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Abstract: The Central Italy earthquake sequence nominally began on 24 August 17 

2016 with a M6.1 event on a normal fault that produced devastating effects in the 18 

town of Amatrice and several nearby villages and hamlets. A major international 19 

response was undertaken to record the effects of this disaster, including surface 20 

faulting, ground motions, landslides, and damage patterns to structures. This work 21 

targeted the development of high-value case histories useful to future research. 22 

Subsequent events in October 2016 exacerbated the damage in previously affected 23 

areas and caused damage to new areas in the north, particularly the relatively large 24 

town of Norcia. Additional reconnaissance after a M6.5 event on 30 October 2016 25 

documented and mapped several large landslide features and increased damage 26 

states for structures in villages and hamlets throughout the region. This paper 27 

provides an overview of the reconnaissance activities undertaken to document and 28 

map these and other effects, and highlights valuable lessons learned regarding 29 

faulting and ground motions, engineering effects, and emergency response to this 30 

disaster.  31 

 32 

INTRODUCTION 33 

Between August and November 2016, three major earthquake events occurred in Central Italy. 34 

The first event (M6.1) occurred on 24 August 2016, the second (M5.9) on 26 October, and the 35 

third (M6.5) on 30 October 2016. Each event was followed by numerous aftershocks, some 36 

exceeding M5.  37 

As shown in Figure 1, this earthquake sequence occurred in a gap between two earlier 38 

damaging events, the 1997 M6.1 Umbria-Marche earthquake to the north-west and the 2009 39 

M6.1 L’Aquila earthquake to the south-east. This gap had been previously recognized as a 40 

zone of elevated risk (GdL INGV sul terremoto di Amatrice, 2016). These events occurred 41 

along the spine of the Apennine Mountain range on normal faults and had rake angles ranging 42 

from -80 to -100 deg. Each of these events produced substantial damage to local towns and 43 

villages. The 24 August event caused heavy damage to the villages of Arquata del Tronto, 44 

Accumoli, Amatrice, and Pescara del Tronto. In total, there were 299 fatalities, generally from 45 

collapses of unreinforced masonry dwellings. The October events caused significant new 46 

damage in the villages of Visso, Ussita, and Norcia, and almost complete destruction of the 47 

villages of Arquata del Tronto, Accumoli, Amatrice, and Pescara del Tronto. The October 48 



 

events did not produce fatalities, since the area had largely been evacuated and the tourist 49 

season had ended. 50 

 51 

Figure 1. Map of central Italy showing moment tensors of major earthquakes since 1997 and the 52 
intermediate gap areas. Finite fault models for 1997 Umbria-Marche and 2009 L’Aquila are from 53 
Chiaraluce et al. (2004) and Piatanesi and Cirella (2009). Finite fault models for central Italy events are 54 
from Galadini et al. (201x, this issue).  55 

As described in the next section, the post-event reconnaissance involved two teams 56 

working in a coordinated manner. The first and largest team, with whom most of the authors 57 

of this paper were associated, was organized under the auspices of the Geotechnical Extreme 58 

Events Reconnaissance (GEER) association, which is funded by the United States (US) 59 

National Science Foundation (NSF). We conducted major reconnaissance activities in 60 

collaboration with many partnering organizations in Italy and elsewhere, with a focus on the 61 



 

scientific and engineering aspects of the events. The second team was organized by the 62 

Earthquake Engineering Research Institute (EERI), under the leadership of co-author S. 63 

Mazzoni, which worked with several Italian partnering organizations. The EERI team also 64 

documented structural damage, although their principal focus was emergency-response and 65 

medium and long-term recovery and reconstruction efforts, from a societal-resiliency 66 

perspective. 67 

This paper describes the organization and objectives of the reconnaissance work and 68 

highlights some of the most significant findings, which are explained in more detail in other 69 

papers within this issue. Those papers have been prepared to document what we believe to be 70 

the most significant findings of the reconnaissance by the GEER and EERI teams. More 71 

information about the seismological and engineering aspects of the events are available in two 72 

detailed reports (GEER, 2016, 2017).  73 

RECONNAISSANCE ACTIVITIES 74 

The NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) association, with co-75 

funding from the B. John Garrick Institute for the Risk Sciences at the University of California, 76 

Los Angeles and the NSF Industry–University Cooperative Research Centers Program (NSF 77 

IUCRC) Center for Unmanned Aircraft Systems (C-UAS) at Brigham Young University 78 

(BYU), mobilized the US-based team to the area in two main phases: (1) following the 24 79 

August event, from early September to early October 2016, and (2) following the October 80 

events, between the end of November and the beginning of December 2016. The US team 81 

worked in close collaboration with Italian researchers organized under the auspices of the 82 

Italian Geotechnical Society, the Italian Center for Seismic Microzonation and its Applications, 83 

the Consortium of the Laboratories University Network of seismic engineering (ReLUIS), 84 

which is a Center of Competence of Department of Civil Protection, and the DIsaster 85 

RECovery Team of Politecnico di Torino. The objective of our Italy-US GEER team was to 86 

collect and document perishable data. This work included the traditional GEER responsibilities 87 

for documenting geological, seismological, and geotechnical effects, as well as documenting 88 

the performance of buildings, bridges, and other structures.  89 

The Italy-US GEER team was multi-disciplinary, with expertise in geology, seismology, 90 

geomatics, geotechnical engineering, and structural engineering. Our approach was to combine 91 

traditional reconnaissance activities of on-ground recording and mapping of field conditions 92 

http://www.centromicrozonazionesismica.it/en/


 

with advanced imaging and damage detection routines. The three-dimensional (3D) imaging 93 

was performed using UAVs (Unmanned Aerial Vehicles) and has produced three-dimensional 94 

models of landslide features, surface faulting, and structural damage patterns. Links to the 3D 95 

models resulting from this work are available at the GEER and BYU-PRISM web sites (both 96 

last accessed July 2017).  97 

The Earthquake Engineering Research Institute (EERI) undertook additional 98 

reconnaissance of the events, in coordination with the GEER team and in collaboration with 99 

the European Centre for Training and Research in Earthquake Engineering (EUCENTRE) in 100 

Pavia and the ReLuis consortium. They visited the area in October 2016 and again in May 101 

2017. The EERI team focused on emergency response and recovery, in combination with 102 

documenting the effectiveness of public policies related to seismic retrofit. The EERI team 103 

visited numerous short and long-term temporary-housing sites, ranging from short-term 104 

temporary tent camps (Tendopoli) to locations where the ground was being prepared for long-105 

term (5-10 yr) temporary homes, to long-term housing locations where people had been living 106 

for a month, to L’Aquila, where these residences had been in use for over 5 years. 107 

Both the GEER and EERI reconnaissance teams required access to heavily damaged “Red 108 

Zones,” which was facilitated by coordination on the part of EUCENTRE and ReLuis with the 109 

Italian government for the assessment of buildings and infrastructure. In particular, we worked 110 

closely with the Italian Department of Civil Protection to gain (in some cases escorted) access 111 

to these restricted areas. This level of coordination and cooperation was essential to the 112 

reconnaissance effort.  113 

OVERVIEW OF MAJOR FINDINGS 114 

SEISMOLOGY AND ENGINEERING 115 

The initial objective of the GEER team was reconnaissance related to ground failures (surface 116 

fault rupture, landslides, other ground deformations), soil-structure interaction (e.g., retaining 117 

wall failures), and indicators of site response effects (such as localization of damage, often in 118 

a manner consistent with topographic features). However, for both the August and October 119 

events, our mission broadened to include documentation of structural performance for a variety 120 

of reasons including: (1) it supported our mission of evaluating damage patterns; (2) the 121 

structural performance data was indeed perishable, and as the principal reconnaissance team in 122 

many of the visited areas, we felt a duty to document the broader impacts of these events.  123 

http://www.geerassociation.org/index.php/component/geer_reports/?view=geerreports&id=76
http://prismweb.groups.et.byu.net/gallery2/2016%20Central%20Italy%20Earthquakes/


 

Papers in this issue present significant technical findings related to the seismological, 124 

geotechnical, and structural engineering aspects of these events. A few highlights, with 125 

references to the respective manuscripts, are as follows:  126 

Earthquake probabilities: When a large earthquake occurs, there are two schools of thought 127 

regarding its effect on the risk of subsequent large events. One is that stress release lowers 128 

earthquake rates relative to the long-term (Poisson) rate until stresses can again build-up on the 129 

fault. Another is that stress release on one portion of the fault may increase stress on adjoining 130 

portions of the same fault segment or adjacent segments. This would tend to locally increase 131 

earthquake rates (and hence short-term probabilities) relative to the long-term rate. This subject 132 

is of substantial practical significance for regional risk assessment. As shown in Figure 1, the 133 

August 2016 and October 2016 events occupy a gap along the NW striking Apennine chain 134 

between the locations of the 1997 Umbria-Marche and 2009 L’Aquila events. The occurrence 135 

of this cluster of earthquakes suggest that latter (probability increasing) mechanism occurred 136 

and may continue into the future. This important topic is elaborated upon by Galadini et al. 137 

(201x). 138 

Faults as seismic sources: The portions of the Apennines affected by the Central Italy 139 

events is undergoing extension accommodated by numerous normal faults, many of which are 140 

well expressed at the surface. Galadini et al. (201x) show that the mainshock events occurred 141 

on the Mt. Vettore fault and the Amatrice segment of the Laga Mountains fault. Both of these 142 

faults had been recognized prior to the 2016 event sequence, but were not considered in 143 

previous Italian national seismic hazard studies. A review of these and other faults suggests 144 

that while most are expected to rupture separately (not cross between faults in a single event), 145 

the Laga Mountains fault and Mt. Vettore fault are an exception, and in fact did rupture together 146 

in the 24 August 2016 mainshock. Galadini et al. (201x) encourage the use of seismic source 147 

models that utilize fault sources as a principal driver of hazard when those sources are well 148 

characterized, as is the case in the subject region of Italy.   149 

Surface fault rupture: Gori et al. (201x) describe data on surface faulting from this event 150 

sequence and its association with prior geologic mapping. The M6.1 24 August event produced 151 

vertical offsets on the Mt. Vettore-Mt. Bove fault system that ranged from 0-35 cm over a 5 152 

km interval of the fault near its southern end. The M6.5 30 October event ruptured a 15 km-153 

long section of the fault, with vertical offsets typically ranging between 70 and 200 cm. Data 154 



 

compiled for the three mainshocks (24 August, 26 and 30 October) will be a valuable resource 155 

for modeling of surface rupture characteristics of normal fault earthquakes. 156 

Ground motions: Zimmaro et al. (2018) describe the ground motion database developed 157 

from recordings of these events. Those ground motions significantly extend the world-wide 158 

inventory of normal fault recordings in tectonically active regions. Zimmaro et al. (2018) 159 

describe important near-fault aspects of the ground motions and provide maps showing spatial 160 

variations of ground motion from mainshock events. They also demonstrate that the data 161 

exhibits fast anelastic attenuation at large distances (>100 km), which is predicted by Italy-162 

adjusted global models, but not by Italy-specific models. 163 

Landslides: Franke et al. (2018) describe how landslide effects were relatively modest in 164 

the August 2016 events, but were appreciable from the October events. They undertook a 165 

phased reconnaissance that combined traditional (i.e. existing landslide maps and manual 166 

inspection and measurement) and innovative (i.e. satellite imagery, interferometry, and 167 

unmanned aerial vehicles (UAVs) images) approaches. The geometry of the landslide source 168 

zones, as well as depositional areas, are well-documented with 3D models from UAVs. Franke 169 

et al. (2018) show that such models can be used to evaluate landslide ground movements in 170 

complex topographic geometries and boulder runout distances from rock falls. The geology of 171 

these areas is also documented, although subsurface characterization data is currently 172 

unavailable. Two aspects of these case histories of interest to future work include: (1) the 173 

occurrence of landslides in some events but not others (predictive models should be able to 174 

forecast both) and (2) the landslide fall/runout distances.  175 

Masonry structure fragility: Sextos et al. (2018) describe reconnaissance to document 176 

damage and non-damage to building structures in numerous villages and hamlets affected by 177 

the event sequence. Through both fieldwork and interpretation of 3D imagery, they document 178 

structural performance according to a common classification scheme at high resolution – in 179 

many cases a full inventory of performance of every structure within a hamlet or village (or 180 

portions thereof) was developed. Moreover, the damage mapping is multi-epoch, meaning that 181 

the performance of the same structures was recorded following the August 2016 events and the 182 

October 2016 events. Detailed multi-epoch structure-by-structure damage mapping and 183 

statistics are shown for many towns in the epicentral area including Amatrice, Norcia, and 184 

Accumoli. We anticipate that some empirical structural fragility models (e.g., Sabetta et al., 185 



 

1998; Rossetto and Elnashai, 2003; Rota et al., 2008) will be re-evaluated in consideration of 186 

the data from these events.  187 

Site effects: Sextos et al. (2018) associate damage distributions within selected villages and 188 

hamlets with geological and topographic conditions. They describe horizontal-to-vertical 189 

spectral ratios (HVSR) from microtremor measurements and their azimuthal dependence, 190 

which were taken in selected areas with pronounced topographic relief and concentrated 191 

damage. These results reveal apparent site amplification polarized in the direction normal to 192 

the slope, which may have been responsible for some damage concentrations. A representative 193 

detailed example of this approach is presented for the small hamlet of Fiume. These findings 194 

will guide the selection of sites to be investigated with specific numerical ground response 195 

analyses for seismic microzonation.  196 

Retrofit effectiveness: Mazzoni et al. (2018) describe the history of seismic design and 197 

retrofit of building structures in the area, and how similarly sized towns of Amatrice and Norcia 198 

had vastly different levels of preparation for these events and different levels of structural 199 

performance. They describe how the historical center of Amatrice, which largely lacked retrofit 200 

measures, was damaged extensively by the August event. Destruction in Amatrice was almost-201 

complete following the 30 October event. In contrast, the historical center of Norcia, for which 202 

retrofit programs had been implemented, did not experience significant damage from the 203 

August event, and even following stronger shaking in the 30 October event, the damage was 204 

largely limited to one collapsed church and distress to several historical buildings. Mazzoni et 205 

al. (201xa) describe several individual case studies that illustrate the effectiveness of retrofit 206 

measures that were tested across multiple events. 207 

Bridge performance: Durante et al. (201x) describe the characteristics of bridges in the 208 

strongly shaken regions, including traditional masonry construction and relatively modern 209 

reinforced concrete and steel structures. They show that failures were confined to masonry 210 

structures and illustrate the modes of deformation that were observed, typically in abutments.  211 
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