by these quite different task states

(see also [37]).

Finally, the mean correspondence of a task to the other

tasks in its set (i.e. 0-back to the other Word tasks) was sig-

nificantly higher than the mean correspondence to tasks

outside of its set (i.e. 0-back to Passive or Sensory tasks)

(t13 ¼ 9.02, p, 0.001). From a practical perspective, this

implies that no single task is likely to exist that can maximally

capture the range of possible coupling configurations.

(c) Central tendencies across states underlie the

relationship between coupling and task coactivation
Smith et al. [71] demonstrated significant correspondence

between regions that covaryduring rest (resting-state networks)

and activation locations that covary in a large database of task-

based fMRI studies (BrainMap—www.brainmap.org). This

observation suggests that resting-state networks recapitulate

functionally meaningful brain organization. But is rest better

than other task states for revealing these meaningful aspects

0-back

monitor

auditory-e

semantic-r

aud/vis-e

visual-e

aud/vis-h

semantic-n

count

fixate

auditory-h

visual-h

2-back

0.83

0.83

0.82

0.81

0.81

0.81

0.81

0.80

0.80

0.80

0.77

0.76

imagine

0.72

0.78

0.20 0.50

z(r)

average

Figure 5. Variation in coupling to lateral temporal cortex. (Centre) Connectivity for a seed region (black circle) in right lateral temporal cortex, computed from a

correlation matrix obtained from averaging the matrices of all 14 tasks. (Perimeter) Correlation maps for the same seed region in each of the 14 tasks are arranged

clockwise from top in order of best to worst agreement to the centre map. Only positive correlations are shown. Numbers indicate z(r) between correlation maps.

aud/vis, audio/visual; e, easy; h, hard; n, new; r, repeat.
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of organization? To address this question, we first replicated the

basic Smith et al. [71] result. The whole-cortex fcMRI global

coupling profile measured during passive rest was correlated

with the coactivation patterns derived from the NeuroSynth

database [75] (http://neurosynth.org/).

The mean correlation between the passive rest task data

and functional co-activation measured across the cerebral

cortex was 0.60 (figure 8a,b). We next repeated the same pro-

cedure using continuous semantic task data instead of

passive fixation data (figure 8c,d). fcMRI patterns derived

from this active semantic classification task were equally

good at predicting the Neurosynth results (mean ¼ 0.60).

Thus, whilewe replicate the observation that coupling patterns

measured at rest predict much of the coactivation variance

found in task-based paradigms, we do not find that passive

rest is any better at predicting coactivation than another

arbitrary, active task.

(d) Network organization is broadly preserved across

tasks with some notable differences
Given passive rest does not predict task coactivation better

than coupling during an arbitrary, active task, one is left

wondering to what degree the field would be emphasizing

different features of network organization had functional

coupling been routinely analysed during a different task.

Therefore, a practical question to ask is whether network esti-

mates change substantially as a function of acquisition task

state. Two separate analyses were performed to provide

insight into this question. The first analysis focused on the

cerebral cortex and the second on the cerebellum.

(i) Cerebral cortex
Previously, we employed mixture modelling to parcellate the

cerebral cortex into networks using resting-state data [12]

and have recently shown that such networks generalize to

alternative estimation approaches [78]. Here, we estimated

cluster-based parcellation on data from the 14 tasks indepen-

dently to determine whether differences in coupling patterns

would change network estimation in meaningful ways

(examples are illustrated in figure 9).

Many features of network organization are stable. The

cerebral cortical parcellations all show a similar dissociation

between sensory and motor networks on the one hand and

association networks on the other. Specifically, sensory

and sensorimotor networks tended to cluster in predomina-

ntly local components, whereas association networks form

distributed networks that spanned multiple lobes [12,78].

This was evident in the 7-network (figure 9) as well as the

17-network parcellation (electronic supplementary material,

figure S4) across all tasks.

visual-e

aud/vis-e

aud/vis-h

visual-h

auditory-h

0-back

semantic-r

monitor

auditory-e

semantic-n

count

2-back

0.87

0.86

0.86

0.86

0.83

0.81

0.81

0.80

0.79

0.79

0.68

0.66

imagine

0.57

0.70

0.20 0.50

average

z(r)

fixate

Figure 6. Variation in coupling to intraparietal sulcus. Formatting as in figure 5. Note the change in the ranking of best-to-worst agreement with the average

correlation map relative to figure 5. In this case, the visual discrimination tasks show the best agreement to the task-averaged solution.
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Beyond this general consensus, the parcellations of the

cerebral cortex differed across tasks in certain respects.

The electronic supplementary material, figure S4, shows that

in the audio/visual task (as well as the visual tasks), the

17-network clustering solution split left and right hemisphere

visual cortex into separate networks. However, these visual

regions were not grouped into a common network with the

somatomotor regions and did not have a network component

in the cerebellum (see below). Visual networks also remained

distinct from auditory networks in the audio/visual tasks,

despite the concurrent presentation of auditory and visual

stimuli in those conditions. These observations suggest that,

though stimulus-driven coactivation is expected to influence

coupling profiles, it does not necessarily obligate a merging

of networks that contain regions engaged by the task.

(ii) Cerebellum
Though the details of network topography differed across

tasks in the cerebrum and cerebellum, the orderly arrangement

and dual representation of networks in the anterior and pos-

terior cerebellar cortex (previously identified in resting-state

data [70]) could be detected in all tasks. That is, although

some significant details differ, the same basic topography of

the cerebellum’s mapping to the cerebral cortex reveals itself

auditory-h

semantic-n

0-back

auditory-e

visual-e

aud/vis-e

aud/vis-h

imagine

monitor

visual-h

0.80

0.78

0.78

0.78

0.77

0.76

0.75

0.74

0.74

0.74

0.73

0.72

count

fixate

0.66

0.73

0.20 0.50

z(r)

average

semantic-r

2-back

Figure 7. Variation in coupling to dorsolateral prefrontal cortex. Formatting as in figure 5. A seed region in dorsolateral prefrontal cortex is correlated with a large

swath of lateral prefrontal cortex as well as portions of the inferior parietal lobule and intraparietal sulcus, consistent with the fronto-parietal control network [12].

In this case, the auditory–hard task has highest agreement to the average, whereas the fixate task has the lowest.

task fcMRI versus task coactivation

resting-state fcMRI versus task coactivation

z(r) mean = 0.60

mean = 0.60

0.80.2

(b)(a)

(c) (d )

Figure 8. Functional coupling in active and passive states similarly predicts task

coactivation. (a,b) Replicating previous work [71], passive state correlation patterns

across the cerebral cortex predict co-activation patterns from large-scale

meta-analytic databases such as Neurosynth (mean r ¼ 0.60). The passive (rest-

ing-state) task was passive visual fixation. (c,d ) fcMRI correlationmatrices obtained

from active semantic classification task data predict meta-analytic co-activation

patterns to a similar degree (mean r ¼ 0.60). Only left hemisphere is shown.
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regardless of the acquisition state initiating the parcellation

including (i) the observation that the cerebellum mostly maps

to cerebral association networks, (ii) the presence of a pri-

mary and secondary representation for all networks and

(iii) the observation that the secondary cerebellar map is a

mirror reversal of the primary map.

In general, differences in the cerebral networks across tasks

were also reflected in differences in the cerebellar network con-

figurations. For example, the audio/visual discrimination tasks

produced lateralized parcellations of the motor domains of the

anterior and posterior cerebellum, mirroring the same networks

in contralateral somatomotor cortices of the cerebrum (figure 9

and the electronic supplementary material, figure S4). Asymme-

try of non-motor networks was observed in the posterior

cerebellum in the semantic task (figure 9). This asymmetry ismir-

rored in theparcellation of contralateral cerebral cortical networks

for this task (see also [79]). These examples suggest that clustering

task data reveal insights into functional reorganization.

Finally, in Buckner et al. [70], we reported that the percen-

tage of the cerebellum assigned to a given network was

predicted by the percentage of the cerebrum dedicated to

that same network. We explored this association in each

task by plotting the percentage of vertices in the cerebral

cortex assigned to a given network as a function of the per-

centage of voxels in the cerebellum belonging to that

network. The roughly homotopic relationship first observed

with resting-state data [70] held across all 14 tasks in this

study (scatter plots in figure 9), again emphasizing that the

broad organizational properties of the cerebellum are robust

to the arbitrary acquisition state initiating the parcellation.

4. Discussion
Consistent with a broad range of ideas and empirical obser-

vations [36,43–52], our analyses of functional network
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Figure 9. Cerebro-cerebellar network organization is conserved across task states. A roughly homotopic relationship exists between the proportion of the cerebral cortex

and the cerebellum assigned to each network. The top row re-plots data from [70], demonstrating this relationship for eyes open rest data acquired from N ¼ 1000

participants. A similar correlation persists in all 14 tasks measured in this study, though the details of the network configurations change in each case. (Bottom

rows) Representative examples of homotopic scaling across Passive, Word and Sensory task variants. Left column shows the lateral views of the 7-network cerebral cortical

parcellation for each task. Middle column shows a representative coronal slice of the corresponding cerebellar parcellation. Right column plots percentage of cerebellum

(volume) against percentage of cerebrum (surface area). Points in scatter plot represent each of the 17 networks, following [70]. Black asterisks indicate networks that

formed splits between homotopic regions in both the cerebral and cerebellar cortices for particular tasks.
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configurations are consistent with the possibility that cortical

regions or neuronal subpopulations reconfigure their coup-

ling in response to task demands. A common theme that

emerges is that functional interactions (which are constrai-

ned by anatomical connections but not fully determined by

them) are critically relevant when characterizing a network’s

functional properties [80]. From this perspective, studying

coupling patterns in a single state alone (such as during pas-

sive fixation) is insufficient to distinguish the stable network

properties from task-varying contributions.

Our findings revealed that coupling configurations esti-

mated from a wide range of task paradigms contain common

features. However, beyond these shared components, even

variants of passive task paradigms are sufficient to induce sig-

nificant changes to coupling patterns within and across

networks. Surveying across 14 tasks and a range of paradigm

domains enabled us to identify those properties that are

robust across different behavioural contexts, as well as to

identify zones and features that show variability across states.

(a) A central tendency of coupling patterns across

behavioural states
While dynamical reconfigurations adjust details, certain

broad properties of functional connectivity networks general-

ize across many contexts and analysis strategies [1–13]. For

instance, regions at and near primary sensory and motor

cortices tend to show local functional coupling. By contrast,

association regions tend to couple in large distributed

networks with a prefrontal, parietal association, frontal mid-

line and temporal component. While the details of their exact

topography changes with different task acquisitions, this gen-

eral pattern is observed across the range of tasks in our

sample (figures 1, 5–7 and 9).

A relevant question is how much of the global coupling

configurations are common across behavioural states?

Within the cerebral cortex, global coupling profiles compared

between all possible pairs of tasks in our sample ranged from

0.69 to 0.82. On the one hand, changing the composition of

the task battery would undoubtedly alter these ranges as

well as which tasks become the worst- and best-agreeing

tasks. Had our task battery consisted of 13 auditory tasks

and one 0-back task, we would not expect the 0-back task

to emerge with the highest agreement to the other tasks, as

is presently the case (figure 4). On the other hand, that the

lowest mean correlation was as much as 0.69 between quite

varied task paradigms suggests that the common tendencies

across states account for a considerable portion of the

observed coupling patterns.

Shared features of the coupling patterns across behaviour-

al states may reflect constraints from anatomical connectivity.

The preserved, orderly topography of cerebro-cerebellar

coupling is consistent with this possibility (figure 9). As can

be appreciated from the coronal sections in figure 9, the

anterior and posterior portions of the cerebellum consistently

contain an orderly arrangement of cerebral cortical networks.

Across all tasks, networks contained anterior and posterior

cerebellar components that mirrored one another in a topo-

graphy that is consistent with our previous investigation of

cerebellar resting-state networks (top panel in figure 9; see

also [70]). This indicates that multiple cerebral networks

couple to the cerebellum in an orderly manner that is resilient

to the particular task used at acquisition.

It is possible that collecting the tasks in a single session

could have contributed to the observed stability of the present

results. If so, the reported range of correspondence between

tasks would be an overestimate. However, previous studies

have indicated that test–retest reliability of resting-state func-

tional connectivity remains quite high even when scans are

acquired months apart (e.g. [8]). Resting-state networks also

tend to agree across participants and scan sites. For example,

the global correspondence between the passive fixation con-

dition in this study and the full correlation matrix from an

independent sample of 1000 subjects reported in Yeo et al.

[12] was 0.91. Finally, the variation between tasks was strongly

predicted by how similar the tasks are to each other.

However, functional coupling stability is heterogeneous

across the cerebral cortex in test–retest measures [8] as well

as between individuals [81]. Thus an important avenue

to explore in future work will be to determine whether

similar patterns of heterogeneity can be observed in other be-

havioural states both within and across subjects.

(b) Reconfigurable functional coupling
Engel et al. [52], in a comprehensive review on the neurophy-

siology of intrinsic coupling patterns, conclude that while

certain features of intrinsic coupling modes may be anchored

by structural connectivity, these may best be viewed as priors

or ‘dispositions’ that constrain possible network states in

different behavioural contexts (see also [82]). Our results are

consistent with this framework, showing that fcMRI coupling

patterns across tasks vary around a central tendency. Differ-

ences manifest as modifications among a core configuration

that was common across states.

The global profile comparisons (figures 3 and 4) and

seed-based correlation maps (figures 5–7) provide a sense

of the variability. There is heterogeneity across the cortex;

for instance, portions of the inferior parietal lobule, somato-

motor cortex, posterior insular cortex and lateral temporal

cortex were in relatively close agreement across all tasks. By

contrast, prefontal cortex, portions of the superior parietal

lobule and temporal and anterior insular cortices appear to

possess an especially high concentration of zones whose

coupling patterns varied as a function of task.

We observed that the mean correspondence of a task’s

coupling profile to the other tasks in its set (i.e. 0-back to

the other Word tasks) was significantly higher than the

mean correspondence to tasks outside of its set (i.e. 0-back

to Passive or Sensory tasks). From a practical perspective,

this indicates that no one task is likely to become the gold

standard to which all other states maximally agree.

Reconfiguration as a function of task could either be facili-

tated by the intrinsic dynamics of brain circuits, or, more

mundanely, apparent changes could be illusory if regions are

jointly driven by synchronous sets of inputs or task demands.

Stimulus-driven coactivation is thus expected to at least partly

influence the coupling patternswe observed across tasks. How-

ever, as is shown in the electronic supplementary material,

figures S3 and S4, synchronous input does not necessarily obli-

gate regions to couple together into a common network. For

example, coincident auditory and visual input did not induce

auditory and visual networks to cluster together. This

reinforces the notion that, while dynamical reconfigurations

are expected, they are also likely to respect underlying anatom-

ical constraints. In this respect, equally informative to the
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observed task-varying changes is the absence of change, which

may reflect core constraints to reconfiguration.

Finally, we observed consistently high coupling variabil-

ity in certain regions such as the anterior temporal lobes

and orbital frontal cortices. This may be due to low SNR or

susceptibility. Additionally, regions exhibiting some of the

highest variability appeared to follow major morphological

features, such as a band of high variability along the cingu-

late sulcus (figure 4). Regions along the superior temporal

gyrus and inferior to the inferior parietal lobule also had

low agreement across tasks. Visual inspection of seed-based

correlation maps revealed that these regions, like the low

SNR regions, displayed predominantly local, relatively

noisy correlation maps. Reconfigurations in these regions’

coupling patterns primarily concerned the extent of local

correlations. We do not interpret these regions further.

(c) Implications for interpreting the relationship

between coupling and coactivation
Correspondence has been observed between network topo-

graphy obtained from resting-state functional connectivity

and task-induced activations measured across a range of cog-

nitive domains ([71–73], but see [30]). However, a basic

question is whether the resting-state provides a privileged

view of intrinsic connectivity?

Our results indicate that functional coupling in a continu-

ous semantic task is equally good at predicting meta-analytic

coactivation as is resting-state functional coupling (figure 8).

In some sense, this is not surprising. The correlation between

rest-based fcMRI and task-based fcMRI in these data was

0.75, indicating substantial shared variance in connectivity

profiles between the two states. But it does shift emphasis

from the resting-state being a ‘privileged state’ for reveal-

ing functional networks, towards it being only one of many

behavioural states that each reveal a consistent central ten-

dency as well as idiosyncratic aspects of coupling [67]. The

14 tasks we collected are clearly not exhaustive of the space

of possible behavioural activities, nor are they uniformly

sampled across the three broad domains we chose (passive,

word-based and sensory tasks). However, given the preva-

lent use of unconstrained rest states for functional

connectivity analysis, it is informative that the passive fix-

ation condition was no more representative of the other

tasks’ connectivity patterns than the other paradigms

measured in this study (figures 2–7).

These observations suggest that task responses should not

be thought of as activating network subsets or core building

blocks that are selectively identified by analysis of rest-state

functional coupling. Rather, the results are consistent with

the possibility that functional coupling across multiple task

states—including passive states and during active tasks—

varies around a core that may reflect stable features of brain

architecture. The possibility of a core functional architecture

may explain why analyses focusing on stable features of

functional coupling make observations paralleling known

anatomic connectivity,while analyses focusing on transient con-

figurations detect state-dependent modes that are influenced by

recent experience and momentary task states.
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