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Reconstructed eight-century streamflow in
the Tibetan Plateau reveals contrasting
regional variability and strong
nonstationarity

Yenan Wu 1, Di Long 1 , Upmanu Lall 2, Bridget R. Scanlon 3,
Fuqiang Tian 1, Xudong Fu1, Jianshi Zhao1, Jianyun Zhang4, Hao Wang5 &
Chunhong Hu5

Short instrumental streamflow records in the South and East Tibetan Plateau
(SETP) limit understanding of the full range and long-term variability in
streamflow, which could greatly impact freshwater resources for about one
billion people downstream. Here we reconstruct eight centuries (1200−2012
C.E.) of annual streamflow from the Monsoon Asia Drought Atlas in five
headwater regions across the SETP. We find two regional patterns, including
northern (Yellow, Yangtze, and Lancang-Mekong) and southern (Nu-Salween
and Yarlung Zangbo-Brahmaputra) SETP regions showing ten contrasting wet
and dry periods, with a dividing line of regionalmoisture regimes at ~32°−33°N
identified. We demonstrate strong temporal nonstationarity in streamflow
variability, and reveal much greater high/low mean flow periods in terms of
duration and magnitude: mostly pre-instrumental wetter conditions in the
Yarlung Zangbo-Brahmaputra and drier conditions in other rivers. By contrast,
the frequency of extreme flows during the instrumental periods for the
Yangtze, Nu-Salween, and Yarlung Zangbo-Brahmaputra has increased by ~18%
relative to the pre-instrumental periods.

Headwater regions of major rivers emanating from the South and East
Tibetan Plateau (SETP) (e.g., the Yarlung Zangbo-Brahmaputra, Nu-
Salween, Lancang-Mekong, Yangtze, and Yellow rivers), a major com-
ponent of the Asian water towers, are considered one of “climate
change hotspots1,2”, supplying water resources to about one billion
people for irrigation, domestic, and industrial purposes3–5. The Sixth
Assessment Report (AR6) of the Intergovernmental Panel on
Climate Change (IPCC)6 indicates that the TP is subjected to increasing
extreme heat and heavy precipitation under climate change. Thus, the

combined effects of climate change and human intervention have
impacted the atmospheric and hydrological cycles and reshaped the
local environment on the TP7, raising major concerns about extreme
conditions (e.g., floods and droughts), water supply, and food security
for downstream countries8–10.

Streamflow variation is the product of multiple interactions in the
Earth system and is directly affected by climate change and human
intervention11. The combined effects of spatiotemporal variations
in precipitation, evapotranspiration, and meltwater under climate
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change have led to changes in the hydrological regime over the TP,
resulting in nonstationary behavior and varying characteristics in
observed streamflow12. Relatively short records (<six decades) of
gauging stations across the TP present a challenge for understanding
the full range andmulti-decadal to centennial variability in streamflow,
because climate variables often have a long memory13,14. Therefore,
whether trends in observed streamflow over the headwater regions
reflect natural variability or represent a substantial change outside of
long-term variability remains unclear. Improved projections of future
streamflow and climate adaptation plans require a comprehensive
understanding of how recent streamflow compares to past
streamflow15, as well as understanding climate drivers of streamflow.

Natural geological and biological proxies, such as ice cores, lake
and marine sediments, tree rings, and corals over the past several
centuries16,17 record a large range of natural variability covering pre-
instrumental periods. A number of studies have attempted to recon-
struct streamflow for gauging stations in major rivers emanating from
the TP. Most of these studies selected tree-ring chronologies as proxy
data18,19. Cook et al.20 and Rao et al.15 reconstructed streamflow from
tree rings for the Upper Indus basin using different regression meth-
ods, demonstrating that reconstruction can be done by various sta-
tistical approaches. A streamflow reconstruction for the middle reach
of the Yellow River21 shows that observed streamflow has declined by
50% since the late 1960s compared to the reconstructed natural
streamflow, indicating that human activities are the main factor lead-
ing to the reduction. Liu et al.22 demonstrated that this streamflow
reduction also led to a reduction in sediment load in the Yellow River.
Rao et al.3 reconstructed streamflow in the Lower Brahmaputra River
over the past seven centuries, highlighting that instrumental records
may underestimate the return period for high flows by 24−38%. Some
studies reconstructed streamflow in the headwater region of major
rivers from the TP, such as the Yangtze23,24, Lhasa (a tributary of the
Yarlung Zangbo-Brahmaputra)25, Lancang-Mekong26, and Yellow27,28

rivers and identified exceptionally dry/wet conditions during the pre-
instrumental time, quasi-periodic variation in long-term streamflow,
and linkage with large-scale climate patterns. These studies mainly
focused on individual basins in the TP; therefore, a regional and
comprehensive understanding of long-term streamflow across head-
water regions in the SETP is still lacking.

Irregular spatial distribution of tree-ring sites and unequal lengths
of tree-ring chronologies limit streamflow reconstruction using these
proxies over large areas. The Living Blended Drought Atlas (LBDA)29, a
tree ring-based paleoclimate reconstruction for the Palmer Drought
Severity Index (PDSI) across the contiguous United States, provides a
reliable paleoclimatic proxy to reconstruct streamflow30 and extreme
precipitation in certain seasons31. Similarly, theMonsoon Asia Drought
Atlas version 2 (MADAv2), a gridded PDSI product extending over a
millennium or even longer across the Asianmonsoon region, has been
applied to reconstruct streamflow in Monsoon Asia32. Here, we
extended the short instrumental record (~30–50 years) by recon-
structing annual streamflow across the SETP over ~800 years
(1200–2012) using MADAv2 and a log-linear model, covering gauging
stations on five major rivers: (1) Tangnaihai (TNH) on the Yellow, (2)
Zhimenda (ZMD) on the Yangtze, (3) Changdu (CD) on the Lancang-
Mekong, (4) Jiayuqiao (JYQ) on the Nu-Salween, and (5) Nuxia (NX) on
the Yarlung Zangbo-Brahmaputra rivers.

This work includes the large regional extent of the reconstruction
and the discoveryof contrasting spatial variability and strong temporal
nonstationarity in streamflow across the SETP over the past eight
centuries. Specifically, we identify two regional patterns in streamflow
variability between the northern (i.e., TNH, ZMD, and CD) and south-
ern (JYQ and NX) SETP and detect ten prolonged spatially contrasting
wet and dry periods over the past eight centuries. Temporal variability
in streamflow at the five gauging stations shows strong nonstationarity
in terms of mean values and probability distributions. We reveal much

greater high/low flow periods during the pre-instrumental records
than themean values of the instrumental records:wetter in theYarlung
Zangbo-Brahmaputra and drier in other rivers, indicating that the
instrumental records underestimate the full range of long-term
streamflow variability. Frequency of reconstructed extreme wet/dry
years during the instrumental periods for the ZMD, JYQ, and NX gau-
ging stations has increased by ~18% on average relative to the fre-
quency of extreme conditions during the pre-instrumental periods.
Furthermore, the spatiotemporal variability in streamflow is tele-
connected with the combined effects of El Niño Southern Oscillation
(ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation
(NAO), and Indian Ocean Dipole (IOD)modes. Findings from this work
provide a better understanding of changes in regional hydrological
regimes across the SETP, serving as a basis to improve projections of
future streamflow and to enhance climate adaptation plans for this
region and relevant countries.

Results
Model validation and reconstructed streamflow analysis
Log-linear models were individually built to quantify the relationship
between the log-transformedannual streamflowand thefirst canonical
variate of site-specific PDSI grid cells by canonical correlation analysis
(CCA), to implement a paleo streamflow reconstruction in the SETP.
CCA has been widely applied for dimension reduction while max-
imizing correlations between predictors and target variables33 (see
“Methods”). Reconstructed annual streamflow at the five gauging sta-
tions matches observed streamflow well during 1961−2012, explaining
64‒70% of the variance in the observed streamflow (Supplementary
Fig. 1). Model residuals for reconstructed streamflow are normally
distributed. Five cross-validationmetrics were calculated to assess the
predictivepower of the reconstructionmodels. Basedon results of 100
times of Leave-m-Out Cross-Validation (LMOCV),medians of the cross-
validation reduction in error (CVRE) over the calibration period
(Fig. 1b) range from 0.64 to 0.71, indicating that the reconstructed
streamflow contains valuable information beyond the calibration
period. Medians of the coefficient of efficiency over the validation
period (VCE) for all gauging stations range from 0.60 to 0.69,
demonstrating that reasonable streamflow reconstructions were
derived for each gauge. In addition, the VCE values are not significantly
lower than the corresponding CVRE values, meaning that the recon-
struction models do not overfit the data. The Kling-Gupta Efficiency
(KGE) index was used to consider the correlation, bias, and variability
between instrumental records and reconstructed streamflow34. Med-
ians of KGE values range from 0.71 to 0.79, showing that our recon-
struction models perform well. Both the calibration R2 (CRSQ,
coefficient of determination over the calibration period) and valida-
tion R2 (VRSQ) also indicate good performance. A value of 1.0 would
indicate perfect model fit for all five indices. Overall, means of cross-
validation statistics of CVRE, VCE, CRSQ, VRSQ, andKGE across the five
gauges range from 0.64 to 0.75 (Fig. 1c), indicating good skill and
reliability of the long-term annual streamflow reconstructions.

Spatial variability in reconstructed streamflow over the SETP
To develop a regional and comprehensive understanding of the five
long-term streamflow series together, principal component analysis
(PCA) was used to extract the leading modes of variability and to
preserve the common information in streamflow. The first two leading
PCs together explain ~70% of the total variance, with their associated
spatial patterns shown in Fig. 2. PC1 (38% of variance explained) is a
mode of variability that is largely affected by the difference between
northern and southern study regions, which has highly positive load-
ings on TNH, ZMD, and CD but negative loadings on JYQ and NX
(Fig. 2a, b). PC1 results show several marked negative streamflow
anomalies during 1250s–1310s, 1430s–1490s, and 1910s−1930s and
positive streamflow anomalies during 1210s–1250s, 1350s–1390s,
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1520s–1580s, 1610s–1620s, 1760s–1780s, and 1890s–1910s. The long-
est low flow period during 1430s–1490s and part of the high flow
periods are consistent with previous tree ring-based streamflow
reconstructions at the ZMD gauge23. The longest and most severe
negative streamflow anomalies were detected in PC1 during
1430s–1490s. This finding is also consistent with increased micro-
particle concentrations in Dunde ice cores (38°6'N, 96°24'E) in the
northeast TP during 1430−1520, showing that the northern TP was
subjected to a dry and cold period during that time35.

PC2 (32% of variance explained) is a mode of variability that is
comprised of negative loadings in the southern study region (Fig. 2c,
d). Both PC1 and PC2 time series and their 10-year moving averages
suggest that streamflow deficits and surpluses in the pre-instrumental
period were more severe in terms of both magnitude and duration
than those during the instrumental period. Negative streamflow
anomalies during 1920s−1930s were detected in both PC1 and PC2,
consistentwith the large-scale severe drought inNorthwest China28. By
using a continuous wavelet transform (CWT) analysis36, we revealed
that both PC1 and PC2 of reconstructed streamflow generally exhibit
statistically significant oscillations at interannual (2‒8 years) andmulti-
decadal (>100 years) periodicities over the past eight centuries and
some intermittent decadal to multi-decadal oscillations during the
post‒1600s (Supplementary Fig. 2).

A hierarchical clusteringmethod with correlation as the similarity
metric37 was used to further identify regional patterns in streamflow at
the five gauging stations (Fig. 2e). The 50-year low pass reconstructed
streamflow at the five gauging stations was grouped into two clusters.
In particular, the group formed by the reconstructed streamflow at

TNH (Yellow), ZMD (Yangtze), and CD (Lancang-Mekong) represents a
regional pattern of streamflow variability in the northern SETP. The
other cluster consists of the reconstructed streamflow at JYQ (Nu-
Salween) andNX (Yarlung Zangbo-Brahmaputra) in the southern SETP.
The annual, 10-year low pass, and 30-year low pass reconstructed
streamflow also shows consistent clustering results (Supplemen-
tary Fig. 3).

Given the two spatial patterns in streamflow variability over the
SETP, ten prolonged contrasting wet and dry periods were identified
between the northern and southern SETP based on the 50-year low
pass reconstructed streamflow over the past eight centuries. Wet
periods in the northern SETP but dry periods in the southern SETP
occurred in 1215‒1259, 1362‒1370, 1419‒1434, 1737‒1751, and 1893‒
1915. In contrast, dry periods in the northern SETP but wet periods in
the southern SETP occurred in 1263‒1308, 1455‒1480, 1636‒1656,
1865‒1887, and 1931‒1952. This contrasting spatial pattern alsoappears
in the proxy data ofMADAv2 PDSI for the sameperiod (Supplementary
Fig. 4). The first principal component (PC1North, 72% of variance
explained) of 71 PDSI grid cells in the northern region and the first
principal component (PC1South, 45% of variance explained) of 45 PDSI
grid cells in the southern region (Supplementary Fig. 4) show a sig-
nificant negative correlation (r = −0.59, p <0.001, n = 813) during
1200−2012. These findings may reflect a distinct difference in water
vapor delivery between the northern and southern SETP by a dividing
line at ~32°−33°N (Supplementary Fig. 4). The water vapor division is
expected to influence soil moisture in different regions and, subse-
quently, reflected in contrasting streamflow variability over the SETP
during the past eight centuries.

Fig. 1 | Study region and cross-validation results at five gauging stations. a The
red line shows the domain of the Tibetan Plateau. Red triangles denote gauging
stations in headwater regions, i.e., from north to south, Tangnaihai (TNH) on the
YellowRiver, Zhimenda (ZMD)on theYangtzeRiver, Changdu (CD)on the Lancang-
Mekong River, Jiayuqiao (JYQ) on the Nu-Salween River, and Nuxia (NX) on the
Yarlung Zangbo-Brahmaputra River. Grey + symbols denote locations of Palmer
Drought Severity Index (PDSI) predictors used in this study. Green trees denote
open-sourced tree-ring chronologies located in or surrounding the South and East
Tibetan Plateau (SETP). Shaded areas represent significantly correlated areas at a

0.05 significance level between reconstructed streamflow at the ZMD gauging
station and Climate Research Unit (CRU) precipitation for each grid cell. bMedians
of cross-validation results for 100 samples at each gauge, a perfect model would
have all these five indices equal 1.0. c Radar plots showingmeans of five indices for
all gauging stations. d The black box (a) denotes the area used to average pre-
cipitation to perform linear regression between annual streamflow at the ZMD
gauge and spatially averaged annual CRU precipitation. Spatial correlation maps
and linear regressions between CRU precipitation and annual streamflow for the
other four gauges (TNH, CD, JYQ and NX) are shown in Supplementary Fig. 6.
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Temporal variability in reconstructed streamflow at the five
gauging stations
We evaluated how recent temporal variability in instrumental
streamflow, including mean state variations (Fig. 3) and probability
distributions (Supplementary Fig. 5), has changed relative to the pre-
instrumental record over the past eight centuries at the five gauging
stations. A 52-year (33-year for the JYQ) moving window was run
backward along the reconstructed streamflow (black lines in Fig. 3) to
conduct a straightforward comparison with the mean state of
observed data from 1961 to 2012 (1980−2012 for JYQ). Overall, these
moving mean time series varied significantly across the five gauging
stations, showing several low flow periods at TNH, ZMD, CD, and JYQ
and high flowperiods at NX that weremore severe than themean state
of the instrumental records. These time series provide evidence of
nonstationarity in streamflow during the past eight centuries, indi-
cating that the instrumental records do not represent the full range of
streamflow variability.

For TNH (Yellow River), there are two high flow periods and four
low flow periods that exceed the 95% confidence interval (CI) esti-
mated by block bootstrap methods (red dotted lines) and are also
evidenced by p-values of the significance test (buff bars in Fig. 3a, see
“Methods”). Wet periods around the 1240s and 1530s, and dry periods
around the 1280s, 1460s, 1640s, and 1810s detected in the recon-
structed streamflowwere also shown in previous studies27,28,38. The dry
flow period around the 1460s was identified as the most severe and
longest drought over the past eight centuries. The 30-year moving
average streamflow series at TNH (grey lines in Fig. 3a)matches the 52-
year moving average series during 1200–1500s, but exhibits larger
variability than the 52-year moving average from the mid-1500s
onward. This indicates that shorter variation cycles exist in the
reconstructed streamflow. Nevertheless, both moving time series

show strong nonstationarity in streamflow at TNH over the past eight
centuries.

For ZMD (Yangtze River), most of 52-year and 30-year moving
averages over the past eight centuries are located below the 95% CI,
demonstrating that streamflow during the pre-instrumental period is
statistically lower than the instrumental record, except for four high
flow periods around the 1240s, 1360s, 1550s, and 1760s (Fig. 3b). The
low flow periods around the 1470s, 1650s, and 1920s were also
detected by tree ring-based streamflow reconstructions over head-
waters of the Yangtze River24. Moderately high correlation (r =0.77,
p <0.001) was found between the reconstructed streamflow
(1961–2012) at ZMDandprecipitation (CRUTS4.0, black box in Fig. 1a).
Therefore, high precipitation in the headwater region contributes to
the observed high flow at ZMD.

Reconstructed streamflow at CD (Lancang-Mekong River)
experienced two multi-year dry periods around the 1300s and 1470s,
and a century-long dry period centered in the 1680s, significantly
lower than the instrumental record (Fig. 3c). Dry periods around the
1690s, 1740s, and 1910s and wet periods around the 1810s and 1900s
identified in the reconstructed streamflow match closely tree ring-
based streamflow reconstructions at the Xiangda gauging station
located upstream of CD26. Durations of consecutive extreme high/low
flowperiods after 1800were generally shorter than those before 1800,
and the magnitude of change in streamflow is not as large as that
before 1800.

For JYQ on the Nu-Salween River, two major low flow periods
(33-year moving window) around the 1420s and 1700s significantly
differ from the observed streamflow (Fig. 3d). A low flow period
occurred around the 1580s, despite not statistically significant,
and coincided with the collapse period of the First Toungoo
Empire39. The plague outbreak in Myanmar in the late 1590s

Fig. 2 | Leading principal components (PCs) of five reconstructed streamflow
series and the dendrogram based on each 50-year low pass reconstructed
streamflow series during 1200−2012. a, b are the first leading PCs and associated
spatial patterns, respectively. c, d are the second PCs and associated spatial

patterns, respectively. Grey lines represent the PC time series. Black lines represent
the 10-year moving average of the PC values. e Dendrograms and cluster spatiali-
zations in two clusters based on the scaled 50-year low pass reconstructed
streamflow for the five gauging stations.
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accelerated the fall of the First Toungoo Empire40. For NX on the
Yarlung Zangbo-Brahmaputra River (Fig. 3e), there are four major
high flow periods (around the 1300s, 1470s, 1720s, and 1950s) that
significantly differ from observed streamflow, with the highest mean
flow of ~2300m3/s during 1449–1500, ~20% higher than the observed

streamflow. Three low flow periods prior to the 1600s are barely
below the 95% CI.

Overall, the moving mean time series of the reconstructed
streamflow at the five gauging stations demonstrate strong non-
stationarity over the past eight centuries. Probability distributions of

Fig. 3 | Reconstructed streamflow time series basedonbackwardmovingmean
for the five gauging stations in headwater regions of major rivers in the South
and East Tibetan Plateau (SETP). a Tangnaihai (TNH, Yellow); b Zhimenda (ZMD,
Yangtze); c Changdu (CD, Lancang-Mekong); d Jiayuqiao (JYQ, Nu-Salween); and
e Nuxia (NX, Yarlung Zangbo-Brahmaputra). Black lines for all gauging stations
represent time series of 52-year (33-year for JYQ) moving means for annual
streamflow reconstructions. Grey lines represent 30-year moving averages. Buff

bars show periods with statistically significant differences (p <0.05) between the
reconstructed streamflow within a 52-year (33-year for the JYQ) moving window
and the observed streamflow (1961–2012) based on 2-sided t-test statistics. Values
of the buff bars represent different significant levels but all p-values are lower than
0.05. Red dotted lines show the 95% confidence interval of mean values based on
observed data. Blue dotted lines show the instrumental mean during 1961−2012
(1980−2012 for JYQ).
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reconstructed streamflow within many 52-year moving windows (33-
year for JYQ) significantly differ (p < 0.05) from thatof observations for
each river basin, indicating that the pre-instrumental record generally
shows larger variations than the observed streamflow (Supplementary
Fig. 5). In addition, the probability distribution of the long-term
reconstructed streamflow (1200–1960) at ZMD (Yangtze) also sig-
nificantly differs from that of the instrumental record (Supplementary
Fig. 5). These results clearly show the nonstationarity in streamflow
over the past eight centuries in terms of both the mean state and
probability distribution. Precipitation in the upper reaches of each
river basin is the main water source of streamflow, showing strong
correlation with reconstructed streamflow ranging from 0.64 to 0.87
(Fig. 1d and Supplementary Fig. 6).

Teleconnections between reconstructed streamflow and large-
scale climate patterns
To identify impacts of major climate drivers on streamflow over the
study region, wavelet coherence analysis (WCA) was used to investi-
gate the coherence between the leading PCs of reconstructed
streamflow and several paleo records of large-scale climate patterns,
including ENSO, PDO, IOD, and NAO.WCA is a time-frequency domain
approach that characterizes the dynamic relationship between
reconstructed streamflow and a climate index of interest36. To further
examine the climate drivers for the periodic oscillations in streamflow
for each gauging station, Ensemble Empirical Mode Decomposition
(EEMD)41 was also applied to decompose the reconstructed streamflow
and paleo records of large-scale climate patterns into a finite number
of components corresponding to different frequencies (Supplemen-
tary Fig. 7 and Supplementary Table 2).

ENSO (theNino 3.4 term) clearly shows significant coherencewith
both PC1 and PC2 of the five reconstructed streamflow time series at
interannual (2–8 years) and decadal (8–20 years) variability through-
out different time periods (Fig. 4a, e). There is also strong coherence
betweenPC1 andENSOat amulti-decadal timescale (~64 years and ~128
years) between the 1300s and 1500s (Fig. 4a). The EEMD results also
demonstrate that ENSO shows significant correlation with the recon-
structed streamflow for the five gauging stations at different time-
scales (Supplementary Fig. 7). PDO generally shows significant
coherence with streamflow at decadal (~16 years) timescales, multi-
decadal scales (~64 years) during the post-1700s in PC2, and centennial
timescales over the pre-1400s in PC 1−2 (Fig. 4b, f). The significant
global power of PC1 (Supplementary Fig. 2) at multi-decadal (>100
years) periodicities may be attributed to the modulating effects of
both ENSO and PDO (Fig. 4a, b).

NAO influences streamflow at multi-decadal timescales. For
example, there is significant coherencebetween PC1 andNAOat 32−64
year scales over the 1450s−1600s and 16−50 year scales over the post-
1850s (Fig. 4c). The two long-termmulti-decadal scales in PC2 over the
pre-1800s (~ 200 years) and the post-1820s (~ 64 years) are outside the
cone of influence (Fig. 4g). The low-frequency oscillations (>64 years)
in PC2 arehighly influencedbyNAO (Supplementary Fig. 2 andFig. 4g).
The WCA between IOD and reconstructed streamflow shows that in
addition to three significant coherence timescales at 4–10 years, there
is a persistent, significant coherence at a multi-decadal timescale of
16–40 year periodicity from 1870 to 2012, implying that low-frequency
variations of IOD may exert a large influence on multi-decadal
streamflow variability during the recent century (Fig. 4h and Supple-
mentary Fig. 7). This finding demonstrates that the recent change in
streamflow over the study region may be partly related to recent
Indian Ocean warming42.

Overall, the WCA between leading PCs of reconstructed stream-
flow and large-scale climate patterns combined with the EEMD results
(Supplementary Fig. 7) suggests that ENSO is the dominant climate
pattern that modulates reconstructed streamflow together at inter-
annual, decadal, and multi-decadal timescales. PDO modulates the

decadal and multi-decadal variability of reconstructed streamflow
simultaneously. NAO is the dominant climate pattern that affects
multi-decadal variability in reconstructed streamflow. The IOD index is
another pattern that controls streamflow variability in PC2 at decadal
to multi-decadal timescales. Significant coherence between PDO and
NAOwith regard to leading PCs shows that the dominant periodicity at
multi-decadal timescales has become shorter in recent centuries,
which may result in shorter persistence of wet and dry periods com-
pared to that in the past.

In addition, possible effects of different phases of large-scale cli-
mate patterns on the long-term reconstructed streamflow were
examined using a composite analysis (Supplementary Figs. 8‒9). A
composite ratio was calculated based on mean streamflow anomalies
corresponding to different phases of climate indices to long-term
mean streamflow (see “Methods”). Composite ratios greater than 1
denote positive streamflow anomalies under this extreme climate
condition. La Niña (El Niño) is typically associated with increasing
(decreasing) streamflow for all gauging stations (except TNH, Sup-
plementary Fig. 8). During La Niña years, i.e., the cold phase of ENSO,
strong southwesterly winds bring abundant water vapor originating
from the Bay of Bengal, Arabian Sea, and the tropical Indian Ocean,
resulting in increasedprecipitation, and viceversa39,43. Thewarm (cold)
phase of PDO is typically associated with increasing (decreasing)
streamflow at the TNH and ZMD gauging stations and decreasing
(increasing) streamflow at the JYQ and NX gauging stations (the right
panel of Supplementary Fig. 8). The negative (positive) phase ofNAO is
typically associated with decreasing (increasing) streamflow at the
TNH gauging stationwhile fluctuating around zero (i.e., the composite
ratio equals 1) at the other four gauging stations (the left panel of
Supplementary Fig. 9). Different phases of IOD do not show opposite
effects on annual streamflow (the right panel of Supplementary Fig. 9).
Composite results for each gauge have relatively large variances
(boxplots with long whiskers in Supplementary Figs. 8‒9), reflecting
the combined effects of two or more climate indices on streamflow at
different timescales.

We further investigated possible effects of different phases of
climate indices on the contrasting wet and dry streamflow variability
during 1850−2012 (the common period of the four large-scale climate
patterns). Three contrasting wet and dry periods during 1865−1887,
1893−1915, and 1931−1952 (Fig. 2c) are highly associated with the low-
frequency oscillation of ENSO44 and NAO45,46 (Supplementary Fig. 10).
Dry conditions in the northern SETPbutwet conditions in the southern
SETP during 1865−1887 and 1931−1952 were subjected to a negative
phase of ENSO and NAO. The positive phase of ENSO and NAO may
teleconnect with wet conditions in the northern SETP and dry condi-
tions in the southern SETP during 1893−1915. Therefore, streamflow
anomalies in response to the interactions between ENSO and NAO
were investigated using the composite analysis (Supplementary
Fig. 11). We found a synchronous effect of ENSO and NAO on stream-
flow across the study region. The combined effects of El Niño and
positive NAO generally resulted in higher (lower) streamflow anoma-
lies at TNH (CD, JYQ, and NX) relative to the effects of a single climate
pattern. However, when ENSO and NAO are out of phase, ENSO is the
major factor that controls the streamflow anomalies.

Frequency of extreme wet/dry conditions based on recon-
structed streamflow
To examine whether temporal variations and percentages of extreme
streamflow conditions in the study region over the past eight centuries
have changed, numbers of extreme wet/dry years for each decade
were counted based on the reconstructed annual streamflow, as
opposed to the 52-year moving average time series in the temporal
variability discussed above. In addition, we subdivided the historical
period into (1) the reconstruction (pre-instrumental) periods for
1200‒1960 (1200‒1979 for JYQ) and (2) the observation periods
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(instrumental) for 1961‒2012 (1980‒2012 for JYQ). The extreme wet/
dry years were identified based on a threshold of long-term mean
streamflow± 1 standard deviation. Reconstructed streamflow in the
headwater regions can reasonably capture the extreme wet/dry years
based on comparison of simulated and instrumental records (Fig. 5f‒j)
during 1961‒2012.

The long-term reconstructed streamflow revealed extreme wet/
dry conditions that more frequently and consecutively occurred
during certain periods (i.e., 1470–1490s for ZMD, 1420–1440s for
JYQ, and 1450–1490s for NX) based on the numbers of extreme wet/
dry years counted per decade (Fig. 5a‒e). However, percentages
of extreme years during the instrumental periods for the ZMD
(Yangtze), JYQ (Nu-Salween), and NX (Yarlung Zangbo-Brahmaputra)
gauging stations have increased by ~18% on average relative to the
reconstructed streamflow during the pre-instrumental periods

(Fig. 5f‒j), indicating that these three gauging stations have experi-
enced more extreme conditions during the instrumental periods.
During the recent five decades, extreme flows at TNH (Yellow) have
decreased by ~9%, compared to those during the pre-instrumental
period. Streamflow at ZMD (Yangtze) shows ~37% of years experi-
encing extreme wet conditions, which is much higher than that (12%)
during the pre-instrumental period. This indicates that the percen-
tage of extreme wet years has significantly increased across the
headwaters of the Yangtze River (Fig. 5b, g). For CD (Lancang-
Mekong), streamflow shows small variations during the last century
with ~70% of normal years, and the percentage of extreme years
during the instrumental period is similar to the pre-instrumental
period. Both JYQ (Nu-Salween) and NX (Yarlung Zangbo-Brahmapu-
tra) have shifted from dry-year dominant to wet-year dominant per
decade during the past five decades (Fig. 5d, e).

Fig. 4 | Wavelet coherence analysis between leading principal components
(PCs) of reconstructed streamflow and large-scale climate patterns. a–d show
the wavelet coherence between PC1 of reconstructed streamflow and four large-
scale climate patterns, i.e., El Niño Southern Oscillation (ENSO), Pacific Decadal
Oscillation (PDO), North Atlantic Oscillation (NAO), and Indian Ocean Dipole (IOD)
that significantly affect PC1 of reconstructed streamflow. Wavelet coherence ana-
lysis between PC2 of reconstructed streamflow and the four large-scale climate

patterns is shown in e–h. Solid black contours enclose the statistically significant
coherence at a 5% significance level of the white noise process. White lines repre-
sent the cone of influence. Color bar represents coherence ranges from low (blue)
to high (red).With different lengths of paleoclimate records, thewavelet coherence
analysis between leading PCs and different climate indices is based on their over-
lapping periods.
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Discussion
We systematically reconstructed past eight centuries of streamflow
and examined long-term streamflow variability, spatiotemporal pat-
terns, and climate linkages for headwaters of five major rivers (i.e.,
the Yarlung Zangbo-Brahmaputra, Nu-Salween, Lancang-Mekong,
Yangtze, and Yellow) in the SETP. This comprehensive assessment
contrasts most published studies of paleo reconstructions over the
TP that mainly focused on single basins without an opportunity to
consider spatially contrasting streamflow variability. Our recon-
structions fit well with observed streamflow during instrumental
periods (1961–2012, but 1980‒2012 for JYQ on the Nu-Salween River),
accounting for 64–70% of the variance of the observed streamflow,
suggesting high reliability. All of the cross-validation indices
show good skill in reconstructing streamflow at the five gauging
stations.

There have been several streamflow reconstruction studies based
on tree-ring proxy data over the headwater regions27,28 and the middle
and downstream reaches21,22,32 of the five river basins. Our recon-
structions using CCA coupled with the log-linear regression approach
explain a higher percentage of the variance (67%) in the instrumental
records, compared to other reconstructions using simple linear
regression at TNHon the YellowRiver (e.g., 4327 and 49%of variance28).
There are two major streamflow reconstruction studies on the head-
waters of the Yangtze River with relatively lower variance explanations
(4323 and 45%24) relative to ours (68%). Our reconstruction results are
consistent with their conclusions that the longest low flow period was
during 1450‒1490. However, due to their lower variance explanation,

they did not conclude that streamflow at ZMD on the Yangtze River
during the instrumental period was much higher relative to the pre-
vious eight centuries.

Amajor streamflow reconstruction over the headwater regions of
the Lancang-Mekong River by ref. 26 provides annual streamflow from
1595‒2013.We extended the reconstructions back to 1200 and found a
more severe low flow period around the 1470s. Chen et al.39 recon-
structed annual streamflow from tree-ring chronologies for the Dao-
jieba gauging station on the lower reach of the Upper Salween River.
The low flow period around the 1750s detected in our reconstructions
at JYQ (Nu-Salween) and NX (Yarlung Zangbo-Brahmaputra) is gen-
erally consistent with tree-ring reconstructions at the lower reach of
the Upper Salween River39 and two hydroclimate reconstructions at
the lower Salween River47 and the lower Mekong River48, indicating
that Southeast Asia was subjected to a large-scale drought during that
time. Precipitationwas reconstructed to reveal long-termprecipitation
variations in the Salween49 and Brahmaputra River basins43. However,
few attempts were made to reconstruct long-term streamflow
for headwater regions of the Nu-Salween and Yarlung Zangbo-
Brahmaputra rivers. Our study demonstrates that MADAv2 could be
an alternative proxy dataset in reconstructing long-term streamflow
over the SETP. Incorporating more tree-ring chronologies to recon-
struct long-termstreamflowwould improve the results,which needs to
be further explored.

The spatial variability in streamflow across the five river basins is
grouped into two clusters, including the TNH (Yellow), ZMD (Yangtze),
CD (Lancang-Mekong) in the northern SETP, and JYQ (Nu-Salween) and
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Fig. 5 | Numbers of extreme wet/dry years counted per decade and total per-
centages of extreme years based on reconstructed and observed streamflow
for the five gauging stations. (a and f) Tangnaihai (TNH, Yellow); (b and g) Zhi-
menda (ZMD, Yangtze); (c and h) Changdu (CD, Lancang-Mekong); (d and i)
Jiayuqiao (JYQ, Nu-Salween); and (e and j) Nuxia (NX, Yarlung Zangbo-Brahmapu-
tra). For Fig. 5 (f)–(j), stacked bar plots of ‘Recon’ represent percentages of extreme

years based on reconstructed streamflow during the pre-instrumental periods
(1200‒1960, but 1200‒1979 for JYQ), while the stacked bar plots of ‘Simu’ and
‘Obs’ represent percentages of extreme years based on reconstructed and
observed streamflow during the instrumental periods (1961‒2012, but 1980‒2012
for JYQ).
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NX (Yarlung Zangbo-Brahmaputra) in the southern SETP.Over the past
eight centuries, ten periods of prolonged contrasting south-north
streamflow variability were detected. MADAv2 PDSI data also suggest
the contrasting spatial pattern during 1200−2012 (Supplementary
Fig. 4). These findings may reflect a dividing line at ~32°−33°N for the
moisture delivery between the north and south SETP over the past
eight centuries. This is also consistent with previous studies showing
that there is a moisture dividing line along the Tanggula Mountains
(~33°N, Supplementary Fig. 4) between the north and south TP based
on observed summer precipitation46, water stable isotopes50, and tree-
ring reconstructions44. Zhang et al.44 reconstructed May–June PDSI
series from tree rings in the eastern TP over the past five centuries and
identified two periods, i.e., 1463−1502 and 1693−1734 when the north
was dry while the south was wet. Our findings agree well with their
results in the late 15th century, but we revealmore contrastingwet and
dry periods spatially and strong nonstationarity temporally in
streamflow variability over the past eight centuries. The disagreement
with Zhang et al.44 arises partly fromdifferent targeting reconstruction
variables, reconstructed seasons (annual versus May–June), and
methods applied.

Analysis of spatiotemporal variability across the five major rivers
based on leading PCs of reconstructed streamflow reveals that more
severe wet and dry periods in terms of both magnitude and duration
occurred during the pre-instrumental periods, compared to those
during the instrumental periods. Our reconstructions show that the
instrumental records underestimate the full range of long-term
streamflow variability. Both mean states and probability distributions
of observed streamflow differ significantly from reconstructed
streamflow within many of the 52-year (33-year for JYQ) moving win-
dows at the five gauging stations, demonstrating strong non-
stationarity in the long-term streamflow. In addition, the probability
distribution of observed streamflow at ZMD (Yangtze) differs sig-
nificantly from the long-term reconstructed streamflow during the
pre-instrumental period.

Assessment of climate teleconnections suggests that ENSO is the
dominant climate pattern that modulates the reconstructed stream-
flow throughout different time periods. PDO and NAO generally
influenced reconstructed streamflow together at multi-decadal time-
scales. The IOD index is another dominant climate driver influencing
streamflow variability at 4–40 year timescales during the recent cen-
tury. The contrasting spatial variability in streamflow over the SETP
may teleconnect with different phases of ENSO and NAO. Interactions
between ENSO-NAO show synchronous effects on streamflow across
the study region. When ENSO and NAO are in phase, streamflow
anomalies are generally amplified relative towhen climate patterns act
alone. The concurrent warm phase of ENSO-NAO tends to result in
positive streamflow anomalies at TNH on the Yellow River, suggesting
increasing flood risks, whereas they have negative streamflow
anomalies at CD (Lancang-Mekong), JYQ (Nu-Salween), and NX (Yar-
lung Zangbo-Brahmaputra), indicating increasing drought risks, and
vice versa. ENSO dominates streamflow variability when both ENSO
and NAO are out of phase. We reveal the teleconnections between
reconstructed streamflow and large-scale climate patterns at low-
frequency timescales (e.g., >50 years), which would help understand
the regional patterns over the SETP and improve predictive skill in
streamflow projections.

Water resource management, flood control, and drought mitiga-
tion are often based on extreme flows in observation series. The
nonstationary behavior of streamflow variability based on the exten-
sion of data back to eight centuries revealsmuch greater high/low flow
periods than the mean state of the instrumental records, mostly pre-
instrumental drier conditions in the Yellow, Yangtze, Lancang-
Mekong, and Nu-Salween rivers and wetter conditions in the Yarlung
Zangbo-Brahmaputra River. The long-term reconstructed streamflow
also reveals extreme wet/dry conditions that more frequently and

consecutively occurred during certain periods. By contrast, percen-
tages of reconstructed extreme years during the instrumental periods
for ZMD (Yangtze), JYQ (Nu-Salween), and NX (Yarlung Zangbo-Brah-
maputra) have increased by ~18% on average relative to the frequency
of extreme conditions during the pre-instrumental periods.

The human-induced climate change is likely the main driver of
increased climate extremes in recent five decades6. Headwater regions
across the SETP may experience more extreme flows in terms of
duration, magnitude, and frequency in the future that exceed the
range of short instrumental records as the climate warms. Our eight-
century streamflow reconstructions and the quantified spatiotemporal
patterns across the South and East Asian water towers provide infor-
mation for better understanding regional changes in hydrological
regimes, design flood computation under nonstationary conditions,
future streamflow projections, flood and drought risk analysis, and
water resource management over the SETP and relevant riparian
countries.

Methods
Streamflow data
The Tibetan Plateau (TP) is the source ofmajor Asian rivers such as the
Yellow, Yangtze, Lancang-Mekong, Nu-Salween, and Yarlung Zangbo-
Brahmaputra rivers. Our goal was to reconstruct annual streamflow
andexamine its spatiotemporal variability for theheadwater regions of
these five major rivers. Monthly observed streamflow data at the
Tangnaihai (TNH), Zhimenda (ZMD), Changdu (CD), Jiayuqiao (JYQ),
and Nuxia (NX) gauging stations from 1961−2012 (1980−2012 for the
JYQ) distributed in the headwater regions of the five rivers were pro-
vided by local water resource authorities in different provinces in
China. Monthly streamflow data were aggregated into annual stream-
flow series. Logarithmically transformed annual streamflowdata at the
five streamflowgauging stations follow a normal distribution. Location
and detailed information on these gauging stations are provided in
Fig. 1 and Supplementary Table 1. The five gauges selected in this study
are located in the headwater regionswithoutmuch impactby reservoir
operation; hence, data from the five gauges could reflect natural flow.

MADAv2 as proxy data
We used the Monsoon Asia Drought Atlas, version 2 (MADAv2) as
paleoclimate proxy data, which is a gridded Palmer Drought Severity
Index (PDSI) dataset with a spatial resolution of 1° over the Asian
monsoon region51. Each grid cell represents a series of mean June-
July-August (JJA) PDSI, reconstructed by tree rings, and has a length
of millennium or even longer. The MADAv2 dataset was selected
instead of a tree-ring network, because the former offers evenly
distributed grid cells and has been systematically corrected. The
dataset generally has the same time span formost of grid cells, which
takes less computational cost for large-scale streamflow recon-
struction. The underlying basis for reconstructing historical
streamflow time series using the reconstructed PDSI proxy is
that both streamflow and the PDSI are closely related to different
climate variables such as precipitation, evapotranspiration, and
temperature32. Thus, reconstruction of the PDSI based on the pre-
servation of climate signals in tree-ring chronologies could be used
to reconstruct streamflow effectively.

Proxy predictor selection
Toaccount for different starting yearsof the reconstructedproxydata,
we selected eight centuries (1200‒2012) as the reconstruction period
to ensure spatiotemporal completeness of gridded paleo data.
Appropriate PDSI grid cells were selected as potential predictors based
on the Pearson correlation estimated between annual flow at each
gauging station and PDSI grid cells within a 700 km searching radius. A
PDSI grid cell was retained as a predictor if the correlation coefficient is
significant at a 0.05 significance level. Based on this criterion, the
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selected PDSI predictors for each gauging station to reconstruct pre-
instrumental streamflow are shown in Fig. 1a. The PDSI predictors for
eachgauging stationwere tested to have a goodcorrelation coefficient
with annual, June to August, and the other nine-month streamflow
(Supplementary Fig. 12), indicating that the PDSI predictors can well
capture changes in annual streamflow in our study. Comparison of
Pearson correlation coefficients for PDSI predictors and tree-ring
chronologies against monthly streamflow indicates that the PDSI
predictors generally have higher correlation with streamflow than the
tree-ring chronologies directly (Supplementary Fig. 13). Locations of
the open-sourced tree-ring chronologies in or surrounding the study
region are shown in Fig. 1a.

Reconstruction and cross-validation
We used a linear regression model described below to reconstruct
logarithmically transformed streamflow Yi,t at site i (i = 1,…,m) for year
t (t = 1,…, T), as a function of intercept αi, slope βi, and predictor
matrix X.

Y i,t =αi + βi*X

Matrix X represents the first canonical variate of the PDSI pre-
dictors transformedby canonical correlation analysis (CCA). Because
a large number of PDSI predictors as the inputs of the regression
model may cause multicollinearity, a dimension reduction method
namedCCA30 was used to obtain themaximumcorrelation between a
rotation of the PDSI predictors and the log-transformed streamflow
at gauging stations of interest. The CCA method is briefly
described below.

Canonical correlation analysis was proposed by Hotelling52 for
transforming two sets of variables X and Y to canonical form to max-
imize the correlation among themselves. X = [x1, …, xp] is a matrix at
p locations with each having n data, while Y = [y1, …, yq] is a matrix at
q locations with each having n data. Then, the CCA method can be
formulated as

max
α,γ

αTXYTγ

s:t:αTXXTα= 1, γTXXTγ= 1

where α and γ are the weight vectors. The two pairs of canonical
variates U =X × α and V =Y × γ can then be rotated from X and Y to
new coordinate systems. It can be solved as the problem of the largest
eigenvectors of (XXT)−1XYT(YYT)−1YXT and (YYT)−1YXT(XXT)−1XYT. This
study considers that X represents the MADAv2 inputs for each
streamflow gauge during the observed natural streamflow period. Y is
the corresponding log-transformed annual streamflow series at each
gauge. Therefore, the weight for Y is one and the weight for X is (XXT)
−1XYT(YYT)−1YXT.

We performed a rigorous cross-validation test using the leave-m-
out cross-validation (LMOCV) method to assess the model perfor-
mance, because the streamflow series are too short to be divided into
calibration and validation periods. Thus, we randomly selected one
third of the data for validation and the regressionmodelwas calibrated
with the remaining two thirds of the observed data. This process was
repeated for 100 times to obtain the distribution of cross validation
indices, yielding a robust median estimate for each matrix. Five
goodness-of-fit statistics, i.e., (1) reduction of error during the cali-
bration period by cross-validation (CVRE), (2) coefficient of efficiency
during the validation period (VCE), (3) coefficient of determination
during the calibration period (CRSQ), (4) square of Pearson correlation
during the validation period (VRSQ), and (5) Kling-Gupta Efficiency
(KGE) were selected15,20,53.

Analysis of temporal variability in streamflow over the past
eight centuries
Mean values and probability distributions of instrumental records
were compared with those during the pre-instrumental period to
examine temporal variability in streamflow over the past eight cen-
turies. To conduct a straightforward comparison with themean state
of observed data from 1961 to 2012 (1980‒2012 for JYQ), a mean time
series within a 52-year (33-year for the JYQ) moving window was run
backward along the reconstructed streamflow. As the 52-yearmoving
windowmight influence shorter variations (i.e., less than the window
width), a 30-year moving average series was also calculated for
reference. Then a 2-sided t-test was calculated to determine if
changes in the mean state significantly differ between the fixed
observed data and reconstructed streamflow within each moving
window, totaling 762 moving windows (781 for JYQ). Given that the
streamflow series are often auto-correlated, significance test results
based on the t-test may sometimes be biased54. Therefore, a block
bootstrap method was also used to randomly resample the stream-
flow data from the observed dataset to estimate a 95% confidence
interval (CI) for the mean state while preserving the statistical
properties of the observed data. A Kolmogorov–Smirnov (K–S) test
was used to assess whether the probability distribution of observed
streamflow differs from reconstructed streamflow (Supplemen-
tary Fig. 5).

Teleconnection with large-scale climate patterns
We detected dominant oscillations in leading PCs of the long-term
reconstructed streamflowand examined its teleconnections between
dominant oscillations and large-scale climate patterns (i.e., ENSO,
PDO, IOD, and NAO) using continuous wavelet transform (CWT)
analysis and wavelet coherence analysis (WCA). CWT decomposes
hydroclimatic time series using wavelet spectrum to represent
dominant modes of variability and how these modes vary in time.
Global wavelet spectrum (GWS), representing dominant scales
without temporal transformation, was calculated by averaging the
scale across a time period. WCA is a time-frequency domain
approach that characterizes the dynamic relationship between
reconstructed streamflow and a climate index of interest. More
details on CWT and WCA can be found in previous studies55–57.
Paleoclimate data ending before 2012 were supplemented by the
measured data by 2012. With different lengths of paleoclimate
records, the WCA between leading PCs and different climate indices
is based on their overlapping periods.

Ensemble Empirical Mode Decomposition (EEMD) was applied to
decompose the reconstructed streamflow at the five gauging stations
and four paleo-reconstructed large-scale climate indices to verify the
WCA results. EEMD is a noise-assisted method41 that is used to
decompose nonstationary signals. The EEMD method improves the
modemixing phenomenon of EMD by adding white noise in each trial.
A series of intrinsic mode function (IMF) components with different
frequencies can be obtained using EEMD. The number of trials was set
to 100 in our study. The correlation coefficient between each IMF
component and the original signal reflects the influence of each
component on the original sequence changes. The main cycle and
correlation coefficient of the IMF components at the five gauging
stations and four large-scale climate patterns are shown in Supple-
mentary Table 2. The correlation between each IMF component of
reconstructed streamflow at each gauging station and climate indices
is shown in Supplementary Fig. 7.

In addition, influences of different phases of the paleo ENSO, PDO,
NAO, and IOD on the reconstructed annual streamflow were explored
using composite analysis58,59. Definitions of different phases of the El
Niño/La Niña, warm/cold PDO, positive/negative IOD follow the
references17,60. A composite ratio is the ratio of mean streamflow
anomalies corresponding to different phases of climate indices to
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long-termmean streamflow61. To obtain the confidence interval of the
composite streamflow ratio for a given site, a bootstrap resampling
method was used to resample n reconstructed streamflow values in
certain extreme climate years to estimate the composite ratio, which
was repeated 500 times here.

Data availability
Paleo reconstructions of the Nino 3.4 index over 1301−200562,63 used in
this study are available at (ftp://ftp.ncdc.noaa.gov/pub/data/paleo/
treering/reconstructions/ enso-li2013.txt). The paleo PDO data from
993 to 199664 were taken from the NOAA website (ftp://ftp.ncdc.noaa.
gov/pub/data/paleo/treering/reconstructions/pdo-macdonald2005.
txt). The paleo NAO index over 1400−200165 was derived (ftp://ftp.
ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/nao_
cook2002-noaa.txt). The Dipole Model Index over 1870−2012, repre-
senting the IOD, was downloaded from the NOAA website (https://psl.
noaa.gov/gcos_wgsp/Timeseries/DMI/).

Code availability
R code used for the streamflow reconstruction and analysis is available
at this link: https://zenodo.org/record/6815399.

References
1. Fan, X., Miao, C., Duan, Q., Shen, C. &Wu, Y. Future climate change

hotspots under different 21st century warming scenarios. Earth's
Future. 9, 813–822 (2021).

2. Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the
CMIP5 global climate model ensemble. Climatic Change 114,
813–822 (2012).

3. Rao, M. P. et al. Seven centuries of reconstructed Brahmaputra
River discharge demonstrate underestimated high discharge and
flood hazard frequency. Nat. Commun. 11, 6017 (2020).

4. Wijngaard, R. R. et al. Climate change vs. socio-economic devel-
opment: understanding the future South Asian water gap. Hydrol.
Earth Syst. Sc. 22, 6297–6321 (2018).

5. Irannezhad,M., Liu, J. &Chen, D. Influential climate teleconnections
for spatiotemporal precipitation variability in the Lancang-Mekong
River Basin from 1952 to 2015. J. Geophys. Res.: Atmos. 125,
e2020JD033331 (2020).

6. IPCC. Climate Change 2021: The Physical Science Basis. Con-
tribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change. (Cambridge Uni-
versity Press, Cambridge, United Kingdom and New York, NY,
USA, 2021).

7. Wang, L. et al. TP-River: Monitoring and quantifying total river
runoff from the Third Pole. B. Am. Meteorol. Soc. 102,
E948–E965 (2021).

8. Su, F. et al. Hydrological response to future climate changes for the
major upstream river basins in the Tibetan Plateau. Glob. Planet.
Change 136, 82–95 (2016).

9. Immerzeel, W. W., van Beek, L. P. & Bierkens, M. F. Climate change
will affect the Asian water towers. Science 328, 1382–1385 (2010).

10. Li, X. et al. Climate change threatens terrestrial water storage over
the Tibetan Plateau. Nat. Clim. Change 12, 801–807 (2022).

11. Yao, T. et al. Recent Third Pole' s rapid warming accompanies
cryospheric melt and water cycle intensification and interactions
between monsoon and environment: Multidisciplinary approach
with observations, modeling, and analysis. B. Am. Meteorol. Soc.
100, 423–444 (2019).

12. Han, Z., Long, D., Fang, Y., Hou, A. & Hong, Y. Impacts of climate
change and human activities on the flow regime of the dammed
Lancang River in Southwest China. J. Hydrol. 570, 96–105
(2019).

13. Dee, S. G. et al. Improved spectral comparisons of paleoclimate
models and observations via proxy system modeling: Implications

for multi-decadal variability. Earth Planet. Sc. Lett. 476,
34–46 (2017).

14. Ghil, M. Advanced spectral methods for climatic time series. Rev.
Geophys. 40, 1003 (2002).

15. Rao, M. P. et al. Six centuries of Upper Indus Basin streamflow
variability and its climatic drivers. Water Resour. Res. 54,
5687–5701 (2018).

16. Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J. & Seager, R. Multi-
decadal variability in East African hydroclimate controlled by the
Indian Ocean. Nature 493, 389–392 (2013).

17. Wu, Y., Gan, T. Y., She, Y., Xu, C. & Yan, H. Five centuries of
reconstructed streamflow in Athabasca River Basin, Canada: Non-
stationarity and teleconnection to climate patterns. Sci. Total
Environ. 746, 141330 (2020).

18. Crawford, C. J., Griffin, D. & Kipfmueller, K. F. Capturing season-
specificprecipitation signals in the northern RockyMountains, USA,
using earlywood and latewood tree rings. J. Geophys. Res. Bio-
geosci. 120, 428–440 (2015).

19. Ravindranath, A. et al. Streamflow reconstruction in the Upper
Missouri River Basin using a novel Bayesian network model. Water
Resour. Res. 55, 7694–7716 (2019).

20. Cook, E. R. et al. Five centuries of Upper Indus River flow from tree
rings. J. Hydrol. 486, 365–375 (2013).

21. Li, J. et al. Deciphering human contributions to Yellow River flow
reductions and downstream drying using centuries‐long tree ring
records. Geophys. Res. Lett. 46, 898–905 (2019).

22. Liu, Y. et al. Recent anthropogenic curtailing of Yellow River runoff
and sediment load is unprecedented over the past 500 y. P. Natl.
Acad. Sci. 117, 18251–18257 (2020).

23. Li, J., Shao, X., Qin, N. & Li, Y. Runoff variations at the source of the
Yangtze River over the past 639 years based on tree-ring data.Clim.
Res. 75, 131–142 (2018).

24. Li, J.,Wang, Z., Lai, C. & Zhang, Z. Tree-ring-width based streamflow
reconstructionbasedon the random forest algorithm for the source
region of the Yangtze River, China. Catena 183, 104216 (2019).

25. Chen, F. et al. Tree-ring reconstruction of Lhasa River streamflow
reveals 472 years of hydrologic change on southern Tibetan Pla-
teau. J. Hydrol. 572, 169–178 (2019).

26. Xiao, D., Shao, X., Qin, N. & Huang, X. Tree-ring-based reconstruc-
tion of streamflow for the Zaqu River in the Lancang River source
region, China, over the past 419 years. Int. J. Biometeorol. 61,
1173–1189 (2017).

27. Gou, X. et al. Tree ring based streamflow reconstruction for the
Upper Yellow River over the past 1234 years. Chin. Sci. Bull. 55,
4179–4186 (2010).

28. Gou, X. et al. Streamflow variations of the YellowRiver over the past
593 years in western China reconstructed from tree rings. Water
Resour. Res. 43, W06434 (2007).

29. Cook, E. R. et al. Megadroughts in North America: placing IPCC
projections of hydroclimatic change in a long-term palaeoclimate
context. J. Quat. Sci. 25, 48–61 (2010).

30. Ho, M., Lall, U., Sun, X. & Cook, E. R. Multiscale temporal variability
and regional patterns in 555 yearsof conterminousU.S. streamflow.
Water Resour. Res. 53, 3047–3066 (2017).

31. Steinschneider, S., Ho, M., Cook, E. R. & Lall, U. Can PDSI inform
extreme precipitation?: An exploration with a 500 year long
paleoclimate reconstruction over the U.S. Water Resour. Res. 52,
3866–3880 (2016).

32. Nguyen, H. T. T., Turner, S. W. D., Buckley, B. M. & Galelli, S.
Coherent streamflowvariability inmonsoonAsia over thepast eight
centuries-links to oceanic drivers. Water Resour. Res. 56,
e2020WR027883 (2020).

33. Ho, M., Lall, U. & Cook, E. R. Can a paleodrought record be used to
reconstruct streamflow?: A case study for the Missouri River Basin.
Water Resour. Res. 52, 5195–5212 (2016).

Article https://doi.org/10.1038/s41467-022-34221-9

Nature Communications |         (2022) 13:6416 11

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/%20enso-li2013.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/%20enso-li2013.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/pdo-macdonald2005.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/pdo-macdonald2005.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/pdo-macdonald2005.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/nao_cook2002-noaa.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/nao_cook2002-noaa.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/nao_cook2002-noaa.txt
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
https://zenodo.org/record/6815399


34. Gupta, H. V., Kling, H., Yilmaz, K. K. &Martinez, G. F. Decomposition
of the mean squared error and NSE performance criteria: Implica-
tions for improving hydrological modelling. J. Hydrol. 377,
80–91 (2009).

35. Liu, C., Yao, T., G, T. & E, D. Microparticle concentration within the
Dunde ice core and its relation to dust storm and climate since the
Little Ice Age. J. Glaciol. Geocryol. 21, 9–14 (1999).

36. Gan, T. Y., Gobena, A. K. &Wang, Q. Precipitation of southwestern
Canada: Wavelet, scaling, multifractal analysis, and teleconnec-
tion to climate anomalies. J. Geophys. Res.: Atmos. 112,
D10110 (2007).

37. Santos, C., Brasil Neto, R., Da Silva, R. & Costa, S. Cluster analysis
applied to spatiotemporal variability of monthly precipitation over
ParaíbaState using tropical rainfallmeasuringmission (TRMM)data.
Remote Sens. -Basel. 11, 637 (2019).

38. Wang,W., Dong, Z., Palat Rao, M., Lall, U. & Jia, B. Last twomillennia
of streamflow variability in the headwater catchment of the Yellow
River basin reconstructed from tree rings. J. Hydrol. 606,
127387 (2022).

39. Chen, F. et al. 500-year tree-ring reconstruction of Salween River
streamflow related to the history of water supply in Southeast Asia.
Clim. Dynam. 53, 6595–6607 (2019).

40. Lieberman, V. Strange Parallels: Southeast Asia in Global Context,
c.800–1830: Volume 1: Integration on the Mainland, vol. 1. (Cam-
bridge University Press, Cambridge, 2003).

41. Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition: A
noise-assisted data analysis method. Adv. Adapt. Data Anal. 01,
1–41 (2009).

42. Ueda, H. et al. Combined effects of recent Pacific cooling and
Indian Ocean warming on the Asian monsoon. Nat. Commun. 6,
8854 (2015).

43. Chen, Y. et al. Precipitation variations recorded in tree rings from
the upper Salween and Brahmaputra River valleys, China. Ecol.
Indic. 113, 106189 (2020).

44. Zhang, Q., Evans, M. N. & Lyu, L. Moisture dipole over the Tibetan
Plateau during the past five and a half centuries. Nat. Commun. 6,
8062 (2015).

45. Liu, Y., Chen, H. & Hu, X. The unstable relationship between the
precipitation dipole pattern in the Tibetan Plateau and summer
NAO. Geophys. Res. Lett. 48, e2020GL091941 (2021).

46. Liu, H. et al. Impact of the North Atlantic Oscillation on the
Dipole Oscillation of summer precipitation over the central
and eastern Tibetan Plateau. Int. J. Climatol. 35,
4539–4546 (2015).

47. Buckley, B. M., Palakit, K., Duangsathaporn, K., Sanguantham, P. &
Prasomsin, P. Decadal scale droughts over northwestern Thailand
over the past 448 years: links to the tropical Pacific and Indian
Ocean sectors. Clim. Dynam. 29, 63–71 (2007).

48. Buckley, B. M. et al. Climate as a contributing factor in the demise
of Angkor, Cambodia. P. Natl Acad. Sci. USA 107,
6748–6752 (2010).

49. Chen, F., Yuan, Y., Fan, Z. & Yu, S. A Winter precipitation recon-
struction (CE 1810–2012) in the Southeastern TibetanPlateau and its
relationship to Salween River streamflow variations. Pure Appl.
Geophys. 175, 2279–2291 (2018).

50. Tian, L., Masson-Delmotte, V., Stievenard, M., Yao, T. & Jouzel, J.
Tibetan Plateau summer monsoon northward extent revealed by
measurements of water stable isotopes. J. Geophys. Res. Atmos.
106, 28081–28088 (2001).

51. Cook, E. R. et al. Asian monsoon failure and megadrought during
the last millennium. Science 328, 486–489 (2010).

52. Hotelling, H. Relations between two sets of variates. Biometrika 28,
321–377 (1936).

53. Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M. & Stahle, D.
W. Long-Termariditychanges in theWesternUnitedStates.Science
306, 1015–1018 (2004).

54. Noguchi, K., Gel, Y. R. & Duguay, C. R. Bootstrap-based tests for
trends in hydrological time series,with application to icephenology
data. J. Hydrol. 410, 150–161 (2011).

55. Tan, X., Gan, T. Y. & Shao, D. Wavelet analysis of precipitation
extremes over Canadian ecoregions and teleconnections to large-
scale climate anomalies. J. Geophys. Res.: Atmos. 121, 414–469
(2016). 486.

56. Aguiar-Conraria, L. & Soares, M. J. The continuous wavelet trans-
form: Moving beyond uni- and bivariate analysis. J. Economic Surv.
28, 344–375 (2014).

57. Ng, E. K. W. & Chan, J. C. L. Geophysical applications of partial
wavelet coherence and multiple wavelet coherence. J. Atmos.
Ocean. Tech. 29, 1845–1853 (2012).

58. Boschat,G., Simmonds, I., Purich,A., Cowan, T. &Pezza, A. B.On the
use of composite analyses to form physical hypotheses: An exam-
ple from heat wave - SST associations. Sci. Rep. -Uk. 6,
29599 (2016).

59. Welhouse, L. J., Lazzara,M. A., Keller, L.M., Tripoli, G. J. &Hitchman,
M. H. Composite analysis of the effects of ENSO events on Ant-
arctica. J. Clim. 29, 1797–1808 (2016).

60. Pervez, M. S. & Henebry, G. M. Spatial and seasonal responses
of precipitation in the Ganges and Brahmaputra river basins to
ENSO and Indian Ocean dipole modes: implications for
flooding and drought. Nat. Hazard. Earth Sys. 15,
147–162 (2015).

61. Tan, X. & Gan, T. Y. Non-stationary analysis of the frequency
and intensity of heavy precipitation over Canada and their
relations to large-scale climate patterns. Clim. Dynam. 48,
2983–3001 (2017).

62. Li, J. et al. Interdecadal modulation of El Nino amplitude during the
past millennium. Nat. Clim. Change 1, 114–118 (2011).

63. Li, J. et al. El Nino modulations over the past seven centuries. Nat.
Clim. Change 3, 822–826 (2013).

64. MacDonald, G. M. & Case, R. A. Variations in the Pacific Decadal
Oscillation over the past millennium. Geophys. Res. Lett. 32,
GL022478 (2005).

65. Cook, E. R., D’Arrigo, R. D. & Mann, M. E. AWell-verified, multiproxy
reconstruction of the Winter North Atlantic Oscillation index since
A.D. 1400. J. Clim. 15, 1754–1764 (2002).

Acknowledgements
This study was jointly supported by the integrated project of the
National Natural Science Foundation of China (Grant No. 92047301),
the Second Tibetan Plateau Scientific Expedition and Research (STEP)
program (2019QZKK0105), the National Natural Science Foundation
of China (Grant No. 91547210 and 51722903), and the Postdoctoral
Science Foundation of China (2021M691820). We thank Wensheng
Wang from Qamdo Hydrology and Water Resources Branch, Hydrol-
ogy and Water Resources Survey of Tibet Autonomous Region in
China, for providing part of observed streamflow data for this
analysis.

Author contributions
Y.W. and D.L. developed the methodology of this study and wrote the
paper. Y.W., D.L., and U.L. performed the analysis with substantial input
fromB.S., F.T., X.F., J.Zhao, J.Zhang,H.W., andC.H.All authorsdiscussed
the results and improved the writing of this manuscript.

Competing interests
The authors declare no competing interests.

Article https://doi.org/10.1038/s41467-022-34221-9

Nature Communications |         (2022) 13:6416 12



Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-34221-9.

Correspondence and requests for materials should be addressed to
Di Long.

Peer review informationNature Communications thanks David Sauchyn
and the anonymous reviewer(s) for their contribution to the peer review
of this work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-34221-9

Nature Communications |         (2022) 13:6416 13

https://doi.org/10.1038/s41467-022-34221-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Reconstructed eight-century streamflow in the Tibetan Plateau reveals contrasting regional variability and strong nonstationarity
	Results
	Model validation and reconstructed streamflow analysis
	Spatial variability in reconstructed streamflow over the SETP
	Temporal variability in reconstructed streamflow at the five gauging stations
	Teleconnections between reconstructed streamflow and large-scale climate patterns
	Frequency of extreme wet/dry conditions based on reconstructed streamflow

	Discussion
	Methods
	Streamflow data
	MADAv2 as proxy data
	Proxy predictor selection
	Reconstruction and cross-validation
	Analysis of temporal variability in streamflow over the past eight centuries
	Teleconnection with large-scale climate patterns

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




