
Reconfiguration Technique for Adaptive Embedded
Systems

I. Skliarova, V. Sklyarov

University of Aveiro/IEETA
Department of Electronics, Telecommunications and Informatics

3810-193, Aveiro, Portugal
iouliia@ua.pt, skl@ua.pt

Abstract-This paper is dedicated to the design and
implementation of adaptive embedded systems. Different
synthesis methodologies are presented and discussed. Applying
such methodologies the synthesis of circuits with support for
modifiability and extensibility can be done. The paper
describes: 1) specification of control algorithms for adaptive
embedded systems and formal conversion of the specification
to synthesizable VHDL code; 2) a model that is called a
hierarchical finite state machine, which provides support for
modularity, hierarchy, and recursion; 3) VHDL templates
enabling the circuit to be synthesized in commercial CAD
systems; and 4) the results of experiments.

I. INTRODUCTION

Embedded systems are parts of larger systems and they
are widely used in the manufacturing industry, in consumer
products, in vehicles, in communication systems, in
industrial automation, etc. Since typical embedded systems
are heterogeneous and their specifications may change
continuously we have to provide them with such
characteristics as flexibility and extensibility. For many
practical applications it is desirable to construct reusable
components, such as algorithmic modules for logic control,
etc. Adaptive embedded systems (AES) are capable to
change their computational structure without adding
physical components. In general, this can be achieved with
the aid of reprogrammable devices such as field-
programmable gate arrays (FPGA), which make possible to
alter architectures of implemented circuits either statically
or dynamically. However, in order to efficiently use
capabilities of FPGAs it is necessary to suggests methods
for the design of adaptive systems. AESs are very efficient
for a large number of practical applications, such as network
management, distributed systems, special-purpose co-
processing, etc.

The proposed in this paper reconfiguration technique
enables the designer to construct embedded systems with
modifiable functionality through static and dynamic changes
to the behavior of the advanced control unit. The latter is
built in such a way that permits much more functions to be
provided comparing to traditional finite state machines.

The following methods and models are used:
• Hierarchical specification of control algorithms in the

form of hierarchical graph-schemes (HGS);
• Hierarchical finite state machines (HFSM);
• Support for recursive calls;
• Static and dynamic changes of HFSM functionality;
• Hardware description language templates.

The remainder of this paper is organized in 5 sections.
Section II describes specification methods (HGSs) for
adaptive control algorithms. Section III considers synthesis
of HFSMs from HGS specifications. Section IV suggests
adaptive models of HFSMs. The results of experiments are
analyzed in section V. The conclusion is in section VI.

II. SPECIFICATION OF ADAPTIVE CONTROL ALGORITHMS

It is known [1] that hierarchical (in general) and recursive
(in particular) algorithms can be described in the language
called hierarchical graph-schemes (HGS). A HGS has the
following formal description [1]:
• A HGS is a directed connected graph, which is

composed of rectangular, rhomboidal and triangular
nodes. Each HGS has one entry point which is a
rectangular node marked with Begin and one exit point
which is a rectangular node marked with End.

• The rectangular nodes contain either micro-instructions
from the set Mi={Y1,Y2,...} or macro-instructions from
the set Mo={Z1,Z2,...}, or both. Any micro-instruction,
Yj, includes a subset of micro-operations from the set
Y={y1,...,yN}. A micro-operation is an output signal,
which causes a simple action in the execution unit, such
as loading a register or incrementing a counter. A
macro-instruction incorporates a subset of macro-
operations from the set Z={z1,...,zQ}. Each macro-
operation is described by a lower level HGS.

• Each rhomboidal node contains one element from the
set X, where X={x1,...,xL} is the set of logic conditions.
A logic condition is an input signal, which carries the
result of a test, such as the state of a sensor.

• Each triangular node has one input and N outputs (N>2)
permitting to provide N-directional transitions. It
contains more than one element from the set X making
it possible to activate the proper (only one) output.

• Inputs and outputs of the nodes are connected by
directed lines (arcs) in the same manner as for an
ordinary graph-scheme [2].

The considered specification method makes possible
static and dynamic binding of modules (HGSs) to be
provided. Dynamic binding is implemented through virtual
macro-operations. This overcomes the problem of static
linkage by allowing the control unit to define a macro-
operation during synthesis, and then to redefine it later if
necessary, after the control unit has been implemented. A
macro-operation is called virtual, if it cannot be fixed during

the design. For any virtual element, which is described by
the appropriate HGS, we can determine different
implementations that depend on either an application-
specific static installation of the respective control unit or
dynamic re-configuration of the control in order to improve
some application-dependent parameters. This gives us the
following advantages:
• The ability to reuse previously constructed HGSs. By

investing a little extra effort in the design, we can create
a library of reusable components such as HGSs, which
will facilitate the creation of similar products.
Obviously any component can be designed and tested
independently.

• The flexibility in the control algorithm in terms of
possible trivial re-switching between relatively
independent and simple components such as HGSs.

• The extension of a given control algorithm becomes a
relatively simple matter. Indeed we can easily solve the
problem of extending the behaviour of a HGS by
modifying it.

• Adaptive facilities can be provided through selection of
proper HGSs dependently on external events.

III. SYNTHESIS OF HFSMS FROM HGS SPECIFICATIONS

Advanced control algorithms with the considered above
characteristics can be executed using the model of a HFSM.
It is known [1] that the problem of hierarchical calls can be
efficiently resolved using a stack memory. Two stacks in [3]
(called M_stack and FSM_stack) permit to keep track for
module invocations. The top register of the M_stack
contains the code of the currently executing module. The top
register of the FSM_stack is used as a memory for the
currently executing module, i.e. it supplies states (codes of
states) for any state transition required within the currently
executing module. At the beginning, the top registers of the
both stacks are set to the initial state a0 of the initial module,
which must be activated first according to the given
algorithm. After that the following three allowed types of
state transitions can be executed:
• A transition between states that belong to the same

module. In this case the HFSM operates like an
ordinary finite state machine (FSM).

• A transition to the first state of a next module zn. In this
case the operation push(“the code of the zn”) is applied
to the M_stack and the operation push(“the first state of
the zn”) is applied to the FSM_stack. This transition is
known as hierarchical call.

• A transition from a currently executing module zc to a
module zp from which the zc was activated. In this case
the operation pop is applied to the M_stack (thus, the
top register of the M_stack will contain the code of zp)
and the operation “pop + state transition” is applied to
the FSM_stack (thus, the FSM_stack will be switched to
the code of the state a(call zc), from which the zc was
called, and a transition within the zp will be executed).
Note that it is necessary to avoid a repeated invocation
of the module zc from the state a(call zc) during the
operation “pop + state transition”. It is achieved in [3]

through a special flag called “return flag”. This third
type of transition is known as hierarchical return.

The known approach [1,3] has the following features.
There are two stack memories that keep words of ⎡log2Q⎤
bits for modules and ⎡log2R⎤ bits for states, where Q is the
number of modules and R is the maximum number of states
in a module. States in different modules can be assigned the
same labels and thus the same codes.

Fig. 1 depicts the proposed structure of a HFSM which
provides support for all features of the known model [1,3]
but has just one simplified stack memory.

Figure 1. The proposed structure of a HFSM

There are three basic blocks in Fig. 1: a register; an

FSM_stack; and a circuit that calculates next states for state
transitions and executes the required operations. Thus, we
will combine in the latter circuit a combinational part of
FSM and the datapath for execution of operations. To avoid
undesirable behavior let us synchronize the FSM_stack and
the register using one clock edge (for example, falling edge)
and the remainder block using another clock edge (for
example, rising edge).

Synthesis of a HFSM with the structure in Fig. 1 includes
the following steps:
1) Marking the given HGSs with labels that further will be

considered as the HFSM states;
2) Customizing the proposed hardware description

language (HDL) templates for all the blocks shown in
Fig. 1 (VHDL will be used as HDL);

3) Synthesis of HFSM circuits from the customized
VHDL templates using commercially available
computer-aided design tools, such as ISE of Xilinx [4].

We propose different types of HGS marking that depend
on the desired characteristics of HGSs and the circuits that
are going to be synthesized. These types will be explained
on examples shown in Fig. 2 and Fig. 3.

In the simplest case any called module (HGS) (→z)
cannot alter state transitions of the calling module (z→)
from the state a(→z) where →z is called. It means that all
state transitions from the state a(→z) can be correctly
determined before the module →z is called. Let us consider
an example. The module (HGS) z0 in Fig. 2 calls two other
modules z1 and z2 in the states b1 and b2. We assume that the
HGS z0 has already been marked with the labels
a0,…,a5,b1,b2 and these labels can be seen as HFSM states
(all necessary details will be given later). Hence, in Fig. 2 z0
is a calling module z→; z1 and z2 are called modules →z.

Since state transitions from b1 and b2 in the HGS z0 are
unconditional, they cannot be influenced by the HGSs z1
and z2. Thus, the indicated above condition is satisfied.

 Figure 2. Examples of HGSs

Figure 3. Different types of the HGS z1

For HGS z1 shown in Fig. 3,a the indicated above

condition is also satisfied. Now let us consider HGS z1
shown in Fig. 3,b. Suppose, the value of x4 depends on the
execution of the module z2. In this case, the test of the input
x4 can be done just after the completion of the module z2
and the value of x4 is not known before the execution of the
module z2. Such more complicated case will be considered
at the end of section III. If the value of x4 does not depend
on the execution of the module z2, then our requirements are
also satisfied.

For the HGSs shown in Fig. 2 and Fig. 3,a the marking is
done as follows:
• The label a0 is used for the node Begin and for the node

End of the main HGS (the module z0 in our example);
• All rectangular nodes (except remaining nodes Begin

and End) have to be marked with different labels.
We will use for our example the labels a1,…,a10,b1,…,b4.

At the next step we have to describe all state transitions in

VHDL templates. There are three templates for the three
blocks, depicted in Fig. 1. The register is described similarly
to a conventional FSM:

process(clk,rst) -- clk is clock; rst is reset
begin
 if rst = '1' then Rg <= a0; -- Rg is the register
 elsif falling_edge(clk) then Rg <= N_S; -- N_S is the next state
 end if;
end process;
The FSM_stack is described as follows:
process(clk,rst)
begin
if rst = '1' then stack_ptr <= 0; FSM_stack(stack_ptr)<=(others=>'0');
elsif falling_edge(clk) then
 if inc = '1' then
 if stack_ptr = stack_size-1 then -- error handling
 else stack_ptr <= stack_ptr + 1;

 FSM_stack(stack_ptr) <= New_Return_S;
 end if;
 elsif dec = '1' then stack_ptr <= stack_ptr - unwind;
 else null;
 end if;
end if;
end process;
Here stack_ptr is the stack pointer; the signal inc

increments the stack_ptr and the signal dec decrements the
stack_ptr. The signal unwind permits to execute
hierarchical return through more than one level of HGSs.
Let us consider an example. In Fig. 2 the module z1 is called
in the state b2 and then in Fig. 3, a, z1 calls z2 in the state b4.
When the called module z2 is terminated, the return has to
be done to the module z1 and then to the state from which
the module z1 was called. Thus, the stack_ptr has to be
decreased by 2 (i.e. not by 1 as it is done normally). This is
achieved using the line stack_ptr <= stack_ptr-unwind; in VHDL
code of the FSM_stack and assigning unwind the value 2 in
the state b4. In other words, the value unwind has to be
incremented in the states of modules z1,z2,… (except the
main module z0) that precede the node End and call new
modules. The rules for such incrementing are described in
[5]. The FSM_stack is needed to determine the next state
after the called module (→z) is terminated. For example, in
Fig. 2 and Fig. 3,a z2 is called in the state b1 and b4. After
termination of z2 (that was called in b1) it is necessary to
transit to the state a4 and after termination of z2 (that was
called in b4) it is necessary to transit to the state from which
the module z1 was called. Such state is known just in the
calling module (z→) and it is saved on the FSM_stack when
a new module (→z) is called. As soon as the module (→z) is
terminated, the proper state (let us call it return state or
simply Return_S) is extracted from the FSM_stack. The
number of return states is, as a rule, significantly less than
the total number of states. In our example (Fig. 2 and Fig. 3,
a) the return states are a0, a4 and the states for transitions
after termination of the module z1 (i.e. a0 and a7). Thus,
totally there are just 3 return states (a0, a4, a7) and they
correspond to the rectangular nodes marked with gray color.
Since the FSM_stack is needed just to keep return states, the

size of codes of such states is reduced by the encoder and
then restored by the decoder in Fig. 1. It is done in the
following fragment of VHDL, which permits to reduce the
size of stack registers from 4 to 2 bits:

New_Return_S <= "01" when Return_S = a4 else
 "10" when Return_S = a0 else
 "11" when Return_S = a7 else "00";

Finally, the values of New_Return_state are saved in the
FSM_stack instead of the values of Return_S.

VHDL template for the last block of Fig. 1 is the
following:

process (rst, clk)
begin
if rst = '1' then -- initialization
elsif rising_edge(clk) then
 case RG is
 when a0 => -- transitions and operations for the state a0
 when a1 => -- transitions and operations for the state a1
 -- repeat for all other states a1,…,a10,b1,…,b4
 when others => null;
 end case;
end if;
end process;
Let us consider the full description of transitions and

operations for some states:
when a1 => dec <= '0'; inc <= '0'; Y <= "0001001";
 case X(2 downto 1) is

when "00" => N_S <= a2;
 when "01" => N_S <= a5;
 when "10" => N_S <= a3;
 when "11" => N_S <= a1;
 when others => null;
 end case;
when a2 => dec <= '0'; inc <= '0'; Y <= "0000010"; N_S <= b1;
when b1 => dec <= '0'; inc <= '1'; Y <= "0000000";
 Return_S <= a4; unwind <= 1;
 case X(3 downto 2) is
 when "01" => N_S <= a10;
 when "11" => N_S <= a8;
 when others => N_S <= a9;
 end case;
when a3 => dec <= '0'; inc <= '0'; Y <= "0000100"; N_S <= b2;
when b2 => dec <= '0'; inc <= '1'; Y <= "0000000";
 Return_S <= a0; unwind <= 1;
 if X(5) = '0' then N_S <= b4; else N_S <= a6; end if;
-- …………………………………………..

 when b4 => dec <= '0'; Y <= "0000000"; inc <= '1'; unwind<=2;
 Return_S <= convert(conv_integer(FSM_stack(stack_ptr-1)));
 case X(3 downto 2) is
 when "01" => N_S <= a10;
 when "11" => N_S <= a8;

 when others => N_S <= a9;
 end case;
when a8 => dec <= '1'; inc <= '0'; Y <= "0000001";
 N_S <= convert(conv_integer(FSM_stack(stack_ptr-unwind)));
when a9 => dec <= '0'; inc <= '0'; Y <= "1000010"; N_S <= a10;
when a10 => dec <= '1'; inc <= '0'; Y <= "0010100";
 N_S <= convert(conv_integer(FSM_stack(stack_ptr-unwind)));

Note, that the labels b1,…,b4 can be removed and when it
is necessary to call new modules the proper transitions can
be done from calling module to called module directly. It
permits to reduce: 1) the number of states (from 15 to 11); 2)
the number of clock cycles for executing the HGSs and
respectively the execution time of the implemented
algorithms. In this case the transitions from such states as a2,
a3, a5, a6 and a7 have to be done directly to the necessary
states inside the modules z1 and z2 as follows:

when a2 => dec <= '0'; inc <= '1'; Y <= "0000010"; Return_S <= a4;
 case X(3 downto 2) is
 when "01" => N_S <= a10;
 when "11" => N_S <= a8;
 when others => N_S <= a9;
 end case;
when a3 => dec <= '0'; inc <= '1'; Y <= "0000100"; Return_S <= a0;
 if X(5) = '0' then unwind_i <= 2; unwind_d <= 2; Return_S <= a0;
 case X(3 downto 2) is
 when "01" => N_S <= a10;
 when "11" => N_S <= a8;
 when others => N_S <= a9;
 end case;
 else N_S <= a6; unwind_i <= 1; unwind_d <= 1;
 end if;

 when a5 => -- the same lines as for the state a3
 when a6 => dec <= '0'; inc <= '1'; Y <= "0010000"; Return_S <= a7;
 if X(5) = '0' then
 case X(3 downto 2) is
 when "01" => N_S <= a10;
 when "11" => N_S <= a8;
 when others => N_S <= a9;
 end case;
 else N_S <= a6;
 end if;
when a7 => dec <= '0'; Y <= "0100000"; inc <= '1';
 Return_S <= FSM_stack(stack_ptr-1); unwind_d <= 2;
 case X(3 downto 2) is
 when "01" => N_S <= a10;
 when "11" => N_S <= a8;
 when others => N_S <= a9;
 end case;
Now we can jump through more than one level to call a

new module. For example, transitions from the state a3 have
to be done to the module z1 and if x5=0 to the module z2 (to
the states a8, a9 or a10). That is why instead of one signal
unwind two signals unwind_i (for hierarchical calls) and
unwind_d (for hierarchical returns) have been used. Two
lines of the FSM_stack are changed as follows:

stack_ptr <= stack_ptr + unwind_i;
stack_ptr <= stack_ptr - unwind_d;
Let us consider now the HGSs shown in Fig. 2 and Fig.

3,b, assuming that the value of x4 depends on the execution
of the z2. In this case the rectangular node with z2 in Fig. 3,
b has to be marked with an additional label (e.g. a11).
Transition in the register (see Fig. 1) will never be done to
the state a11 and, thus, we will not increase the number of
cycles for state transitions. The state a11 will only be used as
an indicator for hierarchical returns.

Let us consider a potential problem that can arise when a
new module is called through more than one level. Suppose
z1 is called after the state a3 and x5=0. Thus, z2 will be called
instead of z1 and the transition has to be done to either a8, a9
or a10. Suppose after termination of z2 the condition x4=0.
Thus, the return has to be done to the module z1. In this case
we have a transition through the module z1 and the return to
the module z1. Therefore the proper return state in the
module z1 has to be explicitly indicated. It is achieved by
replacing of the signal Return_S with an array of signals
Return_S(). If a transition is done through a module then
two elements of the Return_S() are assigned: one for the
return state of the calling module (such as z0) and one for
the return state of the transit module (such as z1). If there are
many return states in the transit module than it is better to
allocate the actual state (such as a11) and to avoid transitions
through intermediate modules. We believe that such cases
require additional investigation and they are considered for
future work.

For our example transitions from the states a3 and a5 will
be executed as follows:

when a3 => dec <= '0'; inc <= '1'; Y <= "0000100"; Return_S(0) <= a0;
 if X(5) = '0' then unwind_i <= 2; Return_S(1) <= a6;
 case X(3 downto 2) is
 when "01" => N_S <= a10;
 when "11" => N_S <= a8;
 when others => N_S <= a9;
 end case;
 else N_S <= a8; unwind_i <= 1;
 end if;
The transitions from the states a8 and a10 will be executed

as follows:
when a10 => dec <= '1'; inc <= '0'; Y <= "0010100";
 case FSM_stack(stack_ptr-1) is
 when a11 =>
 if X(4) = '0' then N_S <= a6; unwind_d <= 1;
 else unwind_d <= 2; N_S <= FSM_stack(stack_ptr-2);
 end if;
 when others => N_S <= FSM_stack(stack_ptr-1);
 end case;
The code of FSM_stack has to be slightly modified in

order to store the values of Return_S(0) for the calling
module and the values Return_S(1) for the transit module.

Note that the technique considered above is also
applicable to HFSMs with two stacks (i.e. M_stack and
FSM_stack) considered in [1,3] and it also enables the
number of clock cycles for execution of HGSs to be reduced.

IV. ADAPTIVE HIERARCHICAL FINITE STATE MACHINES

In order to implement adaptive logic control algorithms
using HFSMs, we have to provide the selection of modules
dependently on some external events. This selection can be
provided for both types of HFSMs considered. For the
HFSM with M_stack and FSM_stack the selection can be
done with the aid of block S shown in Fig. 4, which is based
on RAM and can be programmed dynamically. As a result,
we can call different versions of macro-operations from the
same point of an HGS. Indeed, if the module zh∈Z has

several versions, such as zh
v1,zh

v2,... then we can replace one
version zh

vi with another version zh
vj by changing the code of

the module zh
vi written at the address h of the block S, to

the code of the zh
vj written at the same address h. This gives

us the following advantages:
• The ability to reuse previously constructed HGSs and

previously designed HFSMs. By investing a little extra
effort in the design, we can create a library of reusable
components such as HGSs, which will facilitate the
development of similar products. The basic reusable
component is a separate HGS, which can be designed
and tested independently.

• Flexibility in the control algorithm in terms of possible
trivial re-switching between relatively independent and
simple components such as HGSs.

• The extension of a given control algorithm becomes a
relatively simple matter. Indeed, we can easily solve the
problem of extending the behaviour of a HGS through
modifying it.

• Different versions of macro-operations can be activated
from the same point of a HGS.

Figure 4. Adaptive HFSM based on M_stack and FSM_stack

For the HFSM with a single FSM_stack (see Fig. 1) the

block S permits to properly select the first state of a module
(HGS). For example, in order to change the module z2 in the
state b1 (see Fig. 2) to a new module z3, it is necessary to
change transitions from b1 leading to the module z2 to
transitions from b1 leading to the module z3 (see Fig. 5). For
the example in Fig. 5 the VHDL code that describes
transitions from b1 has to be changed as follows:

when b1 => dec <= '0'; inc <= '1';
 Return_S <= a4; unwind <= 1;
 N_S <= a12;

Figure 5. Adaptive HFSM based on a single FSM_stack

Note that to provide advanced adaptive control we have to
be able not only to swap the modules but also to modify
functionality of the modules. Functionality of any module is
described in the block B (see Fig. 5). It is known that this
functionality can be changed statically and dynamically

using RAM-based models [6]. This is achieved either by
swapping pre-allocated areas on a chip in partially
dynamically reconfigurable FPGAs, or by reloading
memory-based cells in statically configured FPGAs using
dual port capabilities. This can be done without introduction
of additional clock cycles (a cascaded reprogrammable FSM
proposed in [6] enables variable multidirectional state
transitions to be realized during one clock cycle). Finally, it
allows not only changing entry points to modules but also
HGSs for modules. As a result, state codes of a new module
can be the same as state codes of the removed modules.
Note, that in many cases the model [6] requires a
combinational part of HFSM and a datapath for execution of
operations to be separated. Now let us summarize the
proposed technique for adaptive HFSMs:
• The implemented algorithms have to be described as a

set of modules (autonomous HGSs).
• The modules (HGSs) can be adapted to new conditions,

which is achieved through a replacement of the existing
modules (HGSs) with new (improved) modules (HGSs)
applying the following methods: 1) modifying the
implemented algorithms and the relevant RAM-based
circuits [6] (reloading RAM blocks); 2) changing the
entry points of the existing modules to entry points of
the new modules in accordance with Fig. 4 and Fig. 5.

V. EXPERIMENTS

The considered technique has been validated for a number
of practical applications. The circuits have been synthesized
in ISE 10.x of Xilinx [4] from specifications in VHDL
(using the proposed templates) and implemented in
commercially available FPGA xc3s500e-4fg320 of Spartan-
3E family from Xilinx [4]. The experiments were done with
the FPGA-based prototyping board NEXYS-2 of Digilent
[7]. The following recursive algorithms have been described
in HGSs, implemented in FPGA and tested: for discovering
the greatest common divisor of integers; for data sorting; for
solving combinatorial search problems (such as the SAT and
matrix covering).

HFSMs considered above were also tested in the FPGA
xc3s500e-4fg320 and the relevant circuits have the
following implementation details:

i. HFSM for HGSs in Fig. 2 and Fig. 3, a with the states
a1,…,a10,b1,…,b4 (with Encoder and Decoder): the
number of FPGA slices - 54; the maximum achievable
clock frequency - 90 MHz;

ii. The same HFSM as for point i above, but without
Encoder and Decoder: the number of FPGA slices - 65;
the maximum achievable clock frequency - 94 MHz;

iii. HFSM for HGSs in Fig. 2 and Fig. 3, a with the states
a1,…,a10 (without Encoder and Decoder): the number of
FPGA slices - 66; the maximum achievable clock
frequency - 83 MHz;

iv. HFSM for HGSs in Fig. 2 and Fig. 3, b (without
Encoder and Decoder): the number of FPGA slices - 67;
the maximum achievable clock frequency - 71 MHz.

An analysis of the results of experiments permits the
following conclusions to be drawn:

• HFSM with one stack (see Fig. 1) requires
approximately 1.2 times less hardware resources than
HFSMs with two stacks.

• The maximum attainable clock frequency of HFSMs
with one and with two stacks is practically the same.

• Options i and ii above give the smallest hardware
resources and the highest clock frequency, but it does
not mean that the relevant HFSM is the fastest. This is
because the HFSM for the options i and ii involves
more clock cycles for execution of HGSs (such as that
are shown in Fig. 2 and 3) than HFSMs for options iii
and iv.

• Using the encoder and the decoder (see Fig.1) permits
the FPGA resources to be reduced in about 1.2 times.
However, the maximum attainable clock frequency is
also slightly reduced.

• There is an opportunity for HFSMs with one stack to
apply known optimization methods that have been
developed for conventional state machines. HFSMs
with two stacks are not so well suited for such
optimization, mainly because states in different
modules can be assigned the same codes.

• HFSMs with one stack also possess disadvantages,
namely that modules become implicit and cannot be
updated and refined easily. Although the HGSs for the
new model are the same and all features are supported,
modularity, hierarchy, and recursion become less clear
at the implementation level.

VI. CONCLUSION

The technique, that allows modular modifiable circuits to
be described, synthesized and implemented in hardware, has
been proposed. It is shown that this technique permits to
construct adaptive embedded systems, which are very useful
for a number of practical applications. The following
models, methods and tools have been discussed: a
hierarchical specification in the form of hierarchical graph-
schemes (HGSs); a hierarchical finite state machine that
enables HGSs to be implemented in hardware; and synthesis
of hardware circuits from HGSs. Applicability of the
considered technique has been validated on examples
implemented and tested in physical FPGA-based circuits.

REFERENCES
[1] V. Sklyarov, “Hierarchical Finite-State Machines and their Use for

Digital Control“, IEEE Transactions on VLSI Systems, vol. 7, no. 2,
1999, pp. 222-228.

[2] S. Baranov, Logic Synthesis for Control Automata. Kluwer Academic
Publishers, 1994.

[3] V. Sklyarov, “FPGA-based implementation of recursive algorithms,”
Microprocessors and Microsystems. Special Issue on FPGAs:
Applications and Designs, vol. 28/5-6, pp. 197–211, 2004.

[4] Available at http://www.xilinx.com.
[5] V. Sklyarov, I. Skliarova, "Recursive and Iterative Algorithms for N-

ary Search Problems", International Federation for Information
Processing, vol. 218, 2nd IFIP Symposium on Professional Practice in
Artificial Intelligence - AISPP'2006, ed. J. Debenham, 19th IFIP
World Computer Congress - WCC'2006, Santiago de Chile, Chile,
August 2006, pp. 81-90.

[6] V. Sklyarov, “Reconfigurable models of finite state machines and
their implementation in FPGA”, Journal of Systems Architecture, vol.
47, pp. 1043-1064, 2002.

[7] Available at: http://www.digilentinc.com.

