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ABSTRACT

We present an analysis of the orbital motion of the four substellar objects orbiting HR 8799. Our study relies on the
published astrometric history of this system augmented with an epoch obtained with the Project 1640 coronagraph
with an integral field spectrograph (IFS) installed at the Palomar Hale telescope. We first focus on the intricacies
associated with astrometric estimation using the combination of an extreme adaptive optics system (PALM-3000),
a coronagraph, and an IFS. We introduce two new algorithms. The first one retrieves the stellar focal plane position
when the star is occulted by a coronagraphic stop. The second one yields precise astrometric and spectrophotometric
estimates of faint point sources even when they are initially buried in the speckle noise. The second part of our paper
is devoted to studying orbital motion in this system. In order to complement the orbital architectures discussed in
the literature, we determine an ensemble of likely Keplerian orbits for HR 8799bcde, using a Bayesian analysis
with maximally vague priors regarding the overall configuration of the system. Although the astrometric history is
currently too scarce to formally rule out coplanarity, HR 8799d appears to be misaligned with respect to the most
likely planes of HR 8799bce orbits. This misalignment is sufficient to question the strictly coplanar assumption
made by various authors when identifying a Laplace resonance as a potential architecture. Finally, we establish a
high likelihood that HR 8799de have dynamical masses below 13MJup, using a loose dynamical survival argument
based on geometric close encounters. We illustrate how future dynamical analyses will further constrain dynamical
masses in the entire system.

Key words: astrometry – instrumentation: adaptive optics – instrumentation: spectrographs – methods: data
analysis – planetary systems – stars: individual (HR 8799)

1. INTRODUCTION

1.1. Orbital Motion: A Key Element of Direct-imaging Surveys

High-contrast imaging of nearby stars is a powerful tool to
acquire novel insights regarding the architecture and formation
history of planetary systems. Such observations are indeed sen-
sitive to substellar companions and faint planets in a separation
regime (∼>10 AU) difficult to reach using indirect methods
(Oppenheimer & Hinkley 2009; Veras et al. 2009; Crepp &
Johnson 2011). They also enable one to survey in the vicinity
of young and adolescent stars (McBride et al. 2011; Beichman
et al. 2010) and thus provide direct constraints on the early
stages of planetary formation and evolution (Spiegel & Burrows

15 http://www.amnh.org/project1640

2011; Baraffe et al. 2010; Brandt et al. 2014). Over the past
few years a handful of such objects have been directly imaged
(Chauvin et al. 2005; Marois et al. 2008b; Kalas et al. 2008;
Lafrenière et al. 2008; Lagrange et al. 2010; Marois et al. 2010b;
Ireland et al. 2011). Because their near-infrared radiation is read-
ily available for characterization, their discovery has spurred
numerous follow-up photometric (Quanz et al. 2010; Currie
et al. 2011, 2012, 2014; Galicher et al. 2011; Janson et al. 2012;
Esposito et al. 2013; Skemer et al. 2012) and spectroscopic ob-
servations (Janson et al. 2010; Bowler et al. 2010; Barman et al.
2011a, 2011b; Oppenheimer et al. 2013). This wealth of infor-
mation, only available in favorable configurations in the case of
exoplanets detected with indirect methods, has in turn inspired
discussions regarding their underlying bulk physical properties
and atmospheric chemistry (Madhusudhan et al. 2011; Barman
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et al. 2011a, 2011b; Marley et al. 2012). Their unique loci in
the separation-versus-age plane combined with their rich ob-
servable astrophysical content make directly imaged exoplan-
ets very compelling comparative exoplanetology objects. Large
observational programs, relying on new-generation instruments
aimed at identifying more of such faint companions, are cur-
rently underway or about to be started (Beuzit et al. 2008;
Macintosh et al. 2008; Brandt et al. 2014; Hinkley et al.
2011b). The observations underlying this paper were obtained
using one of these instruments: the Project 1640 integral field
spectrograph (IFS) (Hinkley et al. 2011b) installed at the
Palomar Hale Telescope behind the PALM 3000 adaptive optics
system (Dekany et al. 2013).

Using an IFS, one can reveal near-infrared spectroscopic fea-
tures of substellar companions to nearby stars, study their atmo-
sphere, and infer their bulk physical properties (Barman et al.
2011b, 2011b; Oppenheimer et al. 2013; Konopacky et al. 2013;
Hinkley et al. 2013). However, spectroscopic observations can-
not fully address uncertainties in the massluminosity relation-
ship of substellar objects at young ages (<100 Myr) because
imaging does not directly yield observables commensurate with
dynamical masses. They are inferred by folding together esti-
mated age (based on stellar indicators) and mass–luminosity re-
lationships (based on evolutionary models) onto their observed
photometric points. Calibrating this relationship at young ages is
thus of the utmost importance. A key component of the upcom-
ing large surveys will be to obtain, at least for a subset of the dis-
covered objects, model-independent dynamical mass estimates.
For later-type host stars, this can be accomplished by obtaining
three-dimensional orbits that combine direct imaging and radial
velocity observations (Crepp et al. 2012). For low-mass-ratio bi-
naries with small separations in (AU), this is achieved via direct
astrometric monitoring over a full orbital period of the binary
pair Dupuy et al. (2009); Konopacky et al. (2010). However, for
young sources with orbital periods >10 yr and a high mass ratio,
it is very difficult to observe the gravitational influence of the
companion on its host star. One of the most promising avenues
for obtaining dynamical masses for such young benchmark ob-
jects is to use the companion orbital motion to constrain the
second-order dynamical interaction between the various com-
ponents in a multiple system (Fabrycky & Murray-Clay 2010)
or a single planet and a circumstellar disk (Chauvin et al. 2012;
Kalas et al. 2013). In all cases, precise orbital characterization,
and thus precise astrometry, is at the crux of this mass determi-
nation. Because all future direct-imaging campaigns will rely on
an integral field spectrograph as the main survey camera, robust
astrometric estimators with such instruments is of critical inter-
est. The first goal of this paper is to introduce such a tool to the
high-contrast imaging community. In Section 2 we discuss how
to retrieve not only the spectra but also the relative positions of
faint planets with respect to their host star, in the regime where
they are buried under quasi-static speckles.

1.2. Orbital Motion in the HR 8799 Multiple System

HR 8799 is a nearby (d ∼ 30 pc) young star (30 Myr), which
harbors a multiple planetary system, with four planets orbiting at
separations ranging from ∼20 to ∼75 AU (Marois et al. 2008b,
2010b). In a parent paper by Oppenheimer et al. (2013), we
reported near-infrared (1–1.8 µm) spectroscopic observations
(R ∼ 40) of the four planets in this system. Our results high-
lighted how the spectral energy distributions of these objects
are different from known brown dwarfs and established their
spectral diversity, in spite of having formed in the same circum-

stellar environment. These spectra are also sensitive to a variety
of molecular opacities in the atmosphere of each planet and will
thus be the observational foundation of future theoretical work
aimed at understanding their complex atmospheric chemistry.
The HR 8799 system is extremely interesting from a dynamical
mass determination standpoint because of its high multiplicity.
Since its discovery, numerous epochs of this system have been
reported (Hinz et al. 2010; Esposito et al. 2013; Currie et al.
2011, 2012, 2014; Hinkley et al. 2011a; Galicher et al. 2011;
Janson et al. 2010; Lafrenière et al. 2009; Marois et al. 2008b,
2010b; Serabyn et al. 2010; Skemer et al. 2012. These provide
a finely sampled orbital coverage starting in 2008. Moreover,
Soummer et al. (2011a) recently unraveled the three outermost
planets in 1998 HST-NICMOS archival data, yielding a suffi-
ciently large temporal baseline to constrain the eccentricity of
the second innermost planet. Before the detection of HR 8799e,
various authors considered the dynamical architecture of this
system and suggested that the masses of HR 8799bcd might be
lower than estimated in the discovery paper (Marois et al. 2008b)
in order for the system to have remained stable over its lifetime
(Marois et al. 2010b; Fabrycky & Murray-Clay 2010). Esposito
et al. (2013) recently combined the 1998 HST-NICMOS points
with an early estimate for the orbit of HR 8799e (∼3 yr of tem-
poral baseline) and suggested that indeed the dynamical masses
of these planets lie around ∼7MJup.

This paper reports the orbital position of HR 8799bcde at
our P1640 epoch and then establishes the subspace of orbits
allowable given the collection of epochs obtained over the past
few years. We do so by resorting to a Bayesian analysis using
the Markov chain Monte Carlo (MCMC) method. We carry
out this work in a effort to complement recent orbit-fitting
efforts and dynamical investigations that assumed combinations
of coplanarity, mean–motion resonances, or circular orbits.
These assumptions were necessary to constrain this degenerate
problem to a sufficiently small orbital subspace. The priors
in our analysis solely reside in the uncorrelated prior random
distribution of each orbital Keplerian element of each planet. We
present our results in Section 3 and discuss them in the context
of already published work in Section 4. In a subsequent paper,
we will fold these constraints on the orbits of each planet into
an comprehensive dynamical analysis of this system (A. Veicht
et al. 2014, in preparation).

2. DATA REDUCTION AND METHODS FOR
HIGH-CONTRAST ASTROMETRY WITH AN IFS

2.1. Observation and Global Instrument Calibration

HR 8799 was observed with P1640 on 2012 June 14 and
15 under excellent conditions and on 2012 October 5 under
median conditions. The June 14 and 15 observations comprised
a total of 46 and 31 minutes of exposure time, and 165 minutes
of integration time were obtained on 2012 October 5. Details
of the observations and conditions and instrumental setup are
thoroughly described in Oppenheimer et al. (2013), and we
refer readers to that paper for further details. These data took
advantage of the interferometric calibration system (Wallace
et al. 2009; Pueyo et al. 2010; Vasisht et al. 2014). Because
of their high quality and in particular their sensitivity to the
two innermost planets, we only consider the June 1415 data
in the present paper. When seeking to measure the position
of faint companions with respect to their host star, three
main sources of uncertainties arise: uncertainties associated
with intrinsic instrumental calibrations (distortion, plate scale,
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and absolute north orientation), uncertainties associated with
the actual location of the star in the focal plane, and biases
induced by the speckle suppression algorithm that is required
to disentangle the exoplanetary photons from light scattered by
wavefront errors.

We calibrated plate scale and absolute north by observing
the visual binary HD 120476 (grade 2 orbit in the Washington
Double Star catalog16) from the Sixth Catalog of Orbits of
Visual Binary Stars (Hartkopf et al. 2001)17 on the night of
June 14. Intrinsic distortions induced by both the PALM 3000
adaptive optics system and P1640 are by design smaller than
0.′′1 (Bouchez et al. 2008; Hinkley et al. 2011b)over the small
P1640 field of view. Their night-to-night variations have been
measured to be of the same order (Zimmerman et al. 2011). We
could unfortunately not obtain images of a globular cluster in
order to empirically derive a geometric distortion map that is
contemporaneous with our HR 8799 observations (Yelda et al.
2010). We mitigate this lack of an empirical distortion reference
by nodding the position of our images of HD 120476 over the
P1640 detector and deriving a plate scale and P.A. offset at
each location. When folding together these measurements, we
derived a plate scale of 0.′′01948±0.′′00005 and a rotation of the
focal plane array with respect to absolute north of 108.◦92±0.◦5.
Because the host star is hidden by the Apodized Pupil Lyot
Coronagraph (Soummer 2005; Soummer et al. 2011b) and the
four planets have relative brightness, respectively, of 3.2%,
3.3%, 2.9%, and 3.7% of the mean speckle brightness in their
vicinity, the other two uncertainties require particular scrutiny.
Below we detail the methods our team developed to address
potential systematics and quantify robust confidence intervals
for these two sources of uncertainties.

2.2. Location of the Star in the Focal Plane

2.2.1. Relative Alignment and Correction of
Atmospheric Differential Refraction

Our data set is composed images in which the stellar position
varies as a result of atmospheric differential refraction (ADR)
within a multiwavelength cube and instrument tip-tilt jitter
between exposures. Our first step is thus to make sure that this
ensemble of point-spread functions (PSFs) is coaligned:

1. Because of the presence of quasi-static speckles, postpro-
cessing is needed to discriminate planets from speckles in
these coronagraphic images. Precise subpixel image regis-
tration is a necessary condition for the algorithms discussed
in Section 2.3 to yield optimal performances.

2. Measuring orbital motion is the primary goal of the present
paper. Stellar location in the field of view thus ought to be
estimated precisely either in each single slice of each cube
or in coadded broadband images composed of slices that
have first been aligned in the relative sense.

In this paper we follow the latter approach: we first compensate
for ADR and tip-tilt jitter by registering all realizations of the
PSF in the observing sequence to one another. Once relative
alignment is achieved, we combined all slices in all cubes in
order to estimate stellar position (see Section 2.2.2).

16 Note that while there are no reported error bars for the orbital elements of
this source, uncertainties in P.A. and separation of this binary can be derived
based on contemporaneous observations of this source with Robo AO (Riddle
et al., 2014).
17 See http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/wds/orb
for the sixth release of this catalog.

We achieve relative registration using cross-correlations be-
tween images (Crepp et al. 2011; Pueyo et al. 2012). We found
that this method, solely based on the data at hand, did yield
better registration on P1640 data when compared to methods
based on PSF models. We first start by retrieving the scaling
relationship between slices in a cube. Indeed, in an IFS data
cube, the PSF of the quasi-static speckle field stretches as the
wavelength increases, and this feature can be used to reveal the
presence of planets below the noise floor set by wavefront errors
(Sparks & Ford 2002).

However, this scaling relationship prevents us from directly
applying cross-correlation-based image-registration algorithms
between cubes at different wavelengths. Our first step toward
ADR correction thus consists of stretching or squashing all
slices to the same scale, usually corresponding to the reference
wavelength at the spectral channel of highest throughput in
P1640. While this scaling relationship is linear in theory, its
behavior as a function of spectral channel can be altered by
the Earth’s atmosphere or the instrument’s dispersion. It is also
preferable to retrieve it empirically, based on the data at hand,
using a method that is not sensitive to stellar position. This
is achieved by correlating the absolute value of the Fourier
transform of two PSFs obtained at separate wavelengths. Indeed,
the absolute value of the transformed PSF in the u–v plane
captures the information relative to the spatial scale of each
image and does not depend on the relative centering of the
images or stellar location (which is captured by the phase
in the u–v plane). Our procedure then goes as follows. The
template PSF is transformed using a matrix Fourier transform
of scaling unity (equivalent to a fast Fourier transform), and
the PSF for which the relative scaling is sought is transformed
using a matrix Fourier transform of scaling γ (see details in
Soummer et al. (2007)). We then proceed to find the value of γ
that minimizes the cross-correlation of the modulus of the two
transformed images. We find that, while the spatial scaling law
deviates from the theoretical linear behavior over the full P1640
wavelength range (0.98–1.75 µm), it does not vary significantly
from exposure to exposure and only needs to be updated on
a night-to-night basis, or run to run, depending on observing
conditions. Once this scaling law is known, we proceed to either
compress or stretch all of the slices in an observing sequence to
our chosen reference wavelength.

In a second step, now that all slices are at the same scale,
we carry out relative alignment by cross-correlating each slice
to a reference image, chosen as the slice at our reference
wavelength in the first cube of the observing sequence. We
calculate the relative image-alignment offsets of each channel
using the subpixel alignment algorithm described in Guizar-
Sicairos et al. (2008). Finally, we stretch or squash all cubes
to their natural scale in order to obtain a new series of cubes
that have been ADR and tip-tilt corrected. In this set of aligned
cubes (in the relative sense) all slices in all cubes of the observing
sequence are registered so that their stellar location coincides
as well as possible with the stellar location in the reference
slices. This corresponds to an empirical correction of both the
atmospheric dispersion across each given cube and the tip-tilt
jitter between cubes. Note that we compared the result of this
relative alignment process with ADR models and found good
agreement within ±1/10th of a pixel for this particular data
set and a variety of other P1640 observations (Nilson et al., in
preparation).

However, at this stage the absolute stellar location in the focal
plane is unknown. This quantity is critical in order to constrain
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the orbital motion of planets around their parent star, and we next
show how to estimate it using this set of empirically registered
slices.

2.2.2. Absolute Location of the Star

Current direct-imaging observations rely on deep images with
the host star being saturated in order to identify the planets.
The location of the star is estimated using short exposures, com-
bined with the introduction of a neutral-density filter (Marois
et al. 2008b, 2010b; Esposito et al. 2013), or using the location
of the secondary support structures (Soummer et al. 2011a). In
the presence of a coronagraph and a differential tip-tilt closed
loop operating to ensure alignment of the star with the focal-
plane occulting spot (Digby et al. 2006), there is no direct image
of the star in the focal plane. This largely complicates the es-
timation of stellar position. To address this problem, a set of
four fiducial stellar PSFs can be introduced in the outer radii of
coronagraphic images (Marois et al. 2006b; Sivaramakrishnan
& Oppenheimer 2006; Zimmerman et al. 2010), either using a
pupil plane grid associated with the apodizer or by modulating
the surface of the deformable mirror. These fiducial “satellite
spots” then create an astrometric reference frame that can be
used to infer the location of the host star in occulted images.
When using an astrometric grid or DM modulation, we can
take advantage of the broadband radial elongation of “artificial
speckles” to infer the location of the star. The P1640 June ob-
servations of HR 8799 were conducted without the pupil plane
grid and without DM modulation. Here we demonstrate how
the stellar location can still be derived in such images based
solely on the radial elongation of “natural speckles” in IFS data.
Our method can be applied to configurations for which fidu-
cial astrometric spots are present, and we discuss both cases for
the sake of generality. However, it is important to notice that
our method relies on the hypothesis that broadband speckles do
point toward the stellar location. In general this is not true be-
cause ADR, or ADC residuals, does modify the stellar location
across the bandpass, and this hypothesis is not rigorously true.
However, because in the case of IFS data we reconstruct the
broadband image based on narrow band slices that have already
been registered to one another, this effect is largely mitigated,
whether or not the ADR is corrected in the instrument, and the
only residual source of uncertainty corresponds to the stellar
motion due to the Earth atmosphere within the narrow bandpass
of a P1640 slice. This uncertainty is much smaller than the one
arising from the method herein. Thus, for the remainder of the
paper we operate under the hypothesis that broadband speckles
do point toward the stellar location. For nondispersed data, the
chromatic stellar motion ought first to be estimated using ADR,
or ADC residuals, models before the method described below
can be carried out.

We write a coadded broadband image as b(x, y) where
(x, y) denote the focal plane coordinates. Note that the relative
alignment between spectral channels is necessary to create the
broadband cubes (e.g., we need a cube for which we have
established that the star is on the same spaxel, albeit unknown, at
each wavelength). In such an image, both speckles and fiducial
spots appear as radially elongated structures, which all point
toward the stellar position, somewhere behind the focal plane
mask. There are two sources of speckle (either “natural” or
satellite spot) elongation beyond the characteristic scale of the
airy disk: the ADR within each narrowband and low-order
wavefront errors. Precisely estimating the location of a speckle
in a narrow band slice would require modeling both effects

carefully, and we did not pursue this avenue in this paper (this
is a complicated exercise that will receive its own scrutiny is an
upcoming paper). Instead, we chose a global approach based on
speckle elongation across the entire instrument bandpass. Our
Radon approach does not estimate the point coordinates to which
speckles point at a given wavelength; it measures the point
coordinates from which each speckle moves across a full cube
of narrow band slices. Using P1640 data with satellite spots,
we compared the global approach discussed below with more
classical methods based on estimating stellar position based
on spots centroid in each slice, and we found good agreement
within ±1/10th pixel.

Our first step consists of using a wavelet filter to emphasize
the radial structure that is due to speckles or satellite spots
in a broadband image. The cutoff scale of this filter is tuned
to the characteristic scale of the structures of interest in the
broadband image: a few units of angular resolution when using
fiducial spots (whose first and sometimes second airy rings are
significantly brighter than the surrounding speckle floor) or a
single unit of angular resolution when using natural speckles.
This step results in an image in which the radial structures in the
broadband image have been emphasized, bF (x, y), as shown in
the top two panels of Figures 2 and 3.

In order to illustrate how we derive the position of the
star based on the information contained in broadband radial
structures, we consider the case of an image composed of a finite
number of infinitely thin radial lines of length L all converging
onto the point (xC, yC):

bF (x, y) = Π

(
√

x2 + y2

L

)

(1)

×

NLines
∑

k=1

δ ((x − xC) cos αk + (y − yC) sin αk) ,

where αk is the slope angle of each line, Π the top-hat function,
and δ the Dirac distribution. In a coordinate system centered at
(x0, y0), the Radon transform of bF (x, y) is given by

RbF (s, α)[x0, y0] =

∫ ∞

−∞

bF (t sin α + s cos α (2)

+ x0,−t cos α + s sin α + y0) dt.

The Radon transform of the image with the set of radial lines is
therefore

RbF (s, α)[x0, y0] =

NLines
∑

k=1

rk(s, α) (3)

where the Radon transform of a single line is the two-
dimensional image shown in the right panel of Figure 1 and
represents the projection of the object along the s vector as a
function of the angle α. In the case of an image defined as a
set of radial lines described by Equation 1 (i.e., similar to a
field of radially elongated speckles centered around the star),
the Radon transform becomes a superposition of these patterns
for a single line at different phase angles. The Radon transform
is therefore mostly concentrated along a suite of bright spots
corresponding to the angles orthogonal to the radial features in
the image. When the center of the coordinate system underly-
ing the Radon transform corresponds to the location of the star,
i.e., (x0, y0) = (xC, yC), the transform of the ensemble of lines
has all bright spots located along the s = 0 line. Otherwise,
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Figure 1. Illustration of the Radon transform of a simple line object (black line) in the case where the line is aligned with both the coordinate center and the Radon
transform center (x0, y0) = (xC , yC ) (top three panels), and in the case where the line is shifted from the Radon transform center (bottom three panels). The Radon
transform (right panels) represents the projection along the s vector as a function of the angle α. The left figure shows the projection for arbitrary angle α = α1 (red
line S1), which can also be seen in the Radon transform at angle α1. For the projection angle α = α2, the projection is concentrated into a single point in the Radon
transform (or a very small spot if the line has a finite thickness). When the line object is aligned with the center of the Radon transform (see top three panels), the
bright spots in the Radon transform (at α = α2 + kπ , k ∈ Z) are located at s = 0. In the case where the line object is offset from the center of the Radon transform,
the bright spot for projection angle α2 is obtained for s �= 0. This important property is used here to determine the precise location of the star using either the satellite
spots or broadband elongated speckles because the Radon transform becomes a superposition of these patterns.

the Radon transform takes the form of a suite of “point-like”
bright spots distributed along a trigonometric curve (see, e.g.,
the bottom three panels of Figure 1). In practice, the radial lines
are thick and of finite length (elongated speckles or astrometric
spots), but the Radon transform remains very localized in the
bright cores, as shown in Figures 2 and 3.

The fact that the Radon transform maps lines onto points is
exactly the property needed when seeking to use an ensemble of
speckles to estimate the location of the star in a coronagraphic
image. We thus estimate the location of the star by calculating
the Radon transform of a given broadband image over a grid of
purported centers (x0, y0) and find the location that maximizes
the modulus square of the Radon transform over the s = 0
horizontal axis:

(xC, yC) = arg max
(x0,y0)

∫

|RbF (0, α)[x0, y0]|2dα. (4)

The bottom panel of Figure 2 shows the contour map of
this metric in the case of a generic data cube with fiducial
spots. Figure 3 illustrates the particular case useful for this
paper, where the star location is solely derived using “natural
speckles. In this latter case, because of the noisier nature of
the speckles, the constraint on stellar location is less tight
than when fiducial spots are present. Moreover, when only
using “natural speckles,there exist local maxima outside of this
region of interest, as shown in Figure 3, whereas in the case
of fiducial spots, the cost function is monotonically decreasing
in all directions away from its maximum. However, modern
coronagraphs such as P1640 provide absolute tip-tilt telemetry
that is precise enough to provide a good first guess for stellar
location even in the absence of satellite spots.

Figures 2 and 3 show that the Radon transform of broadband
images provides a systematic way to estimate stellar location in
IFS broadband images and constrain the uncertainties associated
with it. Because upcoming direct-imaging instruments will use
an IFS behind a coronagraph for their high-contrast surveys,
this method is relevant to all of these projects. More general
methods for alignment of such instruments can be found in
Savransky et al. (2013), who also emphasized the usefulness
of Radon and Hough transforms for high-contrast imaging
calibrations and science. The Radon method can be used both
to test the instrument (e.g., to calibrate potential noncommon
path errors between the differential tip-tilt channel and the final
focal plane) and to bolster the astrometric precision of scientific
observations. Note that while this method measures the point
coordinates from which each speckle moves across a full cube of
narrow band slices, residual uncertainties in the stellar locations
can arise from speckle elongation within a narrow-band channel
(due to ADR within each slice and low-order wavefront errors).
These effects broaden the thickness of the radial broadband
speckles, which, in turn, transfers some energy from the core
of the Radon transform to its wings. As a consequence, the
peak of the cost function in Figures 2 and 3 is broadened, thus
affecting our uncertainties in stellar position. A comparison of
Figures 2 and 3 shows why the introduction of fiducial spots
is preferable: they constrain the uncertainty associated with
stellar location much more firmly. The uncertainty with fiducial
spots is ±0.1 pixel, but it is only ±0.15 pixels when carried
out with natural speckles. However, the ability to constrain
stellar location with such an accuracy without fiducial spots
demonstrates the advantages of this promising technique. When
folding the P1640 plate scale, our analysis of the HR 8799 data
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Figure 2. Determination of stellar location in Radon space with fiducial spots.
Top: broadband PSF created by adding aligned hyperspectral slices. Second:
broadband PSF propagated through a wavelet filter tuned to the characteristic
scale of the four broadband fiducial lines. Third: Radon transform of the second
panel, in which the sinusoidal traces of each of four broadband fiducial lines
can be identified. When the Radon transform is calculated assuming that the
center of the image coincides with stellar location, then the maxima of each
sinusoidal trace are located on the s = 0 axis. Otherwise the scatter of these
maxima significantly deviates from this axis. Bottom: cost function calculated
by integrating the energy along the s = 0 axis in Radon space as a function
of image centering. The maximum of this quantity lies at the location of
the star, and its spread yields an estimate of the uncertainty associated with
stellar position.
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Figure 3. Determination of stellar location in Radon space with “natural
speckles.” Top: broadband PSF created by adding aligned hyperspectral slices.
Second: broadband PSF propagated through a wavelet filter tuned to the
characteristic scale of the speckle lines. Third: Radon transform of the
second panel, where the sinusoidal traces of the speckles are significantly
less pronounced than in the case of fiducial spots. However, when the Radon
transform is calculated assuming that the center of the image coincides with the
stellar location, then the maxima of most of the sinusoidal trace are still located
on the s = 0 axis. Otherwise the scatter of these maxima significantly deviates
from this axis. Bottom: cost function calculated by integrating the energy along
the s = 0 axis in Radon space as a function of image centering. Because “natural
speckles” are less pronounced than fiducial spots, the uncertainty associated with
stellar position is larger, but it is still well constrained.
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using the “Radon star finder” yields an uncertainty associated
with stellar location of ±0.′′0033.

2.3. Planet Locations

2.3.1. Context

In our data, the four planets have a respective relative bright-
ness of 3.2%, 3.3%, 2.9%, and 3.7% of the mean speckle bright-
ness in their vicinity, so aggressive post-processing algorithms
are required to unravel them in the P1640 data. Contrast limita-
tions due to quasi-static speckles were first discussed in Marois
et al. (2006a), and a solution involving image postprocessing
was initially introduced by Lafrenière et al. (2007), who de-
vised the locally optimized combination of images algorithm
(LOCI). Since then, several variations of this approach have
been discussed in the literature, either to improve the contrast
(Marois et al. 2010a; Currie et al. 2011; Amara & Quanz 2012)
or to minimize biases on astrophysical observables potentially
introduced by the aggressive speckle reduction algorithm. This
second problem has received particular scrutiny because thor-
ough characterization of the substellar objects discovered by
upcoming direct-imaging campaigns will lead to significant ad-
vances in our understanding of exoplanetary systems (Marois
et al. 2010a; Pueyo et al. 2012; Soummer et al. 2011a; Brandt
et al. 2013; Milli et al. 2012). The proposed solutions rely on
two concepts: modifying the least-squares cost function that was
introduced in Lafrenière et al. (2007) in order to circumvent de-
generacies associated with inverting an ill-posed problem, or
calibrating the remaining biases by quantifying the effect of the
speckle suppression on synthetic sources. Three recent papers
(Soummer et al. 2012; Amara & Quanz 2012; Fergus et al.
2013) suggested that using principal component analysis (PCA)
to analyze direct-imaging data sets can circumvent the problem
of inverting a low-rank matrix, and it also provides a framework
to rigorously assess how much the astrophysical information is
affected by the speckle suppression algorithm. In Oppenheimer
et al. (2013) we showed that two of these PCA-based methods
can accurately retrieve the spectrum of the four HR 8799 plan-
ets in the P1640 data. Because that paper was focused on the
interpretation of the spectra, we did not delve into the details
of either method or their effect on astrometric estimates. In this
section, we describe how to conduct both photometric and astro-
metric characterizations of faint point sources using the KLIP
algorithm (Soummer et al. 2012).

2.3.2. Nature of Astrophysical Biases

The algorithms discussed above all rely on using a large
collection of PSFs, obtained by using one or several observation
strategies (angular differential imaging, spectral differential
imaging, reference difference imaging) and subtracting out the
quasi-static artifacts in images by fitting them in the least-
squares sense to enhance the detectability of a faint astrophysical
signal. This process can lead to two types of biases on the
photometric and astrometric estimates of the discovered sources:

1. Fitting bias: where some of the astrophysical source signal
is considered as speckle noise by the fitting algorithm
(most severe when the inverse problem is ill-posed) and is
mistakenly subtracted, even when there is no astrophysical
signal present in the reference PSFs.

2. Cross-talk bias: when an astrophysical signal is actually
present in the reference PSFs, then self-subtraction can
occur, leading to further biases in the information associated
with these companions.

We identified these two sources of confusion in Pueyo
et al. (2012). In Soummer et al. (2012) we discussed how the
fitting bias could be largely mitigated by first transforming the
ensemble of reference PSFs into an orthogonal basis set using a
Karhunen Loève decomposition. However, our argument relied
on the assumption of an ensemble of reference images without
any astrophysical signal. While this is true in the case of the
HST-NICMOS data discussed in Soummer et al. (2012), it
is not generally the case for most observation strategies. As
a consequence, cross-talk bias plays an important role in our
P1640 data. In Pueyo et al. (2012) we showed how modifying
the least-squares cost function and forcing positivity of the fitted
coefficients reduces the effect of this bias. Recently, Marois
et al. (2014) introduced a promising regularization strategy
that is based on modeling astrophysical self-subtraction and
including it as a penalty term in the least-squares speckle fitting
problem. Here we present an alternative approach that builds
upon the decomposition discussed in Soummer et al. (2012). We
illustrate its application in the case of point-source detection in
integral field spectrograph data, but it can be generalized to any
observation strategy and extended objects.

2.3.3. Reference Libraries for Detection and Characterization

IFS data is composed of a series of exposures obtained at
times tp and at sequential wavelengths λk: we denote such a
data set as a collection of images Itp,λk

(x, y), with p ∈ [1, Pexp]
and k ∈ [1,K∆λ], where Pexp is the number of exposures in the
observing sequence and K∆λ the number of spectral channels
of the IFS. We assume here that all images have been centered
(the relative and absolute centering described above have been
carried out). In Crepp et al. (2011) and Pueyo et al. (2012)
we showed how the detectability of a faint astrophysical signal
could be enhanced in an image using the LOCI algorithm with
a PSF library based on rescaled images with the scaling factors
resulting from the relative alignment routine. In this paper we
use the KLIP algorithm (Soummer et al. 2012) in order to detect
point sources in the P1640 data. We set up the least-squares
problem associated with KLIP as follows:

1. The image of interest at λk0
is partitioned in a series of

search zones S centered on a pixel located at (x, y) of
radial extent ∆r and azimuthal extent ∆θ .

2. A reference library associated with each search zone is
created: for each radial location r in the PSF, only a subset
of reference wavelengths Rk0,r,Nδ

is kept in the library. This
subset is chosen such that |γk0,k − 1| > NδWλk0

where Wλk0

is the FWHM of the PSF at λk0
, and Nδ is a parameter

tuned so that it is large enough to avoid self-subtraction
(in practice, Nδ ∼ 1–2 yields detection maps close to the
photon noise associated with the speckles in the raw data).

3. The principal components, ZKL, of the reference library,
Itp,λk

(x, y), are calculated and subtracted from the image at
λ0 according to the procedure described in Soummer et al.
(2012).

Carrying out this approach over a wide range of parameters
(∆r, ∆θ,Nδ,KKLIP) yields deep detection maps, illustrated in
Figure 4, where an improvement in contrast of ∼30 reveals
the four planets orbiting HR 8799 in the P1640 H-band data.
Although very practical for detection, this approach breaks down
one of the fundamental assumptions in Soummer et al. (2012),
the fact that the reference library does not have any astrophysical
signal located in the search zone S. Fortunately, this issue can
be easily circumvented once a point source has been detected

7



The Astrophysical Journal, 803:31 (23pp), 2015 April 10 Pueyo et al.

Figure 4. Integrated H-band image of the HR 8799 system seen with the P1640
IFS. This image was created by median-combining a series of reductions using
the KLIP algorithm over a large set of search-zone geometries, radial exclusion
parameters, and principal-component thresholds. While HR 8799bcd can be
detected over a very wide range of parameters, HR 8799e requires a fine-tuning
of the azimuthal extent of the search region and the radial exclusion parameter.

at the location (xp, yp). One can then pose the problem so that
there is little astrophysical signal from the companion candidate
in the search zone by

1. either choosing characterization zones C with r ∈ [rp −
δrC, rp − δrC + ∆r] and creating a reference library only
with the wavelengths λk ∈ R

+
k0,r,Nδ

such that γk0,k − 1 <
−NδWλk0

2. or choosing characterization zones C with r ∈ [rp + δrC −
∆r, rp + δrC], and creating a reference library only with the

wavelengths λk ∈ R
−
k0,r,Nδ

such that γk0,k − 1 > NδWλk0
.

Figure 5 illustrates these two configurations, for which there is
no signal from the detected faint companion in the reference
library. The variable δrC denotes the radial offset between the
position of the companion and the edge of the characterization
(in the direction of cross talk), and Nδ and δrC are the only
reduction parameters that can yield cross-talk bias. They ought
to be chosen carefully within the bounds Wλk0

< δrC <
NδWλk0

. Aside from having to choose yet another reduction
parameter, which can actually be done relatively easily as
discussed below, the main drawback of this method is that it
significantly reduces the number of references available for
characterization when compared to the detection algorithm.
In the absence of field rotation, we mitigate this effect by
choosing strategy (1) described above for blue wavelengths
λk0

< λK∆λ/2
and strategy (2) for red wavelengths λk0

> λK∆λ/2
.

When using all of the cubes from the observing sequence in
the reference library, we find that in practice this approach
yields levels of speckle suppression comparable to the detection
pipeline, except for the few wavelengths near the middle of the
spectral bandpass. In the case of P1640, speckle suppression in
these few channels is of lesser importance because the middle
of P1640’s spectral bandpass is located in the atmospheric
water band, for which telluric absorption cannot be precisely
calibrated given the moderate resolution of the spectrograph.
For future instruments such as GPI or SPHERE, this will
be mitigated by the ADI observing mode, which will enable

1
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rrS

1

λ
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1

λk0

Point Source

Speckle

ebuc delacseRebuc waR
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Figure 5. Optimal reference PSF libraries for faint companion characterization
when using Integral Field Spectrograph data without angular diversity. Once
a companion has been identified and its rough location is known, our goal
is to focus on small regions surrounding it and build a library that contains
the least amount of the companion’s signal possible. To do so, we create a
“characterization zone” in which the companion is located near the radial inner
(or outer) edge and only use as references rescaled PSFs corresponding to the
longer (or shorter) wavelengths. This limits the number of reference images
with companion flux present to the few PSFs for which the flux at shorter (or
longer) wavelength is still present between the source and the inner (or outer)
edge of the characterization zone. This ensures that for each wavelength we are
using a PSF library with minimal companion wavelength cross talk. We then
vary the parameters ∆r and Nδ in order to minimize this residual cross talk.
Whether we choose the characterization zone so that the companion is near its
inner or outer edge is determined by choosing the configuration that will yield
the largest “companion-free” PSF library.

combining the radial offset of characterization C zones described
above with an azimuthal offset, thus significantly enlarging the
characterization “companion-free” reference library.

2.3.4. Forward Modeling: Principles

Once an adequate PSF library has been set up with a minimal
amount of companion signal in the reference PSF characteriza-
tion zone, the forward-modeling approach suggested in Soum-
mer et al. (2012) can be carried out. For simplicity we use the
notations in Soummer et al. (2012): the target image at wave-
length λ0 and exposure t0 is written as T (x, y) = It0,λk

(x, y),
and the ensemble of references Rq(x, y) = Itp,λk

(x, y) with
λk ∈ Rk0,r,Nδ

, p ∈ [1, Pexp]. The set of principal components

of this library is ZKL
q (x, y). The reduced image is then

F (x, y) = T (x, y) −

Kklip
∑

q=1

〈

T ,ZKL
q

〉

C
ZKL

q (x, y). (5)

We assume a known model S(x, y) of a point source PSF at
wavelength λk0

with a normalized flux. Under the assumption
that the noise in the reduced image F(x, y) is Gaussian and
of zero mean, a least-squares estimator yields unbiased values
for the brightness and location of a point source. In order to
accommodate for the fact that this assumption might not be
true over the entire characterization zone C, we can write this
cost function over a fitting region F ∈ C. We find that for
our HR 8799 P1640 data, a fitting zone that spans the entire
characterization zone yields unbiased single-channel astrometry
and photometry (Figure 6). However, this might not be the case
for other instruments or for fainter sources in P1640 data. In
the general case of distinct fitting and characterization zones,
we solve for the location of the point source (x̃s, ỹs) and its

flux f̃s by minimizing the least forward modeling cost function
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Figure 6. Left: single-wavelength photometric and astrometric biases at 0.′′5. We injected a series of synthetic point sources of various brightness in the 1.3 µm P1640
spectral channel. For this test we did not inject any companion flux in other wavelength slices of the IFS data cube: this represents the ideal of a reference cube that
is 100% companion free. We consider the case of the fitting zone F that overlaps with the characterization zone C. Without forward modeling, the photometry of the
reduced data is underestimated because of self-subtraction: as the number of modes increases, the S/N of the point source increases, but its estimated flux becomes
more and more biased. On the other hand, photometry is preserved in using the forward modeling to take into account this algorithmic flux depletion. Moreover, once
a sufficient number of modes has been taken into account, the forward modeling yields very precise estimates of the synthetic source position in the focal plane. Right:
single-wavelength photometric and astrometric biases at 1′′: same exercise as on the left except that now the synthetic point source is detected with a higher statistical
significance. Note that the spectrophotometric and astrometric biases are further reduced in this case.
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described in Soummer et al. (2012):

(x̃s, ỹs, f̃s) = arg min
(xs ,ys ,fs )

(6)

×

∥

∥

∥

∥

∥

∥

F − fS

⎛

⎝S −

Kklip
∑

q=1

〈

S(· − xS, · − yS), ZKL
q

〉

C
ZKL

q

⎞

⎠

∥

∥

∥

∥

∥

∥

2

F

,

where the · represents the dummy integration variable for the
inner product. Because this is a quadratic cost function, the
point-source coordinates can be estimated using a matched
filter approach, as the location of the maximum of the cross
correlation between the reduced image and the PSF model
propagated though the PCA filter:

(x̃s, ỹs) = arg max
(xs ,ys )

{C(xs ,ys )(F, S,Kklip)} (7)

with

C(xs ,ys )(F, S,Kklip) = 〈F, S(x − xS, y − yS)〉F

−

Kklip
∑

q=1

〈

S(x − xS, y − yS), ZKL
q

〉

C

〈

F,ZKL
q

〉

F
, (8)

where we have indicated the integration variables x and y in the
terms where the explicit search variables xS and yS appear. Once
the true location of the point source (x̃s, ỹs) has been estimated,
its flux is then given by the ratio of the reduced image-model
PSF correlation and the estimate of the flux loss due to the fitting
bias:

fs =
C(x̃s ,ỹs )(F, S,Kklip)

∣

∣

∣

∣S −
∑Kklip

q=1

〈

S(x̃s − xS, ỹs − yS), ZKL
q

〉

C
ZKL

q

∣

∣

∣

∣

2

F

.

(9)

Equations (7)–(9) describe how to take advantage of the KLIP
algorithm to derive the focal plane location and the brightness
of a faint point source hidden under speckles in high-contrast
imaging data. The major conditions for these equations to be
valid (and yield astrophysical estimates that are unbiased) are
that no companion signal is present in the portion of the image
used for characterization, and that the residual noise in the fitting
zone is Gaussian of zero mean. We earlier showed how to build
a PSF library using IFS data, which almost satisfies the former.
The ability to reach Gaussian noise after ADI subtractions was
demonstrated by Marois et al. (2008a); this result remains true
for LOCI- or KLIP-based subtractions and can be achieved
by choosing adequate geometries for characterization zones
and tuning KKLip (e.g., using a thorough parameter search to
minimize residual speckle noise as in Soummer et al. (2011a)).
In the following section, we test the accuracy of the approach
described by Equations (7) to (9) using a synthetic data set
that strictly satisfies this condition. Then, in Section 3 we
illustrate how to practically derive astrophysical observables
and their uncertainties using our HR 8799 data set, for which
the “companion-free PSF library” condition is not strictly true.
In particular we discuss how to mitigate the residual biases that
are introduced in this realistic case.

2.3.5. Forward Modeling: Results

Figure 6 illustrates the result of this approach on a synthetic
companion injected into the P1640 data. The purpose of these

simulations is to assess the accuracy of the forward modeling
under the “companion-free PSF library” assumption, and our
test data are thus built as such (e.g., using a synthetic companion
that is only present in one spectral channel). The findings of this
numerical experiment can be summarized as follows:

1. Photometric bias: In our test cases, forward modeling with
KLIP circumvents the algorithmic flux depletion due to the
fitting companion’s flux with speckles discussed in Pueyo
et al. (2012). It yields photometric estimates with a bias
smaller than 0.02 magnitudes.

2. Photometric uncertainty: For a source with signal-to-noise
ratio (S/N) of ∼3, the photometric uncertainty due to the
algorithm (photometric scatter across the number of modes
KKLIP after forward modeling) is ∼0.05 mag. For sources
with S/N ∼ 20, the photometric uncertainty due to the
algorithm is <0.01 magnitudes. Note that these numbers
correspond to the part of the parameter space for which the
point-source detectability is somewhat independent of the
number of modes used in the PSF subtraction (KKLIP > 40).

3. Astrometric bias: In our test cases, forward modeling with
KLIP yields an astrometric estimate of a bias smaller than
0.′′0005, corresponding to ∼1/40 pixel.

4. Astrometric uncertainty: Once the number of modes is
sufficient, then the astrometric uncertainty due to the
algorithm (astrometric scatter across the number of modes
after forward modeling) is 0.′′001 for sources with S/N ∼ 3
and 0.′′0005 (∼1/40 pixel) for sources with S/N ∼ 20.

Note that these results were obtained when using a fitting
region F that is exactly the size of the characterization zone
C: this choice was driven by the fact that the residual noise in
the characterization zone chosen for our test data was indeed
Gaussian of zero mean. When this is not the case, then one can
either use a subset of the characterization region as the fitting
region or simply change the geometry of C in an attempt to
improve the residual-noise statistics. We tested both approaches
and did not observe any fundamental differences, and we
decided that in practice we would solely use the second approach
in our P1640 pipeline for the sake of simplicity.

Naturally, when using real data, the ideal performances
above will be severely affected when the various assumptions
underlying the simulations in Figure 6 do break down. Namely,
the PSF model used for the forward modeling will not strictly
be equal to the actual companion’s PSF, the residual speckles
after KLIP might not be Gaussian of zero mean, and the PSF
library will not be completely “companion free. In particular, the
absence of field rotation of P1640 results in PSF libraries that are
solely based on wavelength diversity. The P1640 chromatic lever
arm is actually not large enough to ensure that the “companion-
free references” condition is strictly enforced, in spite of our
careful selection of the geometries and PSF libraries described
in Figure 5. We present in Section 3 our methodology to derive
spectrophotometric and astrometric estimates even when these
assumptions are only loosely met and illustrate our methodology
in the case of HR 8799bcde.

3. ASTROMETRY AND ORBITAL MOTION
OF HR 8799BCDE

3.1. Position of Planet in Detector Coordinates

In a recent paper, Soummer et al. (2011a) illustrated us-
ing HST-NICMOS data how overly aggressive PSF subtraction
could substantially bias astrometric estimates. We showed in
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Figure 6 that in the case of a companion-free PSF library and a
reduced image with zero mean Gaussian residual noise, astro-
metric biases were mitigated when using the KLIP algorithm.
In reality, in spite of all of the efforts described above, there is
no guarantee that these assumptions will strictly hold. We thus
resort to exploring the algorithmic parameter space in order
to identify the configurations for which these assumptions are
met as well as possible. Our estimates for spectrophotometry
and astrometry of the faint source correspond to the average of
these observables over the ensemble of “well-behaved” reduc-
tions. Note, however, that this is not the same “blind” parameter
search described in Soummer et al. (2011a) because we have
identified the main assumptions whose validity we are seeking
to test for a given data set. We thus vary

1. the geometry of the characterization zone C in order to test
the residual speckle statistics (e.g., whether or not they are
Gaussian of zero mean). Note that the size of the fitting
region F could also be varied as well, but we find that,
for P1640 data, changing the size of the geometry of the
characterization zone is sufficient.

2. the parameters (Nδ, δrC), in order to test the validity of the
“companion-free” assumption. Note that varying Nδ also
affects the efficiency of the speckle suppression (and thus
the statistics of the residual speckles) because having more
correlated PSFs (e.g., corresponding to a wavelength as
close as possible to science wavelength) generally yields
less noisy postsubtraction residuals.

3. the number of principal components utilized for the subtrac-
tion, KKLIP, which will affect the statistics of the residual
speckles and also provide a very insightful diagnostics tool.

In general, for a given characterization zone geometry and given
(Nδ, δrC), the behavior of spectrophotometry and astrometry as
a function of KKLIP can be divided into three regimes:

1. When KKLIP is small, the estimated companion’s loca-
tion varies both across wavelengths and values of KKLIP,
which means that the PSF subtraction is not aggressive
enough and residual speckles are biasing the astrometric
estimate.

2. When KKLIP is large, then the companion flux substan-
tially changes with KKLIP. This means that some of the
companion’s flux in nearby spectral channels of interest
is actually included in the principal components. This oc-
curs because the PSF library is not completely “companion
free. Although the small contribution of the companion to
the PSF library is not captured by the first modes of the
Karhunen–Loève decomposition, its influence on the es-
timated spectrum starts to become more prominent when
KKLIP is large enough.

3. When KKLIP is in an intermediate regime, then neither the
astrometry nor the spectrophotometry vary with KKLIP: this
is the part of the parameter space that is useful to infer
astrophysical estimates.

The boundaries between these regimes is a function of the ge-
ometry of the characterization zone, of (Nδ, δrC), and of course
of the statistical significance of the companion’s detection. We
thus execute a parameter space search over 16 different com-
binations of (Nδ, δrC, ∆r, ∆θ ) near the detected location of the
companion and vary the number of eigenmodes in the PSF sub-
traction from one to 130. This parameter search results in ∼2000
spectra and detector coordinates for each one of the HR 8799
planets. From these ∼2000 spectra, we discard any values that
are either in regime (1) for which the astrometric position of the

companion is not consistent between wavelength channels or in
(2) in which a sharp flux drop is detected with a small change
in the number of modes. Finally, we further trim the subset (3)
by only keeping the spectra associated with images that exhibit
a local S/N > 3. Note that for this paper focused on astrome-
try, we only consider the H-band data because P1640 detections
in that bandpass present the highest statistical significance for
HR 8799bcde.

Note that part of this parameter search could be alleviated by
using the t-LOCI technique developed by Marois et al. (2014),
which add a penalty term to the least-squares inversion problem
to take into account the predicted location of a companion’s flux
in the reference images. However, this requires the use of a tem-
plate spectrum in order to operate optimally: although it presents
a substantial gain by reducing the algorithmic parameter search,
it is hampered by the need to test a suite of hypotheses regard-
ing the nature of the atmosphere of the astrophysical source.
Here we chose to limit ourselves to methods that do not make
any assumptions on the properties of the detected companion
and discuss the trade-offs associated with spectrophotometry
and astrometry in IFS data. While the boundaries between the
regimes (1), (2), and (3) can seem ad hoc, the transition between
each regime can be easily quantified, and the above procedure
can be automated. We have not done so in the early stages
of Project 1640 in order to gain insights regarding the syn-
ergy between various observing-scenario PCA-based reduction
methods. Our team has now successfully extracted spectra and
astrometry from a handful of faint sources four orders of magni-
tude fainter than their host star (Oppenheimer et al. 2013; Hink-
ley et al. 2013), and we will soon proceed to an automation of
this process.

Figure 7 shows a sample of the ensemble of H-band spectra
and astrometry for HR 8799bc that belongs to the regime (3)
of “well-behaved” astrophysical observables. Because they are
detected at S/N > 10, the residual spectrophotometric scatter in
this regime is on the order of 10%, which is more accurate than
the precision reported by the d-LOCI algorithm at these levels of
contrast Pueyo et al. (2012). Moreover, for the channels with the
most signal, the astrometric scatter is below 0.2 pixel (∼0.′′004
for P1640), which is quite remarkable given the flux ratios
between planets and raw speckles. We conservatively derive
our “detector-based” astrometric error bars as the standard
deviation of all estimates in regime (3) over all wavelengths
in the shaded regions. The spectrophotometric error bars in
Hinkley et al. (2013) and Oppenheimer et al. (2013) are also
derived as the standard deviation of all of the spectra in
ensemble (3). The case of HR 8799de illustrates how to estimate
uncertainties when the astrometric scatter becomes larger due
to lesser signal to noise in the detection. Figure 8 displays the
ensemble (3) for the two inner planets in the HR 8799 system:
the variation of astrophysical observables across wavelength
and (Nδ, δrC, ∆r, ∆θ,KKLIP) is significantly larger in this “well-
behaved regime” than in the case of HR 8799bc. This can be
easily explained by the necessity to use small values of Nδ in
order to detect these objects in our P1640 data, which yields a
reference library that is more contaminated by residual planet
flux at adjacent wavelength. As a final sanity check, we overlay
on top of the astrometric estimates the radial trace of a putative
residual speckle at this location of the focal plane. Using this
information, we can establish that these are the only point
sources in their respective neighborhoods of the focal plane
whose astrometric signature as a function of wavelength does
not follow the radial trace of a residual speckle. We derive
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Figure 7. Left: spectrophotometry and astrometry of HR 8799b in the H band. Top: H-band spectrum of HR 8799b seen with P1640: each line corresponds to a
given data reduction with fixed zone geometry, exclusion parameters, and KKLIP. These spectra were selected according to the criteria described in the text and are
anchored in the regime for which the astrophysical estimates cannot be biased either by residual speckles or by overly aggressive PSF subtraction. The shaded band
corresponds to the channels for which the signal is more prominent. Bottom two panels: (X, Y ) coordinates of HR 8799b in detector space as a function of spectral
channel estimated using KLIP forward modeling. The location of the point source in the shaded region is fixed and does not follow the radial trace of potential residual
speckle at this location (dashed dot line). Right: spectrophotometry and astrometry of HR 8799c in the H band: same as left panel in the case of HR 8799c.

error bars on the spectrophotometry and astrometry in a similar
fashion as we did for HR 8799bc.

3.2. Astrometry

Armed with the planets’ location and detector coordinates,
the stellar location in the focal plane, the instrument’s plate
scale, and the position angle of absolute north, we can estimate
the position of the HR8799 planets relative to their host star
in our epoch of observations. The uncertainties associated with
the relative astrometry of our epoch are then derived as the root
mean squared of the uncertainties associated with each one of
these three quantities. Our astrometric estimates and the error

Table 1

HR 8799bcde Relative Astrometry, 2012 June

Planet Epoch ∆R.A. δDecl.

HR 8799b 2012.4481 1.′′563 ± 0.′′005 0.′′706 ± 0.′′005

HR 8799c 2012.4481 0.′′558 ± 0.′′004 −0.′′765 ± 0.′′004

HR 8799d 2012.4481 0.′′323 ± 0.′′006 0.′′529 ± 0.′′006

HR 8799e 2012.4481 0.′′366 ± 0.′′006 0.′′090 ± 0.′′006

budget associated with them are shown respectively in Tables 1
and 2. For HR 8799bc, the largest uncertainty stems from our
limited knowledge of stellar location in the focal plane (because
we are deriving this quantity based on elongation of natural
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Figure 8. Left: spectrophotometry and astrometry of HR 8799d in the H band. Top: H-band spectrum of HR 8799d seen with P1640: each line corresponds to a
given data reduction with fixed zone geometry, exclusion parameters, and KKLIP. These spectra were selected according to the criteria described in the text and are
anchored in the regime for which the astrophysical estimates cannot be biased either by residual speckles or by overly aggressive PSF subtraction. The shaded band
corresponds to the channels for which the signal is more prominent. Bottom two panels: (X, Y ) coordinates of HR 8799b in detector space as a function of spectral
channel estimated using KLIP forward modeling. Because the statistical significance of the detection is lesser than in the case of HR 8799bc, the scatter on the location
of HR 8799d, in the shaded region, has increased. However, its overall trend does not follow the radial trace of potential residual speckles at this location (dashed dot
line), which ensures that we are indeed detecting an actual astrophysical source, albeit with a larger uncertainty in its astrometric location. Right: spectrophotometry
and astrometry of HR 8799e in the H band: same as left panel in the case of HR 8799e. The detection is now close to marginal, and the uncertainty in the source
location becomes quite large. However, it is the only point source in this area of the focal plane whose astrometric signature as a function of wavelength does not
follow the radial trace of a residual speckle.

speckles instead of using satellite spots). For HR 8799de, the
largest uncertainty stems from the aggressiveness of the speckle
suppression that is necessary for a statistically significant
detection. Figure 9 illustrates the published relative astrometry
epochs in conjunction with our P1640 epoch. The most likely
orbits resulting from our orbital motion analysis, discussed next,
are overlaid on these points with a different color for each planet.
We will keep this color-coding through the remainder of the
paper when comparing the respective orbital elements of each

planet to one another and constraining the orbital architecture
of this system.

3.3. Orbital Motion

Because HR 8799 is the only directly imaged multiple plan-
etary system to this day, the orbital motion of the four planets
has been widely discussed in the literature. Published analyses
of the orbital architecture of this system can be divided into two
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Figure 9. On-sky projection of the best-fit orbits for the four planets orbiting HR 8799. The right panel zooms in on the portions of the orbits that have been observed
in the 1998–2012 time span. Note that because HR 8799d seems to be orbiting the host star in a different plane than the other three planets, its on-sky trajectory appears
closer to the one of HR 8799e than it actually is. Gray circles denote the Project 1640 epoch, which is the latest epoch considered in our analysis.

Table 2

Astrometric Error Budget

Planet σPA
a σPS

b σStar
c σKLIP

d

HR 8799b 0.′′0064 0.′′0031 0.′′0065 0.′′0039

HR 8799c 0.′′0034 0.′′0017 0.′′0065 0.′′0039

HR 8799d 0.′′0022 0.′′0011 0.′′0065 0.′′011

HR 8799e 0.′′0014 0.′′00069 0.′′0065 0.′′011

Notes.
a σPA: uncertainty on P.A. offset.
b σPS: uncertainty on plate scale determination.
c σStar: uncertainty on host-star location in the focal plane array.
d σKLIP: uncertainty stemming from residual errors induced by the KLIP

reduction and the forward modeling estimator.

categories: nonlinear least-squares fit of Keplerian elements and
dynamical studies. Because of the long orbital periods and the
currently limited orbital phase coverage, the parameter land-
scape explored by nonlinear least-squares methods comprises
a multitude of local minima, making it very difficult to unam-
biguously determine the six Keplerian elements for each planet
separately. Recent papers have estimated the most likely or-
bital architectures assuming either a set inclination for the four
planets (Lafrenière et al. 2009; Bergfors et al. 2011; Esposito
et al. 2013) or orbits that are coplanar and locked in mean mo-
tion resonances18 (Soummer et al. 2011a; Currie et al. 2012,
2014). On the other hand, dynamical analysis can constrain the
dynamical mass of the planets (upon finding orbital architec-
tures stable over durations at least as long as the estimated stel-

18 Note that Currie et al. (2012, 2014) also conducted an orbital motion
analysis without any resonant assumption and naturally obtained looser
constraints on Keplerian elements than when assuming a Laplace mean motion
resonance.

lar age) and can predict near-future orbital position (Fabrycky
& Murray-Clay 2010; Reidemeister et al. 2009; Goździewski
& Migaszewski 2009; Esposito et al. 2013; Gozdziewski &
Migaszewski 2013; Marois et al. 2010b). However, dynamical
models are generally used in conjunction with strong assump-
tions regarding coplanarity and mean motion resonances. It was
recently shown, under such assumptions, that one could also
include planetary migration mechanisms in a dynamical anal-
ysis and thus deliver joint information regarding the planets’
formation history and masses (Gozdziewski & Migaszewski
2013). When invoking mean motion resonances to stabilize the
system, most authors identified the Laplace 1:2:4:8 resonance
as a promising architecture that is compatible with both the
available astrometric epochs and masses in the planetary regime
(5–10MJup). The objective of the present paper is to comple-
ment both approaches, either a nonlinear least-squares fit or
dynamical studies, by answering the following question: “What
is the most likely set of Keplerian elements for each planet in
the HR 8799 system given the data at hand from 1998 to 2012”?
To do so, we carry out a Bayesian analysis of the published as-
trometric epochs. Because our approach does not need to resort
to any assumptions about the architecture of the system (copla-
narity in particular) or the planetary masses, it should provide a
good empirical baseline to test published dynamically favorable
architectures. We also seek to complement more “data-oriented”
methods that either need strong assumptions on the orbital ar-
chitecture of the system or do not take full advantage of the tools
provided by Bayesian inference (Soummer et al. 2011a; Currie
et al. 2012, 2014; Lafrenière et al. 2009; Bergfors et al. 2011;
Esposito et al. 2013).

Bayesian inference using Markov chain Monte Carlo methods
has been extensively used for the detection and characterization
of exoplanets using indirect methods: radial velocity (Ford 2005,
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Figure 10. Illustration of the on-sky projection of allowable orbits for the four planets orbiting HR 8799. Even if the orbital phase coverage is scarce because of the
long orbital period of the planets, our Bayesian analysis applied to the 1998–2012 data constrains the orbital architecture of the system.

2006; Gregory 2011; Hou et al. 2012), transits (Eastman et al.
2013), and gravitational microlensing (Skowron et al. 2011).
Recently, the direct-imaging community has focused on similar
methods to characterize the orbits of Beta Pictoris b (Chauvin
et al. 2012) and Fomalhault b (Kalas et al. 2013). We conducted
our analysis of the orbital architecture of HR 8799 using two
difference MCMC samplers: the Metropolis Hastings algorithm
discussed in Ford (2006), Chauvin et al. (2012), Kalas et al.
(2013) and the Affine Invariant Sampler described in Foreman-
Mackey et al. (2013). Both approaches did yield almost identical
posterior distributions for the six orbital elements of each planet.
We direct the reader to the aforementioned publications for a
detailed description of our methodology, and below we only
describe the broad lines of our Bayesian analysis:

1. We use all of the published epochs summarized in Esposito
et al. (2013), augmented by our P1640 points.

2. For each planet, we seek to constrain the six orbital
elements: period P, eccentricity e, inclination i, longitude
of ascending node Ω, argument of periastron ω, and epoch
at periastron tP. We consider the following state vector
x = (log(P ), e, cos i, ω + Ω, ω − Ω, tp).

3. Case of the Metropolis-Hasting Sampler: our prior distri-
butions of periods for each planet are uniform, centered
around the “circular face on period” (Pcfo, not to be con-
fused with the commonly eccentric orbit Pceo) derived from
the discovery epochs and covering more than a full decade
around that value, Pprior ∈ [Pcfo/4, 4Pcfo]. Because high
eccentricities have been ruled out (Marois et al. 2010b),
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Figure 11. Posterior distribution of the five Keplerian orbital elements (P, e, i, Ω) of HR 8799b resulting from our Bayesian analysis of the published relative astrometry
of this source with respect to its host star. The diagonal diagrams correspond to the marginalized probability distributions, and the off-diagonal ones correspond to the
correlation between various parameters.

we initialize our chains according to a uniform distribution
spanning [0, 0.8]. We assume a uniform prior distribution
for cos i ∈ [−1, 1], ω ∈ [0, 2π ], Ω ∈ [0, 2π ], and
tp ∈ [Pcfo − 4Pcfo, Pcfo + 4Pcfo]. We improve convergence
by using the transformation u(x) described in the Appendix
of Chauvin et al. (2012) and use for t0 the origin of mean
anomalies (Ford 2006), the epoch with the largest num-
ber of contemporaneous observations (usually the epoch at
which confirmation of physical association was unambigu-
ously established). Because the orbital phase coverage is
much smaller than in the case of Beta Pictoris b and more
similar to Fomalhault b, we further improve convergence

by using a parallel tempering ladder (Gregory 2005; Kalas
et al. 2013).

4. Affine Invariant Sampler: We follow the recommendation
of Foreman-Mackey et al. (2013), and we first initialized our
walkers in a small ball centered on the most likely orbital
elements derived using the Metropolis-Hastings Sampler.
We then take advantage of the enhanced computational
speed of the affine invariant sampler and explore a variety
of walker initialization points within the range discussed
above. We verify that the better-behaved chains in terms
of acceptance rate, autocorrelation, and overall chi-squared
are indeed the ones corresponding to the most likely orbital
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Figure 12. Posterior distribution of the five Keplerian orbital elements (P, e, i, Ω) of HR 8799c resulting from our Bayesian analysis of the published relative astrometry
of this source with respect to its host star. The diagonal diagrams correspond to the marginalized probability distributions, and the off-diagonal ones correspond to the
correlation between various parameters.

elements estimated using the Metropolis-Hasting sampler.
We use these latter chains for inference.

5. Both the small orbital phase coverage and the high star-
to-planet mass ratios do not allow us to take advantage of
our inference chains to carry out the class dynamical mass
estimates described in Dupuy et al. (2009), Konopacky
et al. (2010), and Crepp et al. (2012). Because we cannot
reach this level of precision, we do not marginalize over
the distance to HR 8799 (assumed to be 36.4 pc) or the host
stellar mass (assumed to be 1.51MSun).

Our results for each planet are shown in Figures 11–14.
The elements of the “most likely orbit” and 1σ confidence
intervals indicated are summarized in Table 3, and the orbits
associated with the lowest χ2 value are displayed in Figure 9.
Finally, the ensemble of allowable orbits, located in the 1σ
confidence intervals, is shown in Figure 10; this illustrates the
degeneracies associated with fitting Keplerian orbital elements
using astrometric data spanning only a small portion of orbital
phase. Nevertheless, even in the presence of such degeneracies,
the marginalized probability density function in Figures 11–14
can help us to significantly constrain the architecture of the
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Figure 13. Posterior distribution of the five Keplerian orbital elements (P, e, i, Ω) of HR 8799d resulting from our Bayesian analysis of the published relative astrometry
of this source with respect to its host star. The diagonal diagrams correspond to the marginalized probability distributions, and the off-diagonal ones correspond to the
correlation between various parameters.

HR 8799 system. We discuss these aspects in Section 4. In
a future paper we will test the dynamical stability of this
ensemble of allowable orbits or order to obtain a more precise
understanding of the orbital architectures of the system and of
the planet’s dynamical masses.

However, before delving into our interpretation of
Figures 11–14, we remind the reader of the caveats associ-
ated with our Bayesian analysis of the astrometric history of
this system. Markov chain Monte Carlo methods are known
to be very sensitive to systematic underestimated biases (e.g.,
not captured by published error bars) in the various astrometric
measurements. The astrometric data supporting the analysis of
Chauvin et al. (2012) and Kalas et al. (2013) was extremely
homogenous because it was based on two instruments at most,
and all of the imaging data reduction had been conducted by a

single team. In contrast, the astrometric history underlying our
analysis is heterogeneous and comprises estimates stemming
from at least six observatories and a variety of data analysis
approaches. For instance, should small discrepancies between
absolute north calibrations, beyond the reported error bars, oc-
cur between observatories, then the posterior distributions in
Figures 11–14 will be biased. This could, for instance, be the
source of the minor differences between our results and the con-
fidence intervals reported in Currie et al. (2012, 2014). Although
our results for HR 8799bcd are generally in good agreement
with Currie et al. (2012, 2014), some of our confidence inter-
vals do not overlap. The presence of biased observations in the
astrometric history of HR 8799 combined with the sensitivity of
MCMC approaches to such unaccounted uncertainties could be
the sources of these discrepancies. Alternatively, it could be that
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Figure 14. Posterior distribution of the five Keplerian orbital elements (P, e, i, Ω) of HR 8799e resulting from our Bayesian analysis of the published relative astrometry
of this source with respect to its host star. The diagonal diagrams correspond to the marginalized probability distributions, and the off-diagonal ones correspond to the
correlation between various parameters.

the approach in Currie et al. (2012, 2014) does not sufficiently
explore the χ2 landscape. Homogeneous observations with new-
generation extreme adaptive optics instruments, which possess
superior astrometric accuracy, will largely resolve this issue
over the upcoming decade. Note, however, that the systematics
between observatories (and epochs if necessary) could be in-
cluded in the MCMC state vector, just as mean radial velocities
are included in observations of the reflex motion of exoplane-
tary host stars along the line of sight (Ford 2006). Should this
approach be carried out, it would then yield systematics-free
(and thus more reliable) confidence intervals for the architec-
ture of a directly imaged exoplanetary system. Although this

would be an extremely interesting academic exercise, including
potential systematics in our analysis is beyond the scope of the
present paper.

4. DISCUSSION

4.1. Coplanarity

In order to test coplanarity, we then folded the inclinations
and longitudes of ascending notes in Figure 11–14 to compute
the direction of the vector orthogonal to the orbital plane of
each realization of the orbits of HR879bcde. We then used as
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Figure 15. Coplanarity test for the four planets in the HR 8799 system. This
figure shows the relative inclinations of the orbital planes with respect to the
most likely inclination (whereas the inclinations in Figures 11–14 are with
respect to the line of sight). While this figure does not unambiguously rule out
coplanarity, it suggests that HR 8799bc most likely orbits in the same plane, and
HR 8799d’s orbit is out of the plane. More data is needed to constrain the plane
of the orbit of HR 8799e.

Table 3

Most Likely Keplerian Elements for the Planets in
the HR 8799 System and Confidence Intervals

HR 8799b HR 8799c HR 8799d HR 8799e

Pχ2
min

(Yr)] 525.3 174.5 87.4 58.9

P, 1σ [479.5, 574.9] [164.1, 184.9] [74.5, 99.8] [45.1, 70.3]

eχ2
min

0.056 0.086 0.26 0.14

e, 1σ [0.018, 0.092] [0.042, 0.12] [0.18, 0.33] [0.045, 0.21]

iχ2
min

[◦] 17.2 10.5 26.3 25.5

i, 1σ [8.5, 25.9] [5.1, 16.0] [18.2, 34.2] [13.3, 37.5]

ωχ2
min

[◦] 134.1 123.9 76.4 160.7

ω, 1σ [102.8, 164.9] [100.1, 147.5] [53.1, 99.9] [111.7, 206.0]

Ωχ2
min

[◦] 69.4 81.4 82.9 89.0

Ω, 1σ [46.5, 91.1] [60.2, 101.1] [66.8, 100.4] [58.3, 128.3]

a reference direction the vector orthogonal to the orbital plane
of the most likely orbit of HR 8799c, and Figure 15 shows the
relative inclinations of each planet with respect to this reference.
While this figure does not unambiguously rule out coplanarity,
it suggests that HR 8799bc most likely orbits in the same plane,
while HR 8799d’s orbit is out of the plane. More data is needed
to constrain the plane of the orbit of HR 8799e. This noncoplanar
orbital architecture has not been included in recently published
dynamical analyses. As a final sanity check, we further test the
robustness of our analysis regarding the orbits of HR 8799d. A
direct inspection of Figure 9 hints that the out-of-plane best fit
for HR 8799d might stem from a biased astrometry in the 1998
HST-NICMOS epoch (Soummer et al. 2011a) because the large
temporal lever arm is responsible for strong constraints on the
orbit. We tested the robustness of our results to this bias by
removing the HST-NICMOS point from the astrometric history.
This test did yield posterior distributions of orbital elements
similar to Figure 13 (albeit with larger uncertainties in the period
when removing the 1998 epoch). We can thus rule out this
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Figure 16. Cumulative distributions of the eccentricities of the four planets
orbiting HR 8799. The dashed horizontal lines, from bottom to top, correspond
to the 68%, 95%, and 98% confidence levels. Our analysis of the current
astrometric history confirms the published eccentricity hierarchy in other works,
with HR 8799d being the most eccentric planet and HR 8799bc featuring almost
circular orbits (e < 0.1 with 68% confidence). More orbital coverage will be
necessary to firmly establish the eccentricity of HR 8799e.

scenario and conclude that, in the absence of other unidentified
pathological cases, the orbit of HR 8799d is misaligned by
∼15◦–20◦ compared to the roughly coplanar HR 8799bce orbits.

4.2. Eccentricities

All four planets appear to orbit HR 8799 with low eccen-
tricities, which has been predicted using dynamical arguments.
Indeed, a circularizing mechanism ought to have occurred in the
youth of this system in order for it to have lasted a few tens of
million years (Fabrycky & Murray-Clay 2010). Figure 16 shows
the cumulative distribution of eccentricities in the HR 8799 sys-
tem, with horizontal lines denoting the 68%, 95%, and 98%
confidence levels. The overall eccentricity distribution is con-
sistent with other studies, such as by Soummer et al. (2011a),
Reidemeister et al. (2009), and Gozdziewski & Migaszewski
(2013), which identified HR 8799d as the most eccentric
planet: the 1σ upper limits for eb, ec, ee are respectively
0.07, 0.06, 0.12, and the same upper limit of HR 8799d is
0.3. Thus, in spite of the noncoplanarity discussed above, our
analysis of the astrometric history of this system hints that
HR 8799d seems to have a special role in the eccentric hier-
archy. The fact that HR 8799d orbits at a larger eccentricity
and a likely off-plane inclination might be the fingerprints of
dynamical interactions during the formation of this planetary
system.

4.3. Mean Motion Resonances

Mean motion resonances play a crucial role in stabilizing the
HR 8799 system, as first pointed out by Fabrycky & Murray-
Clay (2010). While resonances are not strictly limited to integer
period ratios, we identify on Figures 17 the lowest-order ratios
that are compatible with our analysis of the astrometric history
of the system. We find:

1. b-c resonance our analysis seems to favor a period ratio
between 5b:2c and 3b:1c. Interestingly, the 2b:1c resonance
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Figure 17. Left: mean motion resonance test for HR 8799b and c: histogram of the period ratio Tb/Tc . The lowest-order mean motion resonances that appear to be
compatible with our analysis of the current astrometric history of the HR 8799 system is 3b : 1c, and the 2b : 1c is ruled out at a high level. Bottom: mean motion
resonance test for HR 8799c and d: histogram of the period ratio Tc/Td . The lowest-order mean motion resonances that appear to be compatible with our analysis of
the current astrometric history of the HR 8799 system is the 2 : 1 resonance previously identified in the literature. Middle: mean motion resonance test for HR 8799c
and d: histogram of the period ratio Tc/Td . The lowest-order mean motion resonances that appear to be compatible with our analysis of the current astrometric history
of the HR 8799 system is the 2:1 resonance previously identified in the literature. Right: mean motion resonance test for HR 8799d and e: histogram of the period ratio
Td/Te . Our analysis of the current astrometric history of the HR 8799 system appears to favor a 3d:2e resonance but does allow us to rule out the 2d:1e that has been
previously suggested in the literature.

Figure 18. Left: zeroth order dynamical stability test of HR 8799d and e. Percentage of the orbits allowed by our analysis of the current astrometric history of the
HR 8799 system that preclude a “close encounter” with the next orbital period of HR 8799d as a function of each planet’s masses. We indicate in red the boundary of
the domain where more than 68% of the combinations of our allowable orbits do not feature a “close encounter. While this is rough test from a dynamical standpoint,
the absence of any orbit pairs without close encounters for masses larger than 12MJup indicates that the HR 8799d and e dynamical masses most likely lie below
this threshold. Center: zeroth order dynamical stability test of HR 8799c and d. Percentage of the orbits allowed by our analysis of the current astrometric history of
the HR 8799 system that preclude a “close encounter” with the next orbital period of HR 8799c as a function of each planet’s masses. Right: zeroth order dynamical
stability test of HR 8799b and c. Percentage of the orbits allowed by our analysis of the current astrometric history of the HR 8799 system that preclude a “close
encounter” with the next orbital period of HR 8799b as a function of each planet’s masses.

that had been identified as a promising candidate by
dynamical studies assuming coplanarity between the two
objects can be ruled out by our analysis.

2. c-d resonance our analysis seems to favor period ratios
commensurate with a 2c:1d resonance.

3. d-e resonance our analysis yields a period ratio histogram
centered around a 3:2e resonance but is also compatible
with a 2d:1e. Further astrometric monitoring of HR 8799e
is required to disentangle these scenarios.

Thus, even if HR 8799d most likely does not orbit in the
same plane as HR 8799c and e, the period ratios involving these
planets do not rule out a 1e:2c:4d Laplace resonance. However,
they do favor a 3d:2e resonance for the inner pair of planets. The
period ratio for the two outer planets favored by our analysis does
not suggest a Laplace resonance but is consistent with Currie
et al. (2012, 2014). Because resonances are a strong mechanism

to stabilize multiple planetary systems, the confidence intervals
derived in the present paper can serve as a good first guess
to study secular dynamical interaction in the HR 8799 system.
Future N-body analyses of this system should thus be carried
out to complement our work and further constrain the period
ratios discussed above.

4.4. Likelihood of Close Encounter

The tight bounds on the dynamical mass of HR 8799bcde
can potentially be estimated via N-body simulations over the
lifetime of the system for the ensembles of allowable Keplerian
elements derived by our analysis. However, this exercise is
beyond the scope of the present paper, and we will devote a
future communication to this matter (A. Veicht et al. 2014,
in preparation). Here we nevertheless illustrate how such an
exercise could be used to bound the dynamical mass of planets
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in this system based on our results in Figures 11–14. Our
method consists of calculating the fraction of allowable orbits
that pass the “close-encounter test”: following the arguments of
Chatterjee et al. (2008), we define as a close encounter an epoch
for which the two planets are within four mutual Hill radii. For
each object, we draw a set of 1000 Keplerian elements according
to the posterior distributions of our Bayesian analysis. We then
calculate the position of each planet in a three-dimensional
frame centered on the star over the next 103 yr (about twice the
period of HR 8799b). For each neighboring pair of objects (b–c,
c–d, and d–e), we compute the distance between the ∼106 pairs
of outer-inner orbits, vary the mass of the objects, and estimate
the percentage of orbit combinations that do not feature a close
encounter as defined above.

Our results are illustrated in Figure 18, where we display
the likelihood of orbits compatible with the astrometric history
of HR 8799 without close encounters, assuming the posterior
distributions discussed in Section 3. The top right of the two
right-most panels shows that none of the orbits estimated
by our analysis of the astrometric history of HR 8799 yields
dynamically stable orbits for masses >60MJup. In contrast, the
bottom left indicates the region for which more than 68% of
the combinations of our allowable orbits do not feature a close
encounter (indicated by a red dashed line).

Note that this boundary is arbitrary and only shown for il-
lustration purposes. Indeed, only one stable orbital configura-
tion (10−4% in our case) suffices to yield an orbital architec-
ture without a close encounter. Indeed, no rigorous dynamical
mass bounds can be firmly established for HR 8799 b–c using
Figure 18 because the large scatter in orbital elements result-
ing from our orbital motion analysis can lead to artificially
low masses. However, this figure provides an indication of
how dynamical considerations will be able to further con-
strain orbital parameters and masses. Note, moreover, that our
close-encounter criterion is extremely loose when it comes to
constraining dynamical masses: the distance boundary defined
Chatterjee et al. (2008) is designed to rule out orbital near ap-
proaches that will result in ejections in the next 105 yr. Clearly,
more subtle dynamical interactions can occur on scales larger
than four mutual Hill radii. Moreover, the duration of our calcu-
lation is conservatively limited to twice the period of HR 8799b
(we assume that at such short timescales the secular perturba-
tions of orbital elements are negligible), which is clearly not
sufficient to explore all of the possible geometries.

In contrast, we find that all of the orbit pairs underlying
the left-most panel of Figure 18 feature a close encounter if
the masses of HR 8799d-e are above 12MJup. While the 68%
boundary might be artificially low because of orbital element
scatter, the lack of stable orbits above 12MJup indicates that it
is very unlikely that orbits matching the astrometric history of
this system will yield dynamically stable configurations unless
the masses of at least HR 8799de are below 13MJup (unless
there remain unidentified pathological biases in our Bayesian
analysis). Note that here we adopt m < 13MJup as a “planetary
mass” for the sake of argument, in spite of the boundary in the
planet/brown dwarf classification being truly tied to formation
history and thus still an active area of investigation. This is, to
our knowledge, the most “assumption-free” constraint on the
dynamical masses in the HR 8799 planetary system because our
analysis only relies on the very weak assumptions regarding the
uncorrelated prior distributions of Keplerian elements for each
planet. This approach complements the current literature that
focused on identifying dynamically stable configurations while

assuming coplanarity or circular orbits (Fabrycky & Murray-
Clay 2010; Gozdziewski & Migaszewski 2013; Esposito et al.
2013; Reidemeister et al. 2009). In a future communication, we
will substitute this loose close-encounter criterion with full N-
body simulations and thus merge both approaches in order to
shed further light on the orbital architectures of this planetary
system (A. Veicht et al. 2014, in preparation).

5. CONCLUSION

In this paper we have presented a new astrometric perspective
on the four substellar objects orbiting HR 8799. We relied on the
same Project 1640 observations that lead to a parent publication
focused on their spectral characterization (Oppenheimer et al.
2013). In that paper we demonstrated how the combination of
state-of-the-art coronagraphs and adaptive optics systems with
an integral field spectrograph could provide tremendous insights
into the atmospheric diversity of such purported planets. Here
we first focused on the intricacies associated with astrometric
estimation using such a complex system. In particular, we in-
troduced two new algorithms, one that retrieves the stellar focal
plane position (even when masked by a coronagraphic stop),
and another that yields precise astrometry and spectrophotom-
etry of faint point sources even when they are initially buried
in the speckle noise. This latter algorithm was built upon a
recent publication by Soummer et al. (2012) and is now becom-
ing a standard tool in the field of high-contrast imaging. The
principal component analysis underlying our KLIP algorithm
can moreover be furthered to capture the true three-dimensional
stochastic nature of the speckles in Integral Field Spectrograph
data, as demonstrated in a future publication reporting a novel
method also developed by the P1640 team (Fergus et al. 2013).
We hope that our detailed discussions regarding the intricacies
of incoherent speckle suppression in high-contrast Integral Field
Spectrographs, and the tenuous tasks of estimating stellar loca-
tion in the presence of a coronagraphs, will facilitate upcoming
large-scale surveys.

The second part of our paper was devoted to the interpretation
of the published astrometric history of HR 8799, augmented
with our Project 1640 epoch. In order to complement the
various interpretations currently in the literature, we conducted
a Bayesian analysis based on the Markov Chain Monte Carlo
method, using the methods described in Ford (2006), Chauvin
et al. (2012), and Kalas et al. (2013). Under the caveats
associated with the sensitivity of such a method to unaccounted
astrometric biases, we were able to determine an ensemble
of likely Keplerian orbits for HR 8799bcde without any prior
assumptions on the overall configuration of the system. We then
discussed the implications of our results in terms of orbital
architecture, which are summarized below.

1. The four planets appear to be coplanar in the broad sense of
our outer solar system. However, HR 8799d orbits slightly
outside of the plane of HR 8799bce, with a misalignment
in relative inclination of ∼15◦. More data is necessary to
unambiguously rule out coplanarity.

2. It is particularly interesting to note that planet d appears
to have both a different inclination and eccentricity. If
confirmed in the future with additional orbital data, this
result would be particularly interesting to help understand
the history of the system dynamic, where some event might
have pumped both eccentricity and inclination into a system
otherwise mostly circularized and coplanar.

3. The majority of recent publications discussing the orbital
architecture and dynamic stability of the HR 8799 system
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assumed strict coplanarity for the four planets. Our results
raise questions about the validity of this assumption and as
a consequence yield an updated eccentricities hierarchy and
most-likely period ratios different than previously thought.

4. Based on the set of most-likely orbits established by our
analysis of the astrometric history and a loose dynamical
survival argument based on geometric close encounters,
we have established a very high likelihood of masses
below 13MJup for HR 8799de and illustrated how future
dynamical analyses will further constrain dynamical masses
in the entire system.

In an upcoming publication, we will propagate our ensemble
of likely orbits through N-body simulations in order to further
constrain this likely subset of configurations to the few archi-
tectures that are favored by the data. This effort will eventually
provide robust dynamical mass estimates and, when combined
with our low-resolution spectroscopic observations, will pro-
vide a critical piece to the current puzzle associated with the
formation history of this system.
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