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Reconsidering an active role for G-actin in cytoskeletal regulation
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ABSTRACT

Globular (G)-actin, the actin monomer, assembles into polarized

filaments that form networks that can provide structural support,

generate force and organize the cell. Many of these structures are

highly dynamic and to maintain them, the cell relies on a large reserve

of monomers. Classically, the G-actin pool has been thought of as

homogenous. However, recent work has shown that actin monomers

can exist in distinct groups that can be targeted to specific networks,

where they drive and modify filament assembly in ways that can have

profound effects on cellular behavior. This Review focuses on the

potential factors that could create functionally distinct pools of actin

monomers in the cell, including differences between the actin

isoforms and the regulation of G-actin by monomer binding

proteins, such as profilin and thymosin β4. Owing to difficulties in

studying and visualizing G-actin, our knowledge over the precise role

that specific actin monomer pools play in regulating cellular actin

dynamics remains incomplete. Here, we discuss some of these

unanswered questions and also provide a summary of the

methodologies currently available for the imaging of G-actin.
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Introduction

The ability of actin to contribute to essential cellular functions such as

motility, cell division and vesicle trafficking is dependent on the

precise spatiotemporal control of its polymerization into actin

filament architectures, and the disassembly of these structures back

into the monomer pool. These processes can occur on short time

scales, allowing the cell to rapidly respond to internal or external

stimuli. Filamentous (F)-actin networks such as the lamellipodia are

highly dynamic structures, with individual filament lifetimes as short

as ten seconds (Watanabe and Mitchison, 2002) and complete

network turnover in minutes (Lai et al., 2008; Theriot andMitchison,

1991; Yamashiro et al., 2014), although this does vary depending on

cell type and structure, as actin networks can also comprise

metastable filaments that can last for days, as seen in myofibrils

(Clark and Zak, 1981; Zak et al., 1977). The cell relies on a large

reserve of monomers [globular (G)-actin] to maintain the dynamic

nature of the actin cytoskeleton, with cellular concentrations reaching

up to 1500 times the critical concentration of 0.1 μM at which

monomers spontaneously polymerize into filaments (Gordon et al.,

1977; Tilney, 1976; Vinson et al., 1998). In solution, G-actin

concentration determines the polymerization rate (Pollard, 1986). In

cells, the polymerization rates can be dramatically lower than the local

monomer concentration (Koestler et al., 2009), indicating that

polymerization is gated by monomer-binding proteins, such as the

profilins (Carlsson et al., 1977; Ozaki and Hatano, 1984), thymosin

β4 (Tβ4) (Safer et al., 1991) and actin assembly factors. Monomer

levels are also regulated by filament turnover, for example, by

inhibiting polymerization through capping proteins (Isenberg et al.,

1980) or by stimulating filament disassembly through the actin-

severing proteins of the ADF/cofilin family (Andrianantoandro and

Pollard, 2006; Kiuchi et al., 2007; Vitriol et al., 2013).

Historically, the actin monomer pool has been thought of as

homogenous. In this model, actin monomers supplied to networks

such as those in the lamellipodia at the leading edge are controlled by

their cellular concentration (Kiuchi et al., 2007; Pollard, 1986) and

factors that influence diffusion, such as the viscosity of the cytoplasm

(Drenckhahn and Pollard, 1986). This is supported by the observation

that G-actin pools are depleted in response to different cellular stimuli

that induce actin polymerization (Higashida et al., 2013; Kiuchi et al.,

2011; Lomakin et al., 2015) or during polymerization-intensive

processes, for example, cell migration (Cramer et al., 2002).

Additionally, it has been shown that G-actin concentrations are

relatively similar throughout the cell (Kiuchi et al., 2011), except in

extreme examples of cells with polarized regions of assembly and

disassembly, such as a motile keratocyte (Novak et al., 2008).

However, even in this latter example, distribution of G-actin is not

sensitive to fluctuations of actin assembly or cytoplasmic flow

(Novak et al., 2008).

Recent work has caused the field to expand upon the idea of a

single homogeneous G-actin pool to include distinct groups of

monomers that drive and modify filament formation. Several lines

of evidence showing non-random monomer distribution support

this model: G-actin has been observed to directionally translocate to

the leading edge (Fan et al., 2012b; Zicha et al., 2003), actin-

encoding mRNAs localize to and are locally translated at regions of

active polymerization (Hoock et al., 1991; Leung et al., 2006; Wang

et al., 2016; Yao et al., 2006), and actin monomers have been shown

to localize to actin-based structures, including the leading edge of

migrating cells (Cao et al., 1993; Lee et al., 2013; Vitriol et al.,

2015), neuronal growth cones (Lee et al., 2013; Wang et al., 2016)

and dendritic spines (Lei et al., 2017). An argument against the

significance of these events is that diffusion will rapidly dampen

small gradients of G-actin that arise from localization or localized

translation. However, these monomers can be functionally

heterogeneous, bias specific types of actin assembly and have

substantial influence over cellular behavior (Lee et al., 2013; Rotty

et al., 2015; Suarez et al., 2015; Vitriol et al., 2015; Yao et al.,

2006). Additionally, mathematical modeling has been used to

demonstrate that competition between F-actin networks from a

limited pool of G-actin is not sufficient to explain differential

network growth (Mohapatra et al., 2017). Therefore the existence of

heterogeneous pools of G-actin provides a means for the cell to

modulate different actin networks in a spatially and temporally

regulated manner.

Although the influence of different pools of G-actin most likely

represents an additional layer of regulation and is not necessarily the

predominant force driving polymerization, it is an important

parameter for how actin networks dynamically behave that can
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have significant cellular consequences. However, the incorporation

of this new information into existing hypothesized models of actin

dynamics thus far has been slow. While the literature on actin

dynamics continues to build an increasingly complex picture, many

of these studies focus on F-actin and the competition of differential

F-actin networks for a homogeneous monomeric pool (Burke et al.,

2014; Lomakin et al., 2015). In this Review, we present a

compilation of the evidence that G-actin is an active participant in

the dynamic assembly and regulation of actin networks.

β- and γ-actin – small differences with potentially large

consequences

The most obvious source of distinct pools of actin monomers is the

presence of the various actin isoforms, which are known to have

subtly different cellular functions (Perrin and Ervasti, 2010).

Although there are six actin isoforms in total, only β-actin

(encoded by ACTB) and γ-actin (encoded by ACTG1) are expressed

in most mammalian cell types. β-actin is the predominantly expressed

isoform, often found at twofold higher levels than to γ-actin (Erba

et al., 1988; Furness et al., 2005; Kapustina et al., 2016; Khaitlina,

2001). Both isoforms were originally thought to have overlapping

functions due to their close similarity, differing by only four amino

acids, and their ubiquitous presence in most cell types. Additionally,

it is difficult to purify β-actin without γ-actin, or vice-versa, causing

most biochemical studies that investigate isoform differences to focus

on muscle versus non-muscle actin. However, there is evidence that

β- and γ-actin have distinct roles in cellular physiology and organism

development.

Owing to the aforementioned difficulty in obtaining pure β-actin

or γ-actin, there is little evidence of differential behavior at the

biochemical level. However, one study using a baculovirus

expression system to obtain individual isoforms determined that,

in the presence of divalent Ca2+, β-actin has increased rates of both

polymerization and depolymerization (Bergeron et al., 2010). The

differences were much more subtle for actin bound to the divalent

ion Mg2+, with only a slight difference detected in the nucleotide

exchange rate between the two isoforms. The physiological

relevance of these findings is not clear, since Mg2+–actin is the

major form of actin in the cell (Herz et al., 1969) and the cation

exchange on actin is slow (Estes et al., 1987), implying that

Ca2+-bound actin only exists if there is a persistently high

concentration of Ca2+. However, if actin was locally translated in a

microdomain of high Ca2+ (Wei et al., 2009), or in a region of the

cell with a sufficiently high Ca2+ gradient to ensure the binding of

Ca2+ instead of Mg2+ (Beerman et al., 2015; Bergeron et al., 2010),

then it may be possible to generate a small pool of Ca2+–actin.

Furthermore, the ion-dependent polymerization differences also

demonstrate that β- and γ-actin are not biochemically identical and

may have other distinctive traits that are yet to be determined.

Non-redundancy between β- or γ-actin at the cellular and

organismal level has been shown through loss-of-function and

overexpression experiments. Deletion of β-actin in mice results in

embryonic lethality, whereas γ-actin knockouts can survive into

adulthood, although they show increased incidence of hearing loss

and higher morbidity compared to wild-type mice (Belyantseva

et al., 2009; Bunnell et al., 2011). In fibroblasts, knockdown and

over-expression of β-actin reduces and enhances cell motility

(Bunnell et al., 2011; Peckham et al., 2001), respectively, whereas

γ-actin is not required for migration (Bunnell and Ervasti, 2010). In

motor neurons, knockdown of β-actin reduces growth cone size and

motility, whereas γ-actin-depleted neurons have normal axonal

outgrowth, but display a reduction in axonal filopodia dynamics

(Moradi et al., 2017). β-actin has also been found to be the more

prevalent isoform in the G-actin pool (Kapustina et al., 2016), and

β-actin knockouts in mouse embryonic fibroblasts have been shown

to lead to decreased ratios of G- to F-actin (Bunnell et al., 2011).

Differential isoform function can also affect cell adhesion

properties. γ-actin is necessary for the formation of tight junctions

(Baranwal et al., 2012), whereas β-actin has been shown to be

dispensable at tight junctional complexes, but is required for

operational adherens junctions (Baranwal et al., 2012). However, it

is important to stress that the observed functional distinctions

between the isoforms are general trends (Flamholz et al., 2014) and,

to some degree, the actin isoforms can compensate for each other.

This is evidenced in experiments showing an upregulation of α- and

γ-actin in response to β-actin depletion (Moradi et al., 2017), or the

downregulation of endogenous β- and γ-actin genes in response to

exogenously expressed γ-actin (Lloyd et al., 1992) to maintain

overall cellular actin levels.

The functional difference between β-actin and γ-actin is also

evidenced through their differential localization patterns (Fig. 1).

Distinct separation of the two isoforms has been unambiguously

shown in specialized cell types such as myoblasts and inner ear hair

cells (Perrin and Ervasti, 2010), although in other cell types, the

results are more indicative of an enrichment of each at particular

networks. Several studies have found β-actin to preferentially

localize to the lamellipodia at the leading edge (Gimona et al., 1994;

Hill and Gunning, 1993; Hoock et al., 1991; Pasquier et al., 2015;

Taneja and Singer, 1990), whereas γ-actin has been shown to be

more enriched in filaments within the cytoplasm (Hill and Gunning,

1993; Otey et al., 1986; Pasquier et al., 2015; Shum et al., 2011).

Other studies have shown that β-actin and γ-actin localize to

different stress fiber subtypes (Shum et al., 2011) and that γ-actin is

enriched in actin arcs behind the lamellipodia (Pasquier et al., 2015).

However, there have been contradictory results depending on the

cell type and staining methodology. For example, the use of a

particular set of isoform-specific monoclonal antibodies in

fibroblasts has shown that β-actin and γ-actin differentially

localize to stress fibers and lamellipodia (Dugina et al., 2009),

whereas the use of different antibodies against both these proteins

suggests complete colocalization of the two isoforms in those

structures (Bunnell et al., 2011). Because these antibodies are

generated against nearly identical proteins, careful controls such as

the use of isoform-depleted cells to demonstrate antibody specificity

(Bunnell et al., 2011) are essential in order to properly interpret such

results. It should also be noted that enrichment of an isoform at a

particular structure should take into account relative expression

levels. For example, if there was true equality of β- and γ-actin, their

composition in every network of the cell should equal their relative

expression. To date there have been no truly detailed, quantitative

studies on β-actin and γ-actin localization that consider this, and

most of the inferences made about their differences have been from

subjective interpretation of images. As the resolution of light

microcopy imaging increases, it will also be interesting to see

whether there are isoform differences in the composition of

sub-network structures, such pre-filopodial bundles within a

lamellipodia, or even in individual filaments.

Spatial regulation of the actin isoforms also occurs at the mRNA

level. The concentration of the G-actin pool can regulate actin

mRNA synthesis, with mRNA levels decreasing in response to an

increase in G-actin (Bershadsky et al., 1995; Lyubimova et al.,

1997, 1999). The actin monomer-binding myocardin transcriptional

coactivator (MAL, also known as MYOCD) and serum response

factor (SRF) complex (MAL–SRF) is one such regulator of this
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feedback loop (Salvany et al., 2014). β-actin-encoding mRNA has

been found at the leading edge of fibroblasts (Ross et al., 1997), and

to localize to neuronal growth cones (Leung et al., 2006; Moradi

et al., 2017; Zhang et al., 2001) and dendritic spines (Tiruchinapalli

et al., 2003). The specific mRNA localization is regulated by an

additional sequence in the 3′ untranslated region (UTR) of β-actin

that interacts with zipcode-binding protein (ZBP1; also known as

IGF2BP1), which controls the targeting and regulated translation of

mRNA transcripts (Ross et al., 1997). Furthermore, ribosomal

translation rates for γ-actin have been shown to be slower than for

β-actin (Zhang et al., 2010). Localization of β-actin-encoding

mRNA and its translation at the protrusions of moving cells can

have profound effects on cell motility and axon guidance

(Kislauskis et al., 1997; Vitriol and Zheng, 2012). The underlying

mechanisms remain relatively unknown, but it may be that newly

synthesized β-actin lacks a post-translational modification that is

present in ‘older’ actin which hinders assembly (Wang et al., 2001),

or that an actin chaperonin is biasing polymerization to specific

actin populations (Brackley and Grantham, 2010; Saegusa et al.,

2014). However, although de novo synthesis of actin has been

shown to play an important role in the overall actin balance of a cell,

it is not the predominant source of G-actin for actin polymerization.

It has been estimated that up to 7% of F-actin in motile cells contains

newly synthesized protein (Condeelis and Singer, 2005), though

this may vary depending on cell type, suggesting that almost all

F-actin is generated through polymerization of the existing

monomer pool. Thus, localized translation of β-actin most likely

affects actin dynamics in specialized situations. It should also be

noted that local mRNA translation is functionally distinct from the

localization of actin monomers at the leading edge, which occurs

independently of protein translation (Lee et al., 2013) and at time

scales that are faster than protein translation would allow for (Vitriol

et al., 2015). However, both processes appear to positively regulate

lamellipodia protrusions and cell movement.

Post-translational modifications of β-actin and γ-actin could also

lead to their differential localization and incorporation into filament

types. Arginylation of actin differentially affects the two isoforms

(Karakozova et al., 2006; Zhang et al., 2010).While arginylation of

γ-actin can target it for proteasomal degradation (Zhang et al.,

2010), the same modification on β-actin positively affects its

function and is required for both cell spreading and lamellipodia

formation (Karakozova et al., 2006). Lack of arginylation in the

β-actin isoform promotes a collapse of the leading edge in mouse

embryonic fibroblasts (Karakozova et al., 2006). Other

post-translational modifications of actin may also indirectly

influence G-actin pools by altering filament stability in specific

regions of the cell that are differentially populated by the β and γ

isoforms. For example, the Mical family of redox enzymes

promotes disassembly of F-actin (Hung et al., 2011), whereas

methylation has been hypothesized to stabilize filaments (Nyman

et al., 2002; Terman and Kashina, 2013). Localization of these

processes to actin structures enriched in a specific isoform could

potentially amplify the differences between β-actin and γ-actin

monomer pools.

Little is known about how the cell recognizes or treats β-actin and

γ-actin as separate entities. There have been a few studies showing a

differential interaction of proteins with muscle and non-muscle

actin; for instance, the increased cooperative binding of cofilin

proteins to β- and/or γ-actin compared with α-actin (De La Cruz,

2005), although they did not discriminate between the β- and

γ-isoforms. There are only a few known cases of proteins binding

discretely to the β- or γ-isoforms; for instance, it has been shown

that L-plastin binds to β-actin and not γ-actin (Namba et al., 1992),

whereas annexin V has been shown to specifically bind γ-actin

(Tzima et al., 2000). The actin N-terminus, which contains the four

amino acids that differentiate β-actin and γ-actin, makes contacts

with myosin and other actin-binding proteins (Vandekerckhove,

1990). However, there are no in-depth studies investigating the

binding affinity of β-actin and γ-actin to important actin monomer-

binding proteins, such as profilin-1 (hereafter referred to as profilin)

or thymosin β4 (Tβ4; also known as TMSB4X). While profilin does

not contact the N-terminus of actin (Schutt et al., 1993), Tβ4 may

(Safer et al., 1997). Future studies could focus on the isoform-

dependent differences in interactions with Tβ4 and other monomer

binding proteins that make contact with the N-terminus of actin.

Profilin – the architect of the G-actin pool

Monomer-binding proteins, such as profilin and Tβ4, are required to

maintain a reserve of free actin monomers at concentrations in

excess of the critical concentration required for spontaneous actin

polymerization. Profilin is functionally conserved throughout the

eukaryotic kingdom (Blasco et al., 1991) and was originally

identified as a protein that could bind to and sequester monomeric

actin (Carlsson et al., 1977). However, studies showing the

association of the profilin–actin complex with the barbed end of

actin filaments in the presence of ATP-bound actin (Pantaloni and
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Fig. 1. Incorporation of β-actin and γ-actin into

distinct actin networks. Although they can

overlap, β-actin and γ-actin isoforms have been

shown to exhibit different cellular localizations.

Illustrated here is a scenario where β-actin is

enriched in the lamellipodia and γ-actin in actin

arcs and/or stress fiber structures. β-actin-

encoding mRNA is also localized and locally

translated at the leading edge. Arginylation of

β-actin (Arg) promotes localization and assembly

in lamellipodia but targets γ-actin for degradation,

as depicted by the pale color.
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Carlier, 1993; Pollard and Cooper, 1984; Tilney et al., 1983),

combined with its ability to accelerate exchange of ADP for ATP

(Goldschmidt-Clermont et al., 1991b; Mockrin and Korn, 1980;

Pantaloni and Carlier, 1993; Selden et al., 1999), defined a new role

for profilin as an F-actin-promoting factor. Furthermore, it can

interact with formins (Chang et al., 1996; Romero et al., 2004), Ena/

VASP proteins (Kang et al., 1997; Reinhard et al., 1995), WAVE

(also known asWASF) proteins (Miki et al., 1998), andWASp (also

known as WAS) (Suetsugu et al., 1998) through poly-L-proline

interactions to influence the assembly of specific types of filaments

(Rotty et al., 2015; Suarez et al., 2015). Additionally, profilin can

bind to phosphoinositides at the plasma membrane (Goldschmidt-

Clermont et al., 1990;Machesky et al., 1990; Ostrander et al., 1995),

which inhibits its ability to form a complex with G-actin

(Goldschmidt-Clermont et al., 1991a; Lassing and Lindberg,

1985, 1988). Controlling phosphoinositides may thus provide a

mechanism for modulating G-actin levels by regulating the

availability of profilin. Post-translational modifications such as

phosphorylation can also enhance the interaction between profilin

and actin (Fan et al., 2012a). Its diversity in binding partners and

ability to intersect with a number of signaling pathways allows

profilin to serve as a key regulator of actin physiology.

Profilin has been found to drive the preferential assembly of

distinct actin networks by biasing polymerization toward specific

types of filaments. Profilin–actin (profilin-bound G-actin) is more

likely to polymerize with formin- and Ena/VASP-mediated

filaments than with filaments nucleated by Arp2/3 (Rotty et al.,

2015; Suarez et al., 2015). While Arp2/3-mediated polymerization

can occur in the presence of profilin (Machesky et al., 1999),

profilin exhibits a concentration-dependent inhibitory effect on

Arp2/3-dependent nucleation and branch formation (Rodal et al.,

2003; Rotty et al., 2015; Suarez et al., 2015). This most likely occurs

due to the ability of profilin to compete with the Arp2/3 activator

WASp for actin monomer binding (Marchand et al., 2001; Suarez

et al., 2015), although it can also bind directly to Arp2 and sterically

hinder association with the WASp activator (Mullins et al., 1998;

Suarez et al., 2015). Contrary to its effects on Arp2/3-mediated

filaments, profilin accelerates polymerization of formin-bound

filaments by as much as an order of magnitude (Kovar et al.,

2006) and may also enhance VASP-mediated growth (Hansen and

Mullins, 2010). Profilin inhibits the nucleation activity of formins

(Kovar et al., 2003) but once the filaments are formed, their growth

is accelerated. Thus, profilin-mediated actin polymerization favors

the elongation of barbed ends that are associated with processive

polymerases, such as formins and Ena/VASP, and hinders Arp2/3-

mediated branching, which favors the growth of specific actin

networks, assuming they are competing for the same monomeric

pool. This competition is particularly apparent in the fission yeast

Schizosaccharomyces pombe, where Arp2/3 and formin-based actin

networks are easy to distinguish since they are spatially segregated.

In fission yeast, ∼35–50% of polymerized actin is contained in

Arp2/3-nucleated actin patches and ∼10–15% is in formin-

mediated actin cables or at the cytokinetic ring (Burke et al.,

2014; Sirotkin et al., 2010; Wu and Pollard, 2005). These networks

are in a homeostasis; inhibiting one increases the presence of the

other (Burke et al., 2014). As there is a tenfold difference in the

concentration of Arp2/3 over that of formins (Burke et al., 2014),

profilin may have a key role in regulating the balance between the

two types of networks by favoring the growth of formin-mediated

elongation and providing a braking mechanism for Arp2/3-

nucleated networks. This hypothesis has been supported by

experiments showing that increasing the profilin:actin ratio

through overexpression will increase the formation of cables and

decrease that of patches, and vice versa (Suarez et al., 2015).

It is important to note that even in non-vertebrates, which lack Tβ4,

where most of the polymerizable actin is bound to profilin (Kaiser

et al., 1999; Tseng et al., 1984), profilin cannot maintain the

monomer pool on its own; its activity is tightly coordinated with the

depolymerization and polymerization of actin filaments. For this

Review, we will focus on two predominant factors that regulate these

processes as examples: ADF/cofilin family proteins and the F-actin

capping protein (CP; a heterodimer formed of CAPZA1 or CAPZA2,

and CAPZB). ADF/cofilin severs actin filaments to increase F-actin

disassembly and the turnover of actin networks (Carlier et al., 1997;

Elam et al., 2013) to create ADP-actin monomers. Upregulating

ADF/cofilin activity will thus increase monomer concentration.

Profilin will bind ADP-actin and, through its nucleotide exchange

capacity (Goldschmidt-Clermont et al., 1991b), convert recently

depolymerized actin into a polymerization-competent pool (Didry

et al., 1998) (Fig. 2). Conversely, the monomer pool can also be

regulated through the activity of CP, which can prevent profilin from

promoting monomer addition at filament barbed ends (Kang et al.,

1999; Pantaloni and Carlier, 1993). Profilin itself can bind to barbed

ends and antagonize the binding of CP, although this has only been

shown at concentrations that may not be physiologically relevant

(Pernier et al., 2016). Since profilin inhibits nucleation of new

filaments (Pollard and Cooper, 1984), capping of existing filaments

can have a strong influence on themonomer pool by creating a system

that is not at equilibrium, where profilin-bound actin is a kinetic

phenomenon. Thus, a balance between filament assembly,

disassembly and the regulatory activity of profilin is necessary to

maintain the monomer pool and control the rate of filament

polymerization.

Additionally, this coordination can bias which types of filaments

are polymerized. First, profilin-bound actin will be preferentially

incorporated into barbed ends associated with proteins that

antagonize CP. Second, a balance between CP and profilin can be

used to control nucleation-based versus elongation-based processes.

CP is known to increase the Arp2/3-branched network density in

biochemical assays by restricting filament length (Blanchoin et al.,

2000), but it can also have more complex effects on network growth

in the presence of profilin and barbed-end polymerases (Fig. 3). CP

can stimulate ‘monomer funneling’ by reducing the concentration of

free barbed ends and increasing G-actin concentration; this channels

monomers to uncapped filament barbed ends, which are then able to

grow at an accelerated rate (Carlier and Pantaloni, 1997). An

alternative explanation of how CP can coordinate with profilin to

alter network dynamics is through ‘monomer gating’, which

suggests that capping of barbed ends would drive profilin-bound

actin to coordinate with nucleators to create new filaments, rather

than elongate existing ones (Akin and Mullins, 2008). The role of

these two mechanisms in an in vivo setting, where the ratio of

components cannot be carefully controlled and elongating formin or

Ena/VASP filaments can be in close spatial proximity to Arp2/3

networks, remains to be determined. However, it is clear that the

complex relationship between filament assembly and maintenance

of the monomer pool must be carefully balanced to generate

complex networks of actin that have defined roles in cell

physiology.

Tβ4 – more than a sequestering protein

Most vertebrates have additional help in regulating the actin

monomer pool in the form of Tβ4 (Safer and Nachmias, 1994). Tβ4

is a small (4.9 kDa) protein that sequesters actin monomers (Low
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et al., 1981; Safer et al., 1991) and binds to G-actin in equimolar

amounts (Goldschmidt-Clermont et al., 1992). It has largely been

considered a negative regulator of filament assembly, because

microinjection of the protein (Sanders et al., 1992), overexpression

of the gene (Yu et al., 1994) or local photorelease of caged Tβ4 (Roy

et al., 2001) all cause F-actin depolymerization. However, this

relationship between increased Tβ4 and polymerization is not

entirely straightforward, as Tβ4 has also been shown to promote

polymerization and increased cell motility at higher concentrations

(Carlier et al., 1996; Sun et al., 1996). Tβ4 can sequester G-actin by

both sterically blocking its polymerization, inhibiting its nucleotide

exchange, and allosterically altering the monomer conformation

(Goldschmidt-Clermont et al., 1991b; Hertzog et al., 2004; Irobi

et al., 2004; Sanders et al., 1992; Xue et al., 2014). Structural studies

demonstrate Tβ4 behaves like an intrinsically unstructured protein

(Zarbock et al., 1990) and becomes increasingly ordered upon

binding to actin (Safer and Chowrashi, 1997; Safer et al., 1997). It is

important to note that Tβ4 binds ATP-bound actin with a 50-fold

higher affinity than does to ADP-actin (Carlier et al., 1993; Hertzog

et al., 2004); thus its major function is to hold a polymerization-

ready pool of monomers in reserve.

Tβ4 and profilin are thought to compete for binding to actin. The

intracellular concentration of Tβ4 can be 10 times higher than that of

profilin (Weber et al., 1992), while their affinities for ATP-actin are

similar (Tβ4 KD ∼0.3 µM, Tβ4 and KD ∼0.1 µM, profilin) (Huff and

Hannappel, 1997; Huff et al., 1995; Vinson et al., 1998; Weber et al.,

1992; Yarmola and Bubb, 2004). Thus most G-actin in vertebrate

cells is held ‘in reserve’ by Tβ4 rather than profilin owing to its higher

concentration and comparable affinity for actin. However, profilin can

de-sequester monomers from Tβ4 (Pantaloni and Carlier, 1993) due

to the high exchange rate both proteins exhibit with actin

(Goldschmidt-Clermont et al., 1992). In addition, similar to Tβ4

(Xue et al., 2014), profilin may allosterically alter the conformation of

actin upon binding (Yarmola et al., 2001), which may further regulate

competition dynamics. However, the relationship between Tβ4 and

profilin cannot be described strictly by competition, as they can both

simultaneously bind to G-actin to form a ternary complex under

physiological conditions (>10 μM) (Xue et al., 2014; Yarmola et al.,

2001). This allows a direct and regulated exchange of G-actin from a

non-polymerizable, sequestered state to a polymerization-competent

one (Fig. 2) without having to disassociate from a monomer-binding

protein, thus reducing the risk of spontaneous polymerization (Xue

et al., 2014). Moreover, this complex could help recruit Tβ4-bound

G-actin to subcellular regions with a high profilin concentration

through the ability of profilin to bind ATP-actin (Vitriol et al., 2015;

Yarmola and Bubb, 2006; Yarmola et al., 2001). It should be noted

that the profilin–Tβ4–G-actin complex has only been studied in bulk

solution assays and has not yet been proven to exist in cells. Future

in vivo experiments detailing Tβ4 and profilin localization dynamics

at the molecular level will be required to determine the role of the

tertiary complex in cellular actin physiology. It is also important to

note that the relative concentrations of Tβ4 and profilin may be cell-

type dependent, and most values come from older studies of highly

differentiated cells such as platelets (Pollard et al., 2000). Adjusting

the relative expression of either monomer-binding protein, or locally

regulating their ability to interact with actin (Fan et al., 2012a), could

have significant effects on how the G-actin pool is spatiotemporally

controlled.

Although sequestration of monomers was initially thought to be

the only function of Tβ4, recent studies show that it may also help to

allow actin monomers to move from the cell interior to the plasma

membranewithout polymerizing, thereby positively influencing actin
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ADP-actin

monomers 

4.  Tβ4

sequesters

ATP-actin 

5.  Profilin
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monomers from Tβ4 

6.  Actin delivered

to filament barbed

ends by profilin

2.  ADP-actin is

captured by

profilin

3.  Profilin assists

nucleotide

exchange to

ATP-actin 

Ena/VASP

Profilin

ADF/cofilin

Tβ4

Capping
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ATP-actin

ADP-Pi-actin

ADP-actin 

PIP2

Fig. 2. Profilin and Tβ4 regulate the monomer pool. This figure presents a model for how profilin and Tβ4 may work together to convert newly released actin

monomers into a polymerization-competent pool that is then directed to re-polymerize into new filaments. After depolymerization of filaments by disassembly

factors such as ADF/cofilin (1), profilin binds to the newly released monomers (2) due to its higher affinity for ADP-actin. Profilin induces nucleotide exchange (3),

and the majority of monomers are transferred to Tβ4 (4), which has a 50-fold higher affinity for ATP-actin over ADP-actin and is present in the cell at higher

concentrations than profilin. Tβ4 holds themonomers in a polymerization-competent pool. Owing to high rates of exchange, profilin de-sequestersmonomers from

Tβ4 (5) and delivers G-actin to barbed-end polymerases such as Ena/VASP (6). Profilin can also localize to the plasma membrane through an interaction with

phosphatidylinositol 4,5-bisphosphate (PIP2). A profilin–Tβ4–G-actin ternary complex may assist in the transfer of G-actin from Tβ4 to profilin by providing an

intermediate state, where the actin monomer does not dissociate from either protein, thereby preventing its spontaneous assembly into filaments.
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assembly at the leading edge of migrating cells (Fan et al., 2012b,

2009; Lee et al., 2013; Vitriol et al., 2015). The mechanism for this

localization is still unknown, although it may be due to an interaction

with profilin (Lee et al., 2013), which may stimulate a local

dissociation of Tβ4 and G-actin. In neuronal cells, Tβ4 is not required

for lamellipodia formation, which predominantly assembles from

actin recycled from its own disassembly (Vitriol et al., 2015), but it is

required to create sustained lamellipodial protrusions needed for

directed cell migration and axon guidance (Lee et al., 2013). Detailed

spatiotemporal analysis revealed that the monomers localized to the

leading edge by Tβ4 do not arrive until after a protrusion is initiated

(Vitriol et al., 2015), further indicating that they are needed to

maintain forwardmomentum of the lamellipodia, perhaps when local

monomer reserves are depleted by an increase in assembly

(Boujemaa-Paterski et al., 2017). Experiments and mathematical

modeling have shown that diffusion is sufficient to explain the

localization kinetics of Tβ4–G-actin (Vitriol et al., 2015). Tβ4 may

also help to bias polymerization to specific actin networks. Using a

photoactivatably labeled actin to follow movement from the

cytoplasmic pool to the leading edge, it was determined that Tβ4

helps to target cytoplasmic actin monomers to formin-mediated

filaments at the leading edge of lamellipodia by helping them to

bypass Arp2/3-mediated barbed ends (Vitriol et al., 2015) (Fig. 3).

While its specific mechanism of action has yet to be determined, what

is now readily apparent is that Tβ4, in addition to its role in monomer

sequestration, also plays an active role in the creation of actin

networks.

Visualizing actin monomers in the cell

Most of what we know about G-actin comes from in vitro systems.

This is largely because G-actin is difficult to image and thus is

frequently ‘visualized’ through inference rather than direct detection.

With the exception of specialized situations (Lee et al., 2013; Lei

et al., 2017), G-actin is not localized and fills the entire cytoplasm,

making direct detection difficult. When a small fraction of monomers

are specifically localized, they may be difficult to detect against such

a high background of non-localized protein. Additionally, unlike

F-actin, for which highly useful probes have been developed for

imaging of both fixed and live cells (Melak et al., 2017), there are

only few reagents available that specifically label monomers. To label

G-actin in fixed cells one can use DNAse I (Hitchcock, 1980),

vitamin D-binding protein (Van Baelen et al., 1980) or the monomer-

specific antibody JLA20 (Lin, 1981) (Fig. 4). DNAse I is commonly

used to label G-actin, but is the least monomer-specific probe (Lee

et al., 2013). Another concern in labeling actin monomers is that they

can be extracted from the cell during membrane permeabilization,

even after paraformaldehyde fixation (Lee et al., 2013). In our own

laboratory, we have found that acetone is best for preserving the

localization of G-actin at the leading edge, whereas Triton X-100

causes a complete extraction of this monomer pool. Additionally,

because the background of non-localized G-actin is so high, it is

useful to use a ratiometric imaging approach with a volume indicator

to see discrete subcellular localizations of monomers, or to use an

F-actin probe (such as fluorescently labeled phalloidin) to obtain the

G- to F-actin ratio (Lee et al., 2013; Wang et al., 2016). The local

G- to F-actin ratio can also highlight localized actin monomers in

living cells. This is done using a fluorescent protein-labeled actin

construct to visualize total actin and a second probe such as Lifeact,

which is specific for F-actin (Vitriol et al., 2015; Kapustina et al.,

2016; Lee et al., 2013; Wang et al., 2016). Please see the detailed

discussion of fluorescently labeled actin probes for important caveats

of using labeled actin in Box 1.

Live imaging of non-localized G-actin is difficult due to its rapid

diffusion (Lanni andWare, 1984; Vitriol et al., 2015) (Fig. 4). This is

Formin
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Tβ4

Profilin

ADF/

Cofilin

Capping

protein

Ena/VASP

Key

ATP-actin

ADP-Pi-actin

ADP-actin 

Fig. 3. G-actin regulated assembly of actin networks. A scenario where profilin and Tβ4 regulate the assembly of specific actin networks. On the left, there is

increased ADF/cofilin and capping protein activity; this leads to increased disassembly and barbed-end capping, thus resulting in an increased monomer

pool. This creates amore densely branched Arp2/3-mediated actin network because nucleation, rather than elongation, becomes favored. Here, the role of profilin

is predominantly to recycle themonomers back into a polymerization-competent pool. On the right, ADF/cofilin and capping protein activity is decreased, resulting

in a smaller monomer pool. Consequently, competition for a limited supply of monomers enhances filament elongation by barbed-end polymerases, such as

Ena/VASP and formins, and reduces Arp2/3-mediated branching due to a bias formed through profilin-bound actin. Additionally, Tβ4 prevents cytosolic actin

monomers from polymerizing at barbed ends of Arp2/3-mediated filaments throughout the lamellipodia (right-hand side of this panel) and selectively releases

G-actin near the plasma membrane, where it undergoes formin-mediated polymerization.
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exemplified in single-molecule imaging experiments, where even at

imaging rates of 10 frames/s, actin molecules only become visible as

speckles after their incorporation into the F-actin network (Yamashiro

et al., 2014). Therefore, the presence of actin monomers must be

inferred from the observed rapid changes in fluorescence. There are

several methods that can effectively measure spatiotemporal

fluorescence fluctuations, including fluorescence correlation

spectroscopy (FCS) (Engelke et al., 2010) or pulse-chase

techniques, such as fluorescence recovery after photobleaching

(FRAP) or photoactivation/photoconversion (Lippincott-Schwartz

et al., 2003). One issue inherent to FCS is that it relies on longer

imaging times and is only sensitive to changes of a fluorescent

molecule with a concentration in the nanomolar range (Kim et al.,

2007); therefore, it will be difficult to measure spatiotemporal

fluctuations of G-actin under physiological conditions with this

method. However, FRAP and photoactivation experiments can be

performed as rapidly as the imaging system will allow and can

provide relevant information about G-actin concentration, diffusion

and localization. Traditional analysis of FRAP and photoactivation

curves yields parameters, such as the half time and the immobile

fraction (Lippincott-Schwartz et al., 2003), which can be powerful

indicators of the relative G-actin movement and concentration when

they are compared between different experimental conditions.

To extract more quantitative information, such as estimates of

absolute concentration or rate constants, mathematical modeling is

required. A minimal model would consider the diffusion of G-actin

and the polymerization/depolymerization of actin filaments

(Kapustina et al., 2016; McGrath et al., 1998). Other factors, such

as non-isotropic diffusion caused by different cell morphologies,

movement of F-actin during the timecourse of the experiment, the fact

that FRAP/photoactivation is non-instantaneous, photobleaching and

the frame rate of the experiment, will either need to be accounted for

or determined to not be important for the measurement. We have

found that the three-dimensional cell morphology and the imaging

frame rate are essential parameters to accurately interpret a

photoactivation experiment (Kapustina et al., 2016). To assist in

the analysis of actin photoactivation experiments, we have developed

a method called ‘modeling assisted analysis of photoactivation’,

which can provide simultaneous measurements of both actin

monomers and filaments in a three-dimensional environment by

fitting experimental data with curves from a simulated library

(Kapustina et al., 2016). Another technique that employs

mathematical modeling is ‘sequential fluorescence decay after

photoactivation’ (sFDAP), which uses serial photoactivation

combined with model-based curve fitting to obtain information

about the local G-actin concentration and its changes upon

extracellular stimuli (Kiuchi et al., 2011). Finally, another useful

experiment to perform with photoactivatable/photoconvertible actin

is to pulse-label a subset of actin within the cell and then measure its

incorporation into other actin networks or its re-incorporation into

the network from which it was derived (Vitriol et al., 2015). While

not a direct observation of G-actin, it offers the ability to visualize

the source of monomers that constitute F-actin structures (see Box 1

and Fig. 4). With these quantitative live-cell imaging tools at the

ready, the onus is now on cell biologists to utilize them to their full

potential to test theories of how actin monomers regulate

cytoskeletal dynamics.

Concluding remarks

The cytoskeleton field has amassed a large body of knowledge

about the biochemical properties of actin polymerization and how

monomer-binding proteins influence these reactions. Many of these

studies have inventoried the participants and regulatory proteins

involved in actin dynamics, their localization, and the kinetics of

these dynamics. Mathematical models have also begun to address

how the cell maintains actin homeostasis and the changes it has to

make in order to undergo specialized processes such as motility or

Box 1. Discussion of fluorescently labeled actin probes
Actin can be visualized in living cells with purified protein labeled with a

fluorescent dye or DNA encoding for a fluorescent protein–actin fusion.

Both have their benefits and drawbacks. Dye-labeled actin is closer to

the physiological state of endogenous actin because fluorescent dyes,

such as rhodamine or the Alexa Fluor dyes, are ∼50 times smaller than a

27 kDa fluorescent protein. This allows the actin to be more readily

incorporated into formin-mediated filaments (Yamashiro et al., 2014),

which can exclude actin that has been labeled with tags larger than

2 kDa (Chen et al., 2012). For experiments in non-muscle cells,

commercially available dye-labeled actin should be used with caution,

since it is predominantly sourced from rabbit skeletal muscle. The

differences in biochemical properties and affinity for actin-binding

proteins between muscle and non-muscle actin can be significant

(Herman, 1993) and introducing actin from a different species or an

isoform that does not normally exist in the cell could potentially result in

artefactual behavior (Tseng and Pollard, 1982). Non-muscle actin can be

purified from other sources, such as brain or platelets, although it will

always be present as a mix of β- and γ-actin (Schafer et al., 1998). To

isolate a specific non-muscle isoform, it would need to be generated from

either a knockout animal or a recombinant system (Bergeron et al.,

2010). Purified actin also needs to be introduced by microinjection or

electroporation, which is not amenable to all cell types, and the

experimental window is limited to the half-life of the labeled actin.

Fluorescent protein (FP)-labeled actin has the advantage of being

genetically encoded and can be stably expressed in cells. FP–actin can

be made in a variety of colors, including photoactivatable and

photoconvertible versions for pulse-chase experiments (Lippincott-

Schwartz and Patterson, 2009). However, a concern of incorporating a

large tag onto actin is that it may interfere with assembly or binding

partner interactions. FP–actin can co-polymerize with unlabeled actin or

form pure filaments with approximately the same critical concentration as

non-labeled actin (Aizawa et al., 1997; Choidas et al., 1998; Liu et al.,

2004; Westphal et al., 1997). However, in yeast, replacement of the actin

gene with GFP–actin is lethal (Wu and Pollard, 2005), and to date there

have been no reports of homozygous gene replacement with FP-labeled

actin in higher eukaryotes. Heterozygous gene replacement of β-actin in

human iPSCs does give viable cells, but they exhibit a significantly

reduced expression of the FP–actin (Roberts et al., 2017). If filaments are

composed of more than 30% FP–actin, they will bind to myosin, but

exhibit movement defects in in vitro gliding assays (Aizawa et al., 1997;

Westphal et al., 1997) caused by an interaction between the FP and

myosin (Agbulut et al., 2007). In lower eukaryotes, such as fission yeast,

Dictostelium and C. elegans, FP–actin will not localize to formin-based

structures like the cytoplasmic ring (Carvalho et al., 2009; Chen et al.,

2012; Wu and Pollard, 2005). However, in mammalian cells, FP–actin

can label the cytokinetic ring (Murthy and Wadsworth, 2005; Zhou and

Wang, 2008) and FP–actin monomers require formin activity for optimal

translocation to the leading edge (Vitriol et al., 2015). Thus, the issue of

formin exclusion of FP–actin appears to be most relevant for non-

vertebrate model systems, although rigorous experiments have not been

performed with vertebrate formins. In summary, there is no perfect, one-

size-fits-all approach to labeling actin for live-cell fluorescence imaging.

Both techniques have been successfully used in a number of

experiments. Dye-labeled actin is likely the best choice if

microinjection or electroporation is an option. However, there are many

cases where FP–actin would be adequate, and even preferred, if

parameters such as isoform-type of the labeled actin or the need to

pulse-label a specific actin population are essential. Importantly, findings

generated with any type of exogenous actin should be validated with

additional experiments.
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cell division. The next challenge will be to incorporate these

individual puzzle pieces into a single, comprehensive picture and,

as this Review contends, one that takes into account the active

contribution of the actin monomer. Mathematical models that

incorporate actin monomers and their interactions with binding

proteins have provided a promising means to start addressing some

of these unresolved questions (Boujemaa-Paterski et al., 2017;

Ditlev et al., 2013; Kapustina et al., 2016; Novak et al., 2008;

Vitriol et al., 2015). However, many aspects still require more

work. For example, it is clear that β- and γ-actin have distinct

mechanistic roles in cellular actin physiology and organism

development (Perrin and Ervasti, 2010), though it is still unclear

as to why this is. Developing a map of β- and γ-actin localization

with single or even sub-filament resolution to detect their

preferentially assembly into different structures would help to

better understand how they are recognized and used by the cell as

different entities. It would be equally valuable to obtain a map of all

localized profilin molecules, and analyze whether or not they are

bound to actin monomers and/or Tβ4 to determine how the

interplay and competition of these two factors controls the

assembly of specific actin networks. It is also unknown exactly

how much influence specific pools of actin monomers have on

actin physiology; that is, if they have a general role in actin

polymerization or if they are exclusively reserved for bursts of actin

assembly into specialized structures. Finally, there is now strong

evidence that actin can also diffuse through the cytoplasm as an

oligomer (Raz-Ben Aroush et al., 2017; Smith et al., 2013). The

extent to which oligomers exist in different cell types and the roles

they play in cytoskeletal dynamics remain to be determined. Either

way, we can no longer view G-actin as a passive factor in actin

filament assembly and behavior of the actin network. It will be

exciting to see the field define how actively G-actin regulates

cytoskeletal dynamics in the upcoming years.
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can be visualized in fixed cells with monomer-specific probes
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illumination super-resolution images show the same cell

stained with both phalloidin, to visualize F-actin, and vitamin

D-binding protein, to visualize actin monomers. The vitamin

D-binding protein image is pseudocolored to emphasize

changes in fluorescence, with warmer colors representing

increased fluorescence. Actin monomers can be seen

localized to the leading edge. (B) G-actin can be visualized in

live cells by measuring rapid changes in fluorescently labeled

actin. Here, a pulse-chase experiment is performed using actin

labeled with photoactivatable GFP. After photoactivation (PA,

occurring in the region marked by the dotted circle), the actin is

highlighted and can be followed over time. The G-actin rapidly

diffuses away from the PA region in seconds (represented by

the arrows in the magnified image), which is emphasized by

the middle panel showing a larger image of the cell two

seconds after actin was photoactivated. (C) A representative

graph from this type of experiment shown in B, highlighting

which parts of the fluorescence decay curve are due to

diffusion of monomers away from the photoactivated region

and which parts arise from the disassembly of F-actin that

occurs on a slower time scale. Images in A are similar to those

published in Lee et al., 2013; images in B are similar to those

published in Kapustina et al., 2016.
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