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Abstract-This paper is dedicated to the design and 
implementation of adaptive embedded systems. Different 
synthesis methodologies are presented and discussed. Applying 
such methodologies the synthesis of circuits with support for 
modifiability and extensibility can be done. The paper 
describes: 1) specification of control algorithms for adaptive 
embedded systems and formal conversion of the specification 
to synthesizable VHDL code; 2) a model that is called a 
hierarchical finite state machine, which provides support for 
modularity, hierarchy, and recursion; 3) VHDL templates 
enabling the circuit to be synthesized in commercial CAD 
systems; and 4) the results of experiments.  

I. INTRODUCTION 

Embedded systems are parts of larger systems and they 
are widely used in the manufacturing industry, in consumer 
products, in vehicles, in communication systems, in 
industrial automation, etc. Since typical embedded systems 
are heterogeneous and their specifications may change 
continuously we have to provide them with such 
characteristics as flexibility and extensibility. For many 
practical applications it is desirable to construct reusable 
components, such as algorithmic modules for logic control, 
etc. Adaptive embedded systems (AES) are capable to 
change their computational structure without adding 
physical components. In general, this can be achieved with 
the aid of reprogrammable devices such as field-
programmable gate arrays (FPGA), which make possible to 
alter architectures of implemented circuits either statically 
or dynamically. However, in order to efficiently use 
capabilities of FPGAs it is necessary to suggests methods 
for the design of adaptive systems. AESs are very efficient 
for a large number of practical applications, such as network 
management, distributed systems, special-purpose co-
processing, etc. 

The proposed in this paper reconfiguration technique 
enables the designer to construct embedded systems with 
modifiable functionality through static and dynamic changes 
to the behavior of the advanced control unit. The latter is 
built in such a way that permits much more functions to be 
provided comparing to traditional finite state machines. 

The following methods and models are used: 
• Hierarchical specification of control algorithms in the 

form of hierarchical graph-schemes (HGS); 
• Hierarchical finite state machines (HFSM); 
• Support for recursive calls; 
• Static and dynamic changes of HFSM functionality; 
• Hardware description language templates. 

The remainder of this paper is organized in 5 sections. 
Section II describes specification methods (HGSs) for 
adaptive control algorithms. Section III considers synthesis 
of HFSMs from HGS specifications. Section IV suggests 
adaptive models of HFSMs. The results of experiments are 
analyzed in section V.  The conclusion is in section VI. 

II. SPECIFICATION OF ADAPTIVE CONTROL ALGORITHMS 

It is known [1] that hierarchical (in general) and recursive 
(in particular) algorithms can be described in the language 
called hierarchical graph-schemes (HGS). A HGS has the 
following formal description [1]: 
• A HGS is a directed connected graph, which is 

composed of rectangular, rhomboidal and triangular 
nodes. Each HGS has one entry point which is a 
rectangular node marked with Begin and one exit point 
which is a rectangular node marked with End. 

• The rectangular nodes contain either micro-instructions 
from the set Mi={Y1,Y2,...} or macro-instructions from 
the set Mo={Z1,Z2,...}, or both. Any micro-instruction, 
Yj, includes a subset of micro-operations from the set 
Y={y1,...,yN}. A micro-operation is an output signal, 
which causes a simple action in the execution unit, such 
as loading a register or incrementing a counter. A 
macro-instruction incorporates a subset of macro-
operations from the set Z={z1,...,zQ}. Each macro-
operation is described by a lower level HGS. 

• Each rhomboidal node contains one element from the 
set X, where X={x1,...,xL} is the set of logic conditions. 
A logic condition is an input signal, which carries the 
result of a test, such as the state of a sensor. 

• Each triangular node has one input and N outputs (N>2) 
permitting to provide N-directional transitions. It 
contains more than one element from the set X making 
it possible to activate the proper (only one) output.   

• Inputs and outputs of the nodes are connected by 
directed lines (arcs) in the same manner as for an 
ordinary graph-scheme [2]. 

The considered specification method makes possible 
static and dynamic binding of modules (HGSs) to be 
provided. Dynamic binding is implemented through virtual 
macro-operations. This overcomes the problem of static 
linkage by allowing the control unit to define a macro-
operation during synthesis, and then to redefine it later if 
necessary, after the control unit has been implemented. A 
macro-operation is called virtual, if it cannot be fixed during 



the design. For any virtual element, which is described by 
the appropriate HGS, we can determine different 
implementations that depend on either an application-
specific static installation of the respective control unit or 
dynamic re-configuration of the control in order to improve 
some application-dependent parameters. This gives us the 
following advantages: 
• The ability to reuse previously constructed HGSs. By 

investing a little extra effort in the design, we can create 
a library of reusable components such as HGSs, which 
will facilitate the creation of similar products. 
Obviously any component can be designed and tested 
independently. 

• The flexibility in the control algorithm in terms of 
possible trivial re-switching between relatively 
independent and simple components such as HGSs. 

• The extension of a given control algorithm becomes a 
relatively simple matter. Indeed we can easily solve the 
problem of extending the behaviour of a HGS by 
modifying it. 

• Adaptive facilities can be provided through selection of 
proper HGSs dependently on external events. 

III. SYNTHESIS OF HFSMS FROM HGS SPECIFICATIONS 

Advanced control algorithms with the considered above 
characteristics can be executed using the model of a HFSM. 
It is known [1] that the problem of hierarchical calls can be 
efficiently resolved using a stack memory. Two stacks in [3] 
(called M_stack and FSM_stack) permit to keep track for 
module invocations. The top register of the M_stack 
contains the code of the currently executing module. The top 
register of the FSM_stack is used as a memory for the 
currently executing module, i.e. it supplies states (codes of 
states) for any state transition required within the currently 
executing module. At the beginning, the top registers of the 
both stacks are set to the initial state a0 of the initial module, 
which must be activated first according to the given 
algorithm. After that the following three allowed types of 
state transitions can be executed: 
• A transition between states that belong to the same 

module. In this case the HFSM operates like an 
ordinary finite state machine (FSM). 

• A transition to the first state of a next module zn. In this 
case the operation push(“the code of the zn”) is applied 
to the M_stack and the operation push(“the first state of 
the zn”) is applied to the FSM_stack. This transition is 
known as hierarchical call. 

• A transition from a currently executing module zc to a 
module zp from which the zc was activated. In this case 
the operation pop is applied to the M_stack (thus, the 
top register of the M_stack will contain the code of zp) 
and the operation “pop + state transition” is applied to 
the FSM_stack (thus, the FSM_stack will be switched to 
the code of the state a(call zc), from which the zc was 
called, and a transition within the zp will be executed). 
Note that it is necessary to avoid a repeated invocation 
of the module zc from the state a(call zc) during the 
operation “pop + state transition”. It is achieved in [3] 

through a special flag called “return flag”. This third 
type of transition is known as hierarchical return.  

The known approach [1,3] has the following features. 
There are two stack memories that keep words of ⎡log2Q⎤ 
bits for modules and ⎡log2R⎤ bits for states, where Q is the 
number of modules and R is the maximum number of states 
in a module. States in different modules can be assigned the 
same labels and thus the same codes. 

Fig. 1 depicts the proposed structure of a HFSM which 
provides support for all features of the known model [1,3] 
but has just one simplified stack memory. 

Figure 1. The proposed structure of a HFSM 
 
There are three basic blocks in Fig. 1: a register; an 

FSM_stack; and a circuit that calculates next states for state 
transitions and executes the required operations. Thus, we 
will combine in the latter circuit a combinational part of 
FSM and the datapath for execution of operations. To avoid 
undesirable behavior let us synchronize the FSM_stack and 
the register using one clock edge (for example, falling edge) 
and the remainder block using another clock edge (for 
example, rising edge). 

Synthesis of a HFSM with the structure in Fig. 1 includes 
the following steps: 
1) Marking the given HGSs with labels that further will be 

considered as the HFSM states; 
2) Customizing the proposed hardware description 

language (HDL) templates for all the blocks shown in 
Fig. 1 (VHDL will be used as HDL);  

3) Synthesis of HFSM circuits from the customized 
VHDL templates using commercially available 
computer-aided design tools, such as ISE of Xilinx [4].  

We propose different types of HGS marking that depend 
on the desired characteristics of HGSs and the circuits that 
are going to be synthesized. These types will be explained 
on examples shown in Fig. 2 and Fig. 3.  

In the simplest case any called module (HGS) (→z) 
cannot alter state transitions of the calling module (z→) 
from the state a(→z) where →z is called. It means that all 
state transitions from the state a(→z) can be correctly 
determined before the module →z is called. Let us consider 
an example. The module (HGS) z0 in Fig. 2 calls two other 
modules z1 and z2 in the states b1 and b2. We assume that the 
HGS z0 has already been marked with the labels 
a0,…,a5,b1,b2 and these labels can be seen as HFSM states 
(all necessary details will be given later). Hence, in Fig. 2 z0 
is a calling module z→; z1 and z2 are called modules →z. 



Since state transitions from b1 and b2 in the HGS z0 are 
unconditional, they cannot be influenced by the HGSs z1 
and z2. Thus, the indicated above condition is satisfied.  

 
 Figure 2. Examples of HGSs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Different types of the HGS z1 
 
For HGS z1 shown in Fig. 3,a the indicated above 

condition is also satisfied. Now let us consider HGS z1 
shown in Fig. 3,b. Suppose, the value of x4 depends on the 
execution of the module z2. In this case, the test of the input 
x4 can be done just after the completion of the module z2 
and the value of x4 is not known before the execution of the 
module z2. Such more complicated case will be considered 
at the end of section III. If the value of x4 does not depend 
on the execution of the module z2, then our requirements are 
also satisfied.  

For the HGSs shown in Fig. 2 and Fig. 3,a the marking is 
done as follows: 
• The label a0 is used for the node Begin and for the node 

End of the main HGS (the module z0 in our example); 
• All rectangular nodes (except remaining nodes Begin 

and End) have to be marked with different labels. 
We will use for our example the labels a1,…,a10,b1,…,b4. 

At the next step we have to describe all state transitions in 

VHDL templates. There are three templates for the three 
blocks, depicted in Fig. 1. The register is described similarly 
to a conventional FSM: 

process(clk,rst)  -- clk is clock; rst is reset 
begin 
     if rst = '1' then  Rg <= a0;                     -- Rg is the register 
     elsif falling_edge(clk) then Rg <= N_S; -- N_S is the next state 
     end if; 
end process; 
The FSM_stack is described as follows: 
process(clk,rst) 
begin 
if rst = '1' then  stack_ptr <= 0; FSM_stack(stack_ptr)<=(others=>'0'); 
elsif falling_edge(clk) then     
     if inc = '1' then   
 if stack_ptr = stack_size-1 then -- error handling 
 else stack_ptr <= stack_ptr + 1; 

         FSM_stack(stack_ptr) <= New_Return_S; 
 end if; 
      elsif dec = '1' then stack_ptr <= stack_ptr - unwind; 
      else    null;  
     end if; 
end if; 
end process; 
Here stack_ptr is the stack pointer; the signal inc 

increments the stack_ptr and the signal dec decrements the 
stack_ptr. The signal unwind permits to execute 
hierarchical return through more than one level of HGSs. 
Let us consider an example. In Fig. 2 the module z1 is called 
in the state b2 and then in Fig. 3, a, z1 calls z2 in the state b4. 
When the called module z2 is terminated, the return has to 
be done to the module z1 and then to the state from which 
the module z1 was called. Thus, the stack_ptr has to be 
decreased by 2 (i.e. not by 1 as it is done normally). This is 
achieved using the line stack_ptr <= stack_ptr-unwind; in VHDL 
code of the FSM_stack and assigning unwind the value 2 in 
the state b4. In other words, the value unwind has to be 
incremented in the states of modules z1,z2,… (except the 
main module z0) that precede the node End and call new 
modules. The rules for such incrementing are described in 
[5]. The FSM_stack is needed to determine the next state 
after the called module (→z) is terminated. For example, in 
Fig. 2 and Fig. 3,a z2 is called in the state b1 and b4. After 
termination of z2 (that was called in b1) it is necessary to 
transit to the state a4 and after termination of z2 (that was 
called in b4) it is necessary to transit to the state from which 
the module z1 was called. Such state is known just in the 
calling module (z→) and it is saved on the FSM_stack when 
a new module (→z) is called. As soon as the module (→z) is 
terminated, the proper state (let us call it return state or 
simply Return_S) is extracted from the FSM_stack. The 
number of return states is, as a rule, significantly less than 
the total number of states. In our example (Fig. 2 and Fig. 3, 
a) the return states are a0, a4 and the states for transitions 
after termination of the module z1 (i.e. a0 and a7). Thus, 
totally there are just 3 return states (a0, a4, a7) and they 
correspond to the rectangular nodes marked with gray color. 
Since the FSM_stack is needed just to keep return states, the 



size of codes of such states is reduced by the encoder and 
then restored by the decoder in Fig. 1. It is done in the 
following fragment of VHDL, which permits to reduce the 
size of stack registers from 4 to 2 bits: 

New_Return_S <= "01" when Return_S = a4 else 
                  "10" when Return_S = a0 else  
  "11" when Return_S = a7 else "00";   

Finally, the values of New_Return_state are saved in the 
FSM_stack instead of the values of Return_S. 

VHDL template for the last block of Fig. 1 is the 
following: 

process (rst, clk) 
begin 
if rst = '1' then -- initialization 
elsif rising_edge(clk) then  
   case RG is 
      when a0 => -- transitions and operations for the state a0 
      when a1 =>  -- transitions and operations for the state a1  
 -- repeat for all other states a1,…,a10,b1,…,b4  
     when others => null; 
   end case;  
end if; 
end process; 
Let us consider the full description of transitions and 

operations for some states: 
when a1 =>  dec <= '0';  inc <= '0'; Y <= "0001001";  
   case X(2 downto 1) is 

when "00" => N_S <= a2; 
 when "01" => N_S <= a5; 
 when "10" => N_S <= a3; 
 when "11" => N_S <= a1; 
 when others => null; 
  end case; 
when a2 => dec <= '0'; inc <= '0'; Y <= "0000010"; N_S <= b1; 
when b1 => dec <= '0'; inc <= '1'; Y <= "0000000"; 
   Return_S <= a4; unwind <= 1; 
   case X(3 downto 2) is 
       when "01" => N_S <= a10; 
 when "11" => N_S <= a8; 
 when others => N_S <= a9; 
   end case; 
when a3 => dec <= '0'; inc <= '0';   Y <= "0000100"; N_S <= b2; 
when b2 => dec <= '0'; inc <= '1';   Y <= "0000000"; 
   Return_S <= a0; unwind <= 1; 
   if X(5) = '0' then N_S <= b4;  else N_S <= a6;  end if; 
--  ………………………………………….. 

   when b4 => dec <= '0'; Y <= "0000000";  inc <= '1'; unwind<=2; 
  Return_S <= convert(conv_integer(FSM_stack(stack_ptr-1)));  
  case X(3 downto 2) is 
     when "01" => N_S <= a10; 
     when "11" => N_S <= a8; 

          when others => N_S <= a9; 
  end case; 
when a8 =>  dec <= '1'; inc <= '0';  Y <= "0000001";  
     N_S <= convert(conv_integer(FSM_stack(stack_ptr-unwind))); 
when a9 =>  dec <= '0'; inc <= '0';  Y <= "1000010"; N_S <= a10; 
when a10 => dec <= '1'; inc <= '0'; Y <= "0010100"; 
     N_S <= convert(conv_integer(FSM_stack(stack_ptr-unwind)));  

Note, that the labels b1,…,b4 can be removed and when it 
is necessary to call new modules the proper transitions can 
be done from calling module to called module directly. It 
permits to reduce: 1) the number of states (from 15 to 11); 2) 
the number of clock cycles for executing the HGSs and 
respectively the execution time of the implemented 
algorithms. In this case the transitions from such states as a2, 
a3, a5, a6 and a7 have to be done directly to the necessary 
states inside the modules z1 and z2 as follows:   

when a2 => dec <= '0'; inc <= '1'; Y <= "0000010"; Return_S <= a4; 
   case X(3 downto 2) is 
       when "01" => N_S <= a10; 
       when "11" => N_S <= a8; 
       when others => N_S <= a9; 
   end case; 
when a3 => dec <= '0'; inc <= '1'; Y <= "0000100"; Return_S <= a0; 
   if X(5) = '0' then unwind_i <= 2; unwind_d <= 2; Return_S <= a0; 
     case X(3 downto 2) is 
        when "01" => N_S <= a10; 
        when "11" => N_S <= a8; 
        when others => N_S <= a9; 
     end case;  
   else N_S <= a6; unwind_i <= 1; unwind_d <= 1; 
   end if;   

     when a5 => -- the same lines as for the state a3 
 when a6 =>  dec <= '0'; inc <= '1'; Y <= "0010000"; Return_S <= a7; 
     if X(5) = '0' then  
        case X(3 downto 2) is 
           when "01" => N_S <= a10; 
           when "11" => N_S <= a8; 
           when others => N_S <= a9; 
        end case;  
     else N_S <= a6;  
     end if; 
when a7 => dec <= '0'; Y <= "0100000";  inc <= '1'; 
     Return_S <= FSM_stack(stack_ptr-1); unwind_d <= 2; 
     case X(3 downto 2) is 
        when "01" => N_S <= a10; 
        when "11" => N_S <= a8; 
        when others => N_S <= a9; 
     end case; 
Now we can jump through more than one level to call a 

new module. For example, transitions from the state a3 have 
to be done to the module z1 and if x5=0 to the module z2 (to 
the states a8, a9 or a10). That is why instead of one signal 
unwind two signals unwind_i (for hierarchical calls) and 
unwind_d (for hierarchical returns) have been used. Two 
lines of the FSM_stack are changed as follows: 

stack_ptr <= stack_ptr + unwind_i; 
stack_ptr <= stack_ptr - unwind_d; 
Let us consider now the HGSs shown in Fig. 2 and Fig. 

3,b, assuming that the value of x4 depends on the execution 
of the z2. In this case the rectangular node with z2 in Fig. 3, 
b has to be marked with an additional label (e.g. a11). 
Transition in the register (see Fig. 1) will never be done to 
the state a11 and, thus, we will not increase the number of 
cycles for state transitions. The state a11 will only be used as 
an indicator for hierarchical returns. 



Let us consider a potential problem that can arise when a 
new module is called through more than one level. Suppose 
z1 is called after the state a3 and x5=0. Thus, z2 will be called 
instead of z1 and the transition has to be done to either a8, a9 
or a10. Suppose after termination of z2 the condition x4=0. 
Thus, the return has to be done to the module z1. In this case 
we have a transition through the module z1 and the return to 
the module z1. Therefore the proper return state in the 
module z1 has to be explicitly indicated. It is achieved by 
replacing of the signal Return_S with an array of signals 
Return_S(). If a transition is done through a module then 
two elements of the Return_S() are assigned: one for the 
return state of the calling module (such as z0) and one for 
the return state of the transit module (such as z1). If there are 
many return states in the transit module than it is better to 
allocate the actual state (such as a11) and to avoid transitions 
through intermediate modules. We believe that such cases 
require additional investigation and they are considered for 
future work.  

For our example transitions from the states a3 and a5 will 
be executed as follows: 

when a3 => dec <= '0'; inc <= '1'; Y <= "0000100"; Return_S(0) <= a0; 
   if X(5) = '0' then unwind_i <= 2; Return_S(1) <= a6; 
      case X(3 downto 2) is 
         when "01" => N_S <= a10;  
         when "11" => N_S <= a8; 
         when others => N_S <= a9; 
     end case;  
   else N_S <= a8; unwind_i <= 1; 
   end if; 
The transitions from the states a8 and a10 will be executed 

as follows: 
when a10 =>  dec <= '1'; inc <= '0'; Y <= "0010100"; 
   case FSM_stack(stack_ptr-1) is 
      when a11  => 
         if X(4) = '0' then N_S <= a6; unwind_d <= 1; 
        else unwind_d <= 2; N_S <= FSM_stack(stack_ptr-2); 
        end if;  
     when others => N_S <= FSM_stack(stack_ptr-1); 
   end case;  
The code of FSM_stack has to be slightly modified in 

order to store the values of Return_S(0) for the calling 
module and the values Return_S(1) for the transit module. 

Note that the technique considered above is also 
applicable to HFSMs with two stacks (i.e. M_stack and 
FSM_stack) considered in [1,3] and it also enables the 
number of clock cycles for execution of HGSs to be reduced. 

IV. ADAPTIVE HIERARCHICAL FINITE STATE MACHINES 

In order to implement adaptive logic control algorithms 
using HFSMs, we have to provide the selection of modules 
dependently on some external events. This selection can be 
provided for both types of HFSMs considered. For the 
HFSM with M_stack and FSM_stack the selection can be 
done with the aid of block S shown in Fig. 4, which is based 
on RAM and can be programmed dynamically. As a result, 
we can call different versions of macro-operations from the 
same point of an HGS. Indeed, if the module zh∈Z has 

several versions, such as zh
v1,zh

v2,... then we can replace one 
version zh

vi with another version zh
vj by changing the code of 

the  module zh
vi written at the address h of the block S, to 

the code of the zh
vj written at the same address h. This gives 

us the following advantages: 
• The ability to reuse previously constructed HGSs and 

previously designed HFSMs. By investing a little extra 
effort in the design, we can create a library of reusable 
components such as HGSs, which will facilitate the 
development of similar products. The basic reusable 
component is a separate HGS, which can be designed 
and tested independently. 

• Flexibility in the control algorithm in terms of possible 
trivial re-switching between relatively independent and 
simple components such as HGSs. 

• The extension of a given control algorithm becomes a 
relatively simple matter. Indeed, we can easily solve the 
problem of extending the behaviour of a HGS through 
modifying it. 

• Different versions of macro-operations can be activated 
from the same point of a HGS. 

 
Figure 4. Adaptive HFSM based on M_stack and FSM_stack 

 
For the HFSM with a single FSM_stack (see Fig. 1) the 

block S permits to properly select the first state of a module 
(HGS). For example, in order to change the module z2 in the 
state b1 (see Fig. 2) to a new module z3, it is necessary to 
change transitions from b1 leading to the module z2 to 
transitions from b1 leading to the module z3 (see Fig. 5). For 
the example in Fig. 5 the VHDL code that describes 
transitions from b1 has to be changed as follows: 

when b1 => dec <= '0'; inc <= '1';  
    Return_S <= a4; unwind <= 1; 
    N_S <= a12; 

 
Figure 5. Adaptive HFSM based on a single FSM_stack 

Note that to provide advanced adaptive control we have to 
be able not only to swap the modules but also to modify 
functionality of the modules. Functionality of any module is 
described in the block B (see Fig. 5). It is known that this 
functionality can be changed statically and dynamically 



using RAM-based models [6]. This is achieved either by 
swapping pre-allocated areas on a chip in partially 
dynamically reconfigurable FPGAs, or by reloading 
memory-based cells in statically configured FPGAs using 
dual port capabilities. This can be done without introduction 
of additional clock cycles (a cascaded reprogrammable FSM 
proposed in [6] enables variable multidirectional state 
transitions to be realized during one clock cycle). Finally, it 
allows not only changing entry points to modules but also 
HGSs for modules. As a result, state codes of a new module 
can be the same as state codes of the removed modules. 
Note, that in many cases the model [6] requires a 
combinational part of HFSM and a datapath for execution of 
operations to be separated. Now let us summarize the 
proposed technique for adaptive HFSMs: 
• The implemented algorithms have to be described as a 

set of modules (autonomous HGSs). 
• The modules (HGSs) can be adapted to new conditions, 

which is achieved through a replacement of the existing 
modules (HGSs) with new (improved) modules (HGSs) 
applying the following methods: 1) modifying the 
implemented algorithms and the relevant RAM-based 
circuits [6] (reloading RAM blocks); 2) changing the 
entry points of the existing modules to entry points of 
the new modules in accordance with Fig. 4 and Fig. 5. 

V.  EXPERIMENTS 

The considered technique has been validated for a number 
of practical applications. The circuits have been synthesized 
in ISE 10.x of Xilinx [4] from specifications in VHDL 
(using the proposed templates) and implemented in 
commercially available FPGA xc3s500e-4fg320 of Spartan-
3E family from Xilinx [4]. The experiments were done with 
the FPGA-based prototyping board NEXYS-2 of Digilent 
[7]. The following recursive algorithms have been described 
in HGSs, implemented in FPGA and tested: for discovering 
the greatest common divisor of integers; for data sorting; for 
solving combinatorial search problems (such as the SAT and 
matrix covering). 

HFSMs considered above were also tested in the FPGA 
xc3s500e-4fg320 and the relevant circuits have the 
following implementation details: 

i. HFSM for HGSs in Fig. 2 and Fig. 3, a with the states 
a1,…,a10,b1,…,b4 (with Encoder and Decoder): the 
number of FPGA slices - 54; the maximum achievable 
clock frequency -  90 MHz; 

ii. The same HFSM as for point i above, but without 
Encoder and Decoder: the number of FPGA slices - 65; 
the maximum achievable clock frequency -  94 MHz; 

iii. HFSM for HGSs in Fig. 2 and Fig. 3, a with the states 
a1,…,a10 (without Encoder and Decoder): the number of 
FPGA slices - 66; the maximum achievable clock 
frequency -  83 MHz; 

iv. HFSM for HGSs in Fig. 2 and Fig. 3, b (without 
Encoder and Decoder): the number of FPGA slices - 67; 
the maximum achievable clock frequency - 71 MHz. 

An analysis of the results of experiments permits the 
following conclusions to be drawn: 

• HFSM with one stack (see Fig. 1) requires 
approximately 1.2 times less hardware resources than 
HFSMs with two stacks.  

• The maximum attainable clock frequency of HFSMs 
with one and with two stacks is practically the same. 

• Options i and ii above give the smallest hardware 
resources and the highest clock frequency, but it does 
not mean that the relevant HFSM is the fastest. This is 
because the HFSM for the options i and ii involves 
more clock cycles for execution of HGSs (such as that 
are shown in Fig. 2 and 3) than HFSMs for options iii 
and iv.  

• Using the encoder and the decoder (see Fig.1) permits 
the FPGA resources to be reduced in about 1.2 times. 
However, the maximum attainable clock frequency is 
also slightly reduced.  

• There is an opportunity for HFSMs with one stack to 
apply known optimization methods that have been 
developed for conventional state machines. HFSMs 
with two stacks are not so well suited for such 
optimization, mainly because states in different 
modules can be assigned the same codes. 

• HFSMs with one stack also possess disadvantages, 
namely that modules become implicit and cannot be 
updated and refined easily. Although the HGSs for the 
new model are the same and all features are supported, 
modularity, hierarchy, and recursion become less clear 
at the implementation level. 

 

VI. CONCLUSION 

The technique, that allows modular modifiable circuits to 
be described, synthesized and implemented in hardware, has 
been proposed. It is shown that this technique permits to 
construct adaptive embedded systems, which are very useful 
for a number of practical applications. The following 
models, methods and tools have been discussed: a 
hierarchical specification in the form of hierarchical graph-
schemes (HGSs); a hierarchical finite state machine that 
enables HGSs to be implemented in hardware; and synthesis 
of hardware circuits from HGSs. Applicability of the 
considered technique has been validated on examples 
implemented and tested in physical FPGA-based circuits.  
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