
Reconfigurable Trusted Computing in Hardware

Thomas Eisenbarth1, Tim Güneysu1, Christof Paar1,
Ahmad-Reza Sadeghi1, Dries Schellekens2, Marko Wolf1

1Horst Görtz Institute for IT Security, Ruhr-University of Bochum, Germany
2K.U. Leuven, ESAT/COSIC, Leuven-Heverlee, Belgium

ABSTRACT
Trusted Computing (TC) is an emerging technology towards
building trustworthy computing platforms. The Trusted
Computing Group (TCG) has proposed several specifica-
tions to implement TC functionalities by extensions to com-
mon computing platforms, particularly the underlying hard-
ware with a Trusted Platform Module (TPM).

However, actual TPMs are mostly available for worksta-
tions and servers nowadays and rather for specific domain
applications and not primarily for embedded systems. Fur-
ther, the TPM specifications are becoming monolithic and
more complex while the applications demand a scalable and
flexible usage of TPM functionalities.

In this paper we propose a reconfigurable (hardware) ar-
chitecture with TC functionalities where we focus on TPMs
as proposed by the TCG specifically designed for embed-
ded platforms. Our approach allows for (i) an efficient and
scalable design and update of TPM functionalities, in par-
ticular for hardware-based crypto engines and accelerators,
(ii) establishing a minimal trusted computing base in hard-
ware, (iii) including the TPM as well as its functionalities
into the chain of trust that enables to bind sensitive data to
the underlying reconfigurable hardware, and (iv) designing
a manufacturer independent TPM. We discuss possible im-
plementations based on current FPGAs and point out the
associated challenges, in particular with respect to protec-
tion of the internal TPM state since it must not be subject
to manipulation, replay, and cloning.

Categories and Subject Descriptors: B.7.1 [Integrated
Circuits]: Types and Design Styles; C.3 [Special-Purpose
and Application-Based Systems]; E.3 [Data Encryption]

General Terms: Design, Measurement, Security.

Keywords: Field Programmable Gate Array (FPGA),
Trusted Computing, Trusted Platform Module (TPM).

Our special thanks go to Jean-Pierre Seifert, Berk Sunar,
Russell Tessier, and Pim Tuyls.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’07, November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-888-6/07/0011 ...$5.00.

1. INTRODUCTION
Trusted Computing (TC) is a promising technology to-

wards building trustworthy computing platforms. A recent
initiative to implement TC by extending common comput-
ing platforms with hardware and software components is due
to the Trusted Computing Group (TCG), a consortium of
IT enterprises [24]. The TCG specified the Trusted Plat-
form Module (TPM) which provides a small set of crypto-
graphic and security functions, and is assumed to be the
trust anchor in a computing platform. Currently, TPMs are
implemented as dedicated crypto chip mounted on the main
board of computing devices, and many vendors already ship
their platforms equipped with TPM chips. The functionali-
ties provided by the TPM allow to securely bind (sensitive)
data to a specific platform meaning that the data is only
accessible when the underlying platform has the valid and
desired configuration.

However, there are several issues to deal with: first, actual
TPM chips are currently mainly available for workstations
and servers and rather for specific domain applications, in
particular barely not for embedded systems.1 Second, TPM
specifications are continuously growing in size and complex-
ity, and there is still no published analysis on the minimal
TPM functionalities that are practically needed. In addi-
tion to this, TPM users have to completely trust implemen-
tations of TPM manufacturers, e.g., regarding the compli-
ance to the TCG specification. This also demands the user
to trust the TPM implementation that no malicious func-
tionalities have been integrated (like trapdoors or Trojans).
Finally, the TCG adversary model considers software at-
tacks only, but manipulations on the underlying hardware
can circumvent any whatsoever sophisticated software secu-
rity measures. Currently, TPM chips are connected to the
I/O system with an unprotected interface that can be eaves-
dropped and manipulated easily [16].

In this paper, we address most of these issues by propos-
ing a reconfigurable architecture in hardware that allows
a scalable and flexible usage of trusted computing func-
tionalities. Our implementation proposal is based on Field
programmable Gate Arrays (FPGA). FPGAs are reconfig-
urable hardware devices offering a flexible solution for inte-
grated hardware architectures. Their size and capabilities
have greatly evolved during the last years and have made

1At least there exist proposals from Brizek et al. [6] and
the TCG [24] for a tailored TPM to support also mobile
devices and further approaches [3] to implement TPM hard-
ware functionality into isolated software sandboxes (which
in turn would require a fully trustworthy CPU).

them competitive to static ASIC chips. Particularly, re-
cent FPGAs provide a sufficient gate complexity to create
complete (Configurable) System on a Chip (CSoC) environ-
ments since microprocessor soft cores, crypto accelerators
and high-throughput I/O components can be included in
a single FPGA design. These flexible FPGA applications
are synthesized into bit streams and stored in an external
PROM or Flash memory. On power-up of an SRAM-based
FPGA2, the bit stream is loaded into the device since the
loaded hardware configuration is lost after system shutdown.

To our knowledge, there has been no proposal for building
TC capabilities (e.g., TPM functionalities) in reconfigurable
hardware architectures. Our approach allows, amongst
other things, to bind a reconfigurable application to the un-
derlying TPM and even to bind any higher layer software to
the whole reconfigurable architecture. Based on the asym-
metric means of an TCG-conform TPM, this can be used as
an effective and flexible protection of Intellectual Property
(IP) to provide device-specific application software.

We believe that FPGA devices can provide a promising
basis for a variety of TC applications in embedded system
environments. For enabling TC functionality on these de-
vices, todays FPGA architectures must be extended and en-
hanced but the technologies for the required modifications
are already available. Please note that we do not primar-
ily focus on the integration of large microprocessors (µP)
like commercial Intel Core 2 Duo or AMD Opteron into an
FPGA. In fact, our approach assumes embedded applica-
tions running on small µP s like ARM known from mobile
phones and PDAs.

Contribution. In this paper we propose solutions to extend
reconfigurable hardware architectures with Trusted Com-
puting functionalities, e.g., for use in embedded systems.
In particular, our architecture allows to include the TPM
implementation itself into the so-called chain of trust. Al-
though we aim at solutions compliant to the TCG proposed
TPM specification, our architecture can be deployed inde-
pendently from TCG approach for future developments of
TC technology. Besides a vendor-independent and flexible
integration of a TPM in embedded systems, our approach
provides the advantage to reduce of the trusted computing
base to the bare minimum according to the application’s
needs. This includes specific functionalities to allow for ef-
fective protection scenarios with hardware and software IP
(on FPGAs).

Outline. In the subsequent Section 3 we introduce the main
aspects of the Trusted Computing technology as proposed
by the TCG and its weaknesses. Section 4 presents our
idea and design for trusted reconfigurable hardware archi-
tectures providing TC capabilities, including the resulting
advantages. Finally, Section 5 introduces implementation
aspects and challenges to be dealt with, while Section 2 pro-
vides related work.

2. RELATED WORK
In [15] the authors already identified various challenges

with regard to TPM maintenance in case of hardware or
software updates. However, the approach does not consider
FPGA-based TPMs just as [5] where the authors present a
TPM chip with an integrated CRTM. However, it remains

2The choice is due to the more advanced technology de-
ployed for SRAM-based FPGA.

open how they manage it to let the platform initialization
begin at the CRTM-enabled TPM (unlike hitherto platform
initializations starting at the BIOS or CPU), the presented
solution is still vulnerable to attacks on the communication
link between TPM and the system. Simpson and Schau-
mont [23] provide an IP protection scheme for FPGAs where
hardware and software components authenticate each other
based on a Physically Unclonable Function (PUF). While
[23] considers PUF as blackbox, Guajardo et al. [12] give
an implementation for the PUF and also extend the FPGA-
based IP protection protocol. However, both proposals re-
quire the availability of an external Trusted Party as well as
the integration of a static PUF in the FPGA. This signifi-
cantly cuts the flexibility with respect to what we are able to
provide with a TC-based solution. Drimer [10] proposes an
FPGA bit stream authentication mechanism based on two
parallel AES engines. However, his approach does not pro-
vide any further functionality except AES-based bit stream
decryption and authentication. Zambreno et al. [26] provide
a further proposal for a software protection system using re-
configurable hardware but the protection of IP contained in
bit streams is still an active field of research (see, e.g., [18]).

However, to our knowledge, a holistic approach to transfer
the extensive capabilities of Trusted Computing systems to
reconfigurable hardware has not been published yet.

3. TCG BASED TRUSTED COMPUTING
This section gives a brief review of the main aspects of

Trusted Computing technology as proposed by the TCG [24].
The main TCG specifications are: a component provid-

ing cryptographic functions called Trusted Platform Module
(TPM), a (immutable) part of BIOS (Basic I/O System)
called the Core Root of Trust for Measurement (CRTM),
and the Trusted Software Stack (TSS) which is the software
interface to provide TC functionalities to the operating sys-
tem. Many vendors already ship their computing devices
with a TPM on the main board and TPM support is also
already integrated into commercial operating systems, e.g.,
to enable hard disk encryption [19], or to measure platform
configuration [21]. The TCG issues only functional specifi-
cations while implementations are left to vendors.

3.1 Trusted Platform Module (TPM)
Currently, the TPM is a dedicated hardware chip3 sim-

ilar to a smart-card that is assumed to be securely bound
to the computing device. According to [24], a TPM ver-
sion 1.2 provides the following features: A hardware-based
random number generator (RNG), a cryptographic engine
for encryption and signing (RSA) as well as a cryptographic
hash function (SHA-1, HMAC), read-only memory (ROM)
for firmware and certificates, volatile memory (RAM), non-
volatile memory (EEPROM) for internal keys, monotonic
counter values and authorization secrets, and optionally,
sensors for tampering detection.

3.2 Weaknesses of TPM Implementations
The main hardware-based components CRTM and TPM

are assumed to be trusted by all involved parties. According
to the TCG specification protection for these components
against software attacks are required. However, computing

3TPM chips are already available, e.g., from Atmel, Broad-
com, Infineon, Sinosun, STMicroelectronics, and Winbond.

devices are deployed in a potentially hostile environment
where an adversary has full access to the underlying hard-
ware. Thus, certain hardware attacks may undermine the
security of the TCG approach. As mentioned before, some
TPM manufacturers have already started a third party cer-
tification of their implementation with respect to security
standards (Common Criteria [8]) to assure a certain level
of tamper-resistance (as TPM technology stems from the
smart-card technology).

Unprotected Communication Link. Currently, in most
TCG-enabled platforms communication channels (buses) be-
tween TPM, RAM and microprocessor are unprotected.
Hence, even if internal information (cryptographic keys, cer-
tificates, etc.) within shielded storage of the TPM cannot
be compromised, the communication link can be subject to
attacks [16]. Moreover, it is unlikely that future processors
itself will include required features (key sharing or exchange)
for a establishing a secure channel to the TPM.

Potential Problems with TPM integration. Although
an integration of the TPM functionality into chipsets makes
the manipulation of the Low-Pin Count (LPC) bus between
TPM and microprocessor significantly more difficult and
costly, the integration also introduces new challenges: on
the one hand an external validation and certification of the
TPM functionalities (e.g., required by some governments)
will be much more difficult, and on the other hand, users
may require computing platforms without TPM functionali-
ties which becomes impossible in case of a static integration.

Moreover, standard microprocessors use an external boot
ROM to store their initial boot code as well as the CRTM.
Thus, an attacker could switch ROM modules to inject
malicious boot code and compromise the chain of trust.
Although sophisticated mechanisms can be used to build
highly secure TPMs and CRTM and the TCG approach ex-
plicitly allows an application to distinguish between different
TPM implementations, the vast majority of TPMs will only
provide a limited protection against hardware based attacks,
due to the trade-off between costs and tamper-resistance.
Nevertheless, at least rudimentary tamper precautions and
other countermeasures for memory protection have not been
considered in the design and manufacturing process. Hence,
system designers and developers should be aware of the ad-
versary model and the assumptions underlying the trusted
computing architecture and its instantiation. This also is
valid for FPGA designs.

4. TRUSTED RECONFIGURABLE
HARDWARE ARCHITECTURE

In this section we outline solutions for realizing trusted
computing functionalities in reconfigurable hardware, and
discuss possible implementations where we follow the TCG
approach. However, our architecture can also be used for
other possible developments in TC technology.

4.1 Underlying Model
The main parties involved are FPGA manufacturers, hard-

ware IP developers (e.g., developing the application logic
synthesized to a bit stream), software IP developers who im-
plement software that runs on the loaded bit stream on the
FPGA, system developers who integrate hardware and soft-
ware IP onto an FPGA platform and the user who employs
the device. All parties trust the FPGA hardware manufac-

turer, since there is no publicly known efficient mechanism to
verify an ASIC implementation for correctness or potential
trapdoors. However, IP developers have only limited trust
in systems developers, and users have only limited trust in
IP and system developers. It is obvious that the entity is-
suing the update (usually the TPM designer) needs to be
trustworthy, or the TPM implementation is subject to cer-
tification by some trusted organization.

We assume an adversary who can eavesdrop and mod-
ify all FPGA-external communication lines, eavesdrop and
modify all FPGA-external memories, arbitrarily reconfigure
the FPGA, but cannot eavesdrop or modify FPGA-internal
states. Particularly, we exclude invasive attacks such as
glitch attacks, microprobing attacks or attacks using laser or
Focused Ion Beam (FIB) to gain or modify FPGA internals.
Precautions against other physical attacks such as side chan-
nel attack or non-invasive tampering must be taken when
implementing the TPM. Furthermore, we do not consider
any destructive adversaries which are focusing on denial-of-
service attacks, destroying components or the entire system.

4.2 Basic Idea and Design
The basic idea is to include the hardware configuration

bit stream(s) of the FPGA in the chain of trust. The main
security issue, besides protection of the application logic,
is to protect the TPM against manipulations, replays and
cloning. Hence, appropriate measures are required to se-
curely store and access the sensitive TPM state T .

In the following we denote a hardware configuration bit
stream as BX with X ∈ {TPM ,App} such that BTPM de-
notes a TPM bit stream and BApp an application bit stream.
We further define EX as the encryption of BX using a
symmetric encryption algorithm and a symmetric encryp-
tion key kEnc,X such that EX ← EnckEnc,X

(BX). We define
AX as an authenticator of a bit stream BX with AX ←
AuthkAuth,X

(BX) where AuthkAuth,X
could be for instance a

Message Authentication Code (MAC) based on the key
kAuth,X . We denote the corresponding verification algorithm
of an authenticator AX with VerifykAuth,X(BX , AX). In case
that a bit stream has been encrypted to preserve design con-
fidentiality, BX is replaced by EX . Thus, the corresponding
authenticator AX becomes AX ← AuthkAuth,X

(EX). Accord-
ing to [4], such an Encrypt-then-MAC authenticated encryp-
tion scheme provides the strongest security (with respect
to the two other possible schemes MAC-then-Encrypt and
Encrypt-and-MAC). We finally define CX as an unique rep-
resentative of BX ’s configuration, e.g., a cryptographic hash
value4 which can be based on a block cipher [17].

Figure 1 shows our high-level reconfigurable architecture.
The bit streams BApp ,BTPM of the application and the TPM
core without any state T are stored authenticated (and en-
crypted) in the external (untrusted) memory EM .

The FPGA Control logic allows partial hardware config-
uration5 of the FPGA fabric to load the TPM and the ap-
plication independently using the LOAD and CONFIGURE
interfaces.

4If CTPM is a hash value, it represents the measurement
conform to the TCG approach. However, alternative ap-
proaches may use for CTPM , e.g., a property certificate about
BTPM signed by a trusted third party that is included within
the corresponding authenticator.
5This is a feature already available for some recent FPGA
devices, e.g., available from Xilinx [25].

TPM

FPGA

Control
LOAD

TCG I/O

K
e
y
 S

to
ra

g
e

K
SApplication

BTPM

Bit stream Trust

Engine (BTE)

CONFIGURE

DECRYPT

HW Configuration

Register (HCR)

µP

EMFPGA

AUTH

Reconfigurable Logic

Static Logic

Non-volatile Storage

Communication Interface

ATPM

A
c
c
e
s
s
 C

o
n
tr

o
l

EApp AApp

Figure 1: Architecture of a Trusted FPGA.

The Bit stream Trust Engine (BTE) provides means to de-
crypt and verify the authenticity and integrity of bit streams
using the DECRYPT and AUTH interfaces.6 Furthermore,
the BTE includes a protected and non-volatile key storage
(KS) to store the keys for bit stream decryption and au-
thentication. Finally, the BTE provides a volatile memory
location called Hardware Configuration Registers (HCR) to
store the configuration information of loaded bit streams.
These registers are used later on by the TPM to set up its
internal Platform Configuration Registers (PCR).

In the following we define two stages in our protocol, the
setup and the operational phase.

4.3 Setup Phase
To enable an FPGA with TC functionality, a TPM issuer

designs a TPM and synthesizes it to a (partial) bit stream
BTPM for use on an FPGA. Furthermore, we assume an ap-
plication designer to provide a TC-enabled FPGA applica-
tion delivered as partial bit stream BApp which can interact
with the TPM architecture using a well-defined interface.
Of course, particularly when using an open TPM implemen-
tation, it is possible that both components are developed by
a single party, e.g., by the system developer itself.

1. The system developer verifies the authenticity of BTPM

and BApp , encrypts BApp to EApp and then creates bit
stream authenticators ATPM and AApp using the keys
kAuth,TPM and kAuth,App , respectively.7

2. The TPM bit stream BTPM , its authenticator ATPM ,
the encrypted application bit stream EApp , and its au-
thenticator AApp are stored in the external memory
EM .

3. The system developer writes the appropriate authenti-
cation keys kAuth,TPM and kAuth,App (and the encryption
key kEnc,App) to the key store KS of the BTE.

4.4 Operational Phase
Remember that on each power-up the FPGA needs to

reload its hardware configuration from the external mem-
ory EM . Hence, for loading a TC-enabled application, the
following steps need to be accomplished:
6Except for authentication, recent FPGAs already provide
LOAD and DECRYPT interfaces (cf. Section 5) [2, 25].
7If TPM bit stream BTPM is also provided by the system
integrator itself, he can choose kAuth,TPM = kAuth,App .

1. On device startup the FPGA controller reads the
TPM bit stream BTPM and the corresponding authen-
tication information ATPM from the external mem-
ory EM . BTE verifies the authenticity and integrity
of BTPM based on the authenticator ATPM by using
VerifykAuth,TPM

(BTPM , ATPM).

After successful verification, BTE computes the config-
uration value CTPM of the TPM bit stream and writes
CTPM into the first Hardware Configuration Register
(HCR) before the FPGA’s fabric is finally configured
with BTPM .

2. The TPM requires exclusive access to a non-volatile
memory location to store its sensitive state T = (EK ,
SRK ,TD) where EK denotes an asymmetric key that
uniquely identifies each TPM (Endorsement Key),
SRK an asymmetric key used to encrypt all other keys
created by the TPM (Storage Root Key) and TPM
data TD includes further security-critical non-volatile
data of the TPM. This requires an extension of re-
cent SRAM-FPGA devices with on-chip non-volatile
storage which is discussed in more detail in Section 5.
Furthermore, the access to this storage location is pro-
tected by an Access Control Function (ACF) in the
static logic which provides access to sensitive data only
when a specific bit stream (i.e., the TPM) is loaded.
For full flexibility, the ACF implements an interface
with which a currently configured bit stream can re-
quest a reset (and implicitly, a clear) of the non-volatile
memory to reassign the access to the storage for its own
exclusive use. The access authorization to the memory
for a loaded bit stream X can easily be performed by
BTE by checking its CX stored in the first HCR.

3. After the TPM has been loaded into the fabric, the ap-
plication bit stream EApp and its authenticator AApp

are read from EM , verified and decrypted in the same
way. The BTE stores the configuration value CApp

of the verified application in the second HCR register.
After the application bit stream has been configured in
the fabric, the first call of the application to use the TC
functionality will initialize the TPM as follows: Based
on the content of the HCR (CTPM , CApp), the TPM
initializes its own PCRs: PCR1 ← Hash(PCR0|CTPM)
and PCR2 ← Hash(PCR1|CApp) where Hash(x) de-
notes the internal hash function of the TPM and PCR0

is some constant (root) value. In this way the (unique)
configurations of all bit streams can be included in the
chain of trust.8

After loading the hardware configuration of TPM and ap-
plication into the FPGA, the chain of trust can be extended
by the measurements of other specific system components
like the operating system and high-level application soft-
ware. This allows to bind any higher level application (of
the IP provider) to the underlying FPGA by binding the
application (or its data) using the subset of the PCR reg-
isters that contain the corresponding measurements of the
underlying FPGA.

8This is similar to the initialization of a desktop TPM via
CRTM. However, now the PCR includes the hardware mea-
surement results of the TPM itself.

4.5 TPM Updates
The update of the current TPM1 to another TPM2 on

an FPGA is quite easy when the sensitive state T does not
need to be migrated. The TPM2 needs to be loaded and will
obviously not be able to access the ACF controlled memory
containing T of TPM1 (since TPM2 cannot provide CTPM1).
Hence, TPM2 reassigns the ACF to be able to create and
store its own T . With the reset of the ACF, the previous T
in the non-volatile memory is cleared9 so that no confidential
information of TPM1 will be accessible for TPM2 .

However, for migrating T from TPM1 to TPM2 with-
out loss of T , we propose to extend existing TPM imple-
mentations by an migration function10 Migrate(UA, CTPM2)
where UA is an Update Authenticator and CTPM2 a unique
reference to the corresponding TPM2 . For a TPM up-
date, a system developer (who has set kAuth,TPM for the
corresponding FPGA) generates an update authenticator
UA← SignSKUPD

(CTPM2 , PTPM) with the following param-
eters: SKUPD denotes an update signing key where TPM1

trusts the corresponding update verification key PKUPD ,
e.g., pre-installed in TPM1 . Thus, TPM1 knows a set of
trusted update authorities (the system developer, etc.) who
are allowed to perform the migration of T for use with
TPM2 . PTPM denotes a reference to the class of TPMs
that provides a certain (minimum) set of security proper-
ties. Note, PTPM can also be replaced by individual update
signing keys each representing a single security property.

When the user requests a TPM update (e.g., as a fea-
ture of an application), he invokes the migration function
of TPM1 using the parameters UA and CTPM2 received
from the corresponding system developer (over an untrusted
channel). Then, the migration function Migrate(UA, CTPM2)
performs the following steps:

1. The migration function of TPM1 verifies UA using the
update verification key PKUPD and checks whether
PTPM2 provides the same (minimum) set of security
properties as PTPM1 .

2. After successful verification, the migration function of
TPM1 reassigns the ACF (containing T) for use with
TPM2 . The ACF needs to grant access to TPM2

without erasing the non-volatile memory. More pre-
cisely, the BTE provides a further interface so that
only TPM1 with access to the ACF memory can as-
sociate the memory with CTPM2 . After reassignment
of the ACF memory, only the new TPM2 is able to
access T .

After the migration function has terminated, the applica-
tion (or manually, the user) overwrites TPM1 stored in the
external memory EM with BTPM2 and the corresponding
authenticator ATPM2 . Now, the user restarts the FPGA to
reload the updated TPM and application (cf. Section 4.4).

9To prevent denial-of-service attacks against T , BTE can
additionally implement a mechanism such that TPM1 has
to clear its T before TPM2 is able to reassigns the ACF for
its own T .

10Note, our migration functionality does not replace TCG
mechanisms for migrating internals called TPM_Migration
respectively TPM_Maintenance.

4.6 Discussion and Advantages
Enhancing an FPGA with TC mechanisms in reconfig-

urable logic can provide the following benefits.

Enhancing Chain of Trust. As mentioned in Section 3.1,
recent TPM enabled systems establish the chain of trust
by starting from the CRTM, which is currently part of the
BIOS. For FPGA hosted TPMs, the BTE can begin with
the hardware configuration of the application and even with
the TPM itself. Therefore, the chain of trust can include
the underlying hardware as well as the TPM hardware con-
figuration, i.e., the chain of trust paradigm can be moved to
the hardware level.

Flexible Usage of TPM Functionality. The developer
may also utilize the basic functionality of the TPM in his
application which can make the development of additional
cryptographic units obsolete. This includes the generation
of true random numbers, the asymmetric cryptographic en-
gine as well as protected non-volatile memory. Furthermore,
a flexible FPGA design allows to use only that TPM func-
tionality which is required for the application.

Flexible Update of TPM Functionality. A TPM im-
plemented in reconfigurable logic of an FPGA can easily
be adapted to new requirements or versions. For exam-
ple, if the default hash function turns out to be not se-
cure enough [7], an FPGA hosted TPM could include a self-
modification feature which updates the corresponding hash
function component, in particular no new hardware design is
needed. Moreover, patches fixing potential implementation
errors or changes/updates enhancing interoperability could
be applied quickly and very easily. The current TCG spec-
ification defines the binding/sealing functionality based on
binary hashes and hence any changes to the chain of trust
can render sealed data inaccessible, even when keeping the
same level of security. This is a general limitation of the
TCG solution and holds for our chain of trust model as
well. However, in [15] the authors propose the concept of
property-based sealing that provide a mapping between se-
curity properties provided by a platform configuration and
its binary measurements (hash values) making updates very
efficient, since as long as properties are preserved, changes
during update to binary measurements have no impact on
sealed data. In this context, the authors also propose [15] to
use a new TPM command called TPM_UpdateSeal that al-
lows a TPM to verify a certificate issued (by a trusted third
party) on a new configuration, and hence reseal the data
under the new configuration. Note that extending the TPM
command set by this command can be done very efficiently
in particular in our reconfigurable solution.

Improved Communication Security. The integration
of CPU, ROM, RAM and TPM into a single chip enhances
protection of communication links between these security-
critical components from being intercepted or manipulated.
Having the boot ROM and RAM integrated on the FPGA
chip, makes the injection of malicious boot code or RAM
manipulations more difficult.

Vendor Independence. Platform owners can select which
TPM implementation is operated on their platforms. This
allows even the usage of fully vendor independent open TPM
implementations providing more assurance regarding trap-
doors and Trojans. Moreover, since we can easily implement
a TPM soft core into hardware, a multitude of vendors can
offer a variety of TPM implementations. Thus, users are not

only restricted to a few TPM ASIC manufacturers as today,
they even can implement their own TPM instances11 and
thus do not have to trust any external manufacturer.

5. IMPLEMENTATION ASPECTS
Incorporating TC functionality into FPGAs for enabling

trusted embedded computing platforms requires some mod-
ifications to current FPGA architectures. Hence, we will
only present implementation proposals to demonstrate the
feasibility of TPMs on reconfigurable devices. As a start-
ing point, we take a recent FPGA device with protec-
tion mechanisms as a reference, i.e., we assume an SRAM-
based FPGA that provides symmetric bit stream decryp-
tion, partial hardware configuration and a small amount of
non-volatile (key) storage. Such FPGA architecture imple-
ment the non-volatile key store in different ways, e.g., Al-
tera’s Stratix II devices use an (single-write) anti-fuse tech-
nique [2]. On Virtex II, 4 and 5 FPGAs, Xilinx stores the
key during power-down using rewritable memory buffered
by a battery [25]. The advantage of being able to replace
the key comes at the price of an additional external battery
element, implying a limited lifetime of the system. Other
approaches might use logic with built-in flash memory but
this is only available with a less advanced manufacturing
technology resulting in smaller devices (cf. Actel IGLOO
or ProAsic3 [1]). Instead of using battery-buffered mem-
ory locations for preserving the TPM state T , it is possible
to integrate a non-volatile memory directly on the FPGA
chip [9]. Alternatively, newer FPGA devices like the Xilinx
Spartan 3AN [25] already offer SRAM-based circuits com-
bined with a non-volatile Flash memory layer in the same
package. The Flash memory in those devices allows for stor-
ing up to 11 MBit of user-defined data, perfectly suited for
storing T (with an additional ACF implementation).

To realize the BTE and bit stream authentication of BApp

and BTPM we require minor modifications to the existing
(AES) decryption cores. For integrity verification and au-
thentication of bit streams in the BTE, one option is to use
a Message Authentication Code (MAC) which ideally uses
the same cryptographic engine used for bit stream decryp-
tion (cf. block ciphers usage for MAC [20]).

Table 1: Estimated number of Logical Elements
(LE) and RAM bits for the TPM functionality

TPM Function Reference Design LE RAM

RSA-2048 Core ARSA-128 [11] 900 13k
SHA-1 Core Helion SHA-1 [13] 1000 0

TRNG Fabric TRNG [14] < 50 256
TPM Firmware Internal RAM - 16k
Volatile Memory Internal RAM - 16k

Controller Picoblaze [25] 192 18k

Total (+overhead) - 3000 75k

For all other (reconfigurable) cryptographic components
of the TPM itself, a multitude of proposals for efficient im-
plementation are available in literature. Table 1 shows esti-
mates on a TPM realized in the fabric of an FPGA. Please
note that the implementations have been selected to be area-
optimal and have been converted to a metric based on Logi-

11These own implementations can be certified for TCG com-
pliance by a trustworthy authority.

cal Elements12 (LE) to estimate the resource consumption of
a TPM implemented in the reconfigurable logic of an FPGA.
Translated to a low-cost Xilinx Spartan-3AN XC3S1400AN
with a total system complexity of 25,344 LEs, the TC en-
hancements will take about 3,000 LEs and require about
12% of the device capacity. Hence, we can conclude that a
TPM implementation will obviously be efficient with recent
devices.

6. REFERENCES
[1] Actel Corporation. IGLOO and ProASIC Flash-based

FPGAs. www.actel.com/products/.

[2] Altera. Stratix II and Stratix II GX FPGAs.
www.altera.com/products/devices/.

[3] Alves, T., and Felton, D. TrustZone: Integrated Hardware and
Software Security. In ARM Inc. White Paper (2004).

[4] Bellare, M., and Namprempre, C. Authenticated encryption:
Relations among notions and analysis of the generic
composition paradigm. In ASIACRYPT (2000).

[5] Bo, Z., Huanguo, Z., and Rui, H. A New Approach of TPM
Construction Based on J2810. In WUJNS (2007).

[6] Brizek, J., Khan, M., Seifert, J.-P., and Wheeler, D. A
Platform-level Trust-Architecture for Hand-held Devices. In
CRASH (2005).

[7] Cannière, C. D., and Rechberger, C. Finding SHA-1
characteristics. In ASIACRYPT (2006).

[8] Common Criteria Project. Common Criteria and Common
Evaluation Methodology Version 3.1.
www.commoncriteriaportal.org.

[9] De Vries, A., and Ma, Y. A Logical Approach to NVM
Integration in SOC Design. EDN 2 (2007).

[10] Drimer, S. Authentication of FPGA bitstreams: Why and how.
In International Workshop on Applied Reconfigurable

Computing (2007).

[11] Fry, J., and Langhammer, M. RSA & Public Key Cryptography
in FPGAs. Tech. rep., Altera Corporation, 2005.

[12] Guajardo, J., Kumar, S., Schrijen, G.-J., and Tuyls, P. FPGA
intrinsic PUFs and their use for IP protection. In CHES (2007).

[13] Helion. SHA-1 Cores. www.heliontech.com.

[14] Kohlbrenner, P., and Gaj, K. An embedded true random
number generator for FPGAs. In FPGA (2004).

[15] Kühn, U., Kursawe, K., Lucks, S., Sadeghi, A.-R., and Stüble,
C. Secure data management in trusted computing. In CHES
(2005).

[16] Kursawe, K., Schellekens, D., and Preneel, B. Analyzing
trusted platform communication. In CRASH (2005).

[17] Lai, X., and Massey, J. L. Hash function based on block
ciphers. In EUROCRYPT (1992).

[18] Lilian Bossuet, Guy Gogniat, W. B. Dynamically configurable
Security for SRAM FPGA Bitstreams. International Journal
of Embedded Systems 2, (2006).

[19] Microsoft Corporation. Bitlocker drive encryption: Technical
overview, April 2006. www.microsoft.com/technet/windowsvista/
security/bittech.mspx.

[20] National Institute of Standards and Technology (NIST).
Recommendation for block cipher modes of operation – the
CMAC mode for authentication. NIST Special Publication
SP 800-38B, 2005.

[21] Sailer, R., Zhang, X., Jaeger, T., and van Doorn, L. Design
and Implementation of a TCG-based Integrity Measurement
Architecture. In USENIX Security Symposium (2004).

[22] Samyde, D., Skorobogatov, S., Anderson, R., and Quisquater,
J.-J. On a new way to read data from memory. Proceedings of

IEEE Security in Storage Workshop (2002).

[23] Simpson, E., and Schaumont, P. Offline hardware/software
authentication for reconfigurable platforms. In CHES (2006).

[24] The Trusted Computing Group (TCG).
www.trustedcomputinggroup.org.

[25] Xilinx. Spartan-3 and Virtex FPGAs.
www.xilinx.com/products/silicon_solutions/.

[26] Zambreno, J., Honbo, D., Choudhary, A., Simha, R., and
Narahar, B. High-performance software protection using
reconfigurable architectures. IEEE 94 (2006).

12An LE consists of a single 4-input LUT connected to a
single-bit flip-flop

