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Abstract. Reconstructing an arbitrary configuration of 3D points from
their projection in an image is an ill-posed problem. When the points
hold semantic meaning, such as anatomical landmarks on a body, hu-
man observers can often infer a plausible 3D configuration, drawing on
extensive visual memory. We present an activity-independent method to
recover the 3D configuration of a human figure from 2D locations of
anatomical landmarks in a single image, leveraging a large motion cap-
ture corpus as a proxy for visual memory. Our method solves for anthro-
pometrically regular body pose and explicitly estimates the camera via a
matching pursuit algorithm operating on the image projections. Anthro-
pometric regularity (i.e., that limbs obey known proportions) is a highly
informative prior, but directly applying such constraints is intractable.
Instead, we enforce a necessary condition on the sum of squared limb-
lengths that can be solved for in closed form to discourage implausible
configurations in 3D. We evaluate performance on a wide variety of hu-
man poses captured from different viewpoints and show generalization
to novel 3D configurations and robustness to missing data.

1 Introduction

Figure 1(a) shows the 2D projection of a 3D body configuration. From this 2D
projection alone, human observers are able to effortlessly organize the anatomical
landmarks in three-dimensions and guess the relative position of the camera.
Geometrically, the problem of estimating the 3D configuration of points from
their 2D projections is ill-posed, even when fitting a known 3D skeleton1. With
human observers, the ambiguity is likely resolved by leveraging vast memories of
likely 3D configurations of humans [2]. A reasonable proxy for such experience
is available in the form of motion capture libraries [3], which contain millions of
3D configurations. The computational challenge is to tractably generalize from
the configurations spanned in the corpus, ensuring anthropometric plausibility
while discouraging impossible configurations.

1 As noted in [1], each 2D end-point of a limb subtends a ray in 3D space. A sphere of
radius equal to the length of the limb centered at any location on one of these rays
intersects the other ray at two points (in general) producing a tuple of possible 3D
limb configurations for each location on the ray.
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Fig. 1. Given the 2D location of anatomical landmarks on an image, we estimate the
3D configuration of the human as well as the relative pose of the camera.

Kinematic representations of human pose are high-dimensional and difficult
to estimate directly. Allowing only statistically plausible configurations leads to
compact representations that can be estimated from data. Linear dimensionality
reduction (such as PCA) is attractive as it yields tractable and optimal estima-
tion methods. It has been successfully applied to constrained deformable objects,
such as faces [4] and action-specific body reconstruction, such as walking, [5].
However, as we add poses from varied actions, the complexity of the distri-
bution of poses increases and, consequently, the dimensionality of the reduced
model needs to be increased (see Figure 2). If we expand the dimensionality,
linear models increasingly allow configurations that violate anthropometric con-
straints such as limb proportions, yet yield a projection in 2D that is plausible.
The goal is therefore to develop an activity-independent model while ensuring
anthropometric regularity.

In this paper, we present a method to reconstruct 3D human pose while
maintaining compaction, anthropometric regularity, and tractability. To achieve
compaction, we separate camera pose variability from the intrinsic deformability
of the human body (because combining both leads to an approximately six-fold
increase in the number of parameters [6]). To compactly model the intrinsic de-
formability across multiple actions, we use a sparse linear representation in an
overcomplete dictionary. We estimate the parameters of this sparse linear rep-
resentation with a matching pursuit algorithm. Enforcing anthropometric reg-
ularity through strict limb length constraints is intractable because satisfying
multiple quadratic equality constraints on a least squares system is nonconvex
[7]. Instead, we encourage anthropometric regularity by enforcing a necessary
condition (i.e., an equality constraint on the sum of squared lengths) as a con-
straint that is applied in closed form [8]. We solve for the model coefficients and
camera pose within the matching pursuit iterations, decreasing the reprojection
error objective in each iteration.

Our core contributions are: (1) a new activity-independent representation of
3D human pose variability as a sparse embedding in an overcomplete dictionary,
and (2) an algorithm, Projected Matching Pursuit, to estimate the sparse model
from only 2D projections while encouraging anthropometric regularity. Within
the matching pursuit iterations, we explicitly estimate both the 3D camera pose
and the 3D body configuration. We evaluate our method to test generalization,
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and robustness to noise and missing landmarks. We compare against a standard
linear dimensionality reduction baseline and a nearest neighbor baseline.

2 Related Work

For the single image pose recovery task, some of the earliest work is by Lee
and Chen [1] who assumed known limb lengths and recovered pose by pruning
a binary interpretation tree that enumerates the entire set of configurations for
an articulated body using physical and structural pruning rules and user input.
Taylor’s approach [9] used known skeletal sizes to recover 3D pose up to a weak
perspective scale; this method required human input to resolve the depth ambi-
guities at each joint. Jiang [10] used Taylor’s method [9] to generate hypotheses
followed by a nearest neighbor approach to prune the hypotheses. Parameswaran
and Chellappa [11] used a strong prior on skeletal size and employed 3D model
based invariants to recover the joint angle configuration but made restrictive as-
sumptions on the 3D configurations possible. Other approaches, such as Barron
and Kakadiaris [12], estimated anthropometry and pose using strong anthropo-
metric priors on limb lengths by generating a set of plausible poses based on
geometric constraints followed by a nonlinear minimization.

Discriminative approaches [13–16] have attempted to directly learn a map-
ping from 2D image measurements to 3D pose. Several approaches have re-
covered 3D pose from silhouettes. Elgammal and Lee [17] learned view-based
activity manifolds from 2D silhouette data. Rosales and Sclaroff [18] described
a method to learn the inverse mapping from silhouette to pose. Salzmann and
Urtasun [13] proposed a method to impose physical constraints on the output
of a discriminative predictor. Discriminative methods, in general, require large
amounts of training data from varied viewpoints and deformations to be able to
recover pose reliably and do not generalize well to data that is not represented
by the training set.

Enforcing structural constraints optimally is usually intractable. In the con-
text of deformable mesh reconstruction, Salzmann and Fua [19, 20] derived a
convex formulation for constraining the solution space of possible 3D configura-
tions by imposing convex inequality constraints on the relative distance between
reconstructed points. Wei and Chai [21] and Valmadre and Lucey [22] describe
deterministic algorithms to simultaneously estimate limb lengths and reconstruct
human pose. These methods require multiple images and manual resolution of
depth ambiguities at several joints.

In this paper, we present an automatic algorithm for recovering 3D body pose
from 2D landmarks in a single image. To achieve this, we develop a statistical
model of human pose variability that can describe a wide variety of actions,
and an algorithm that simultaneously estimates 3D camera and body pose while
enforcing anthropometric regularity.
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Fig. 2. Data Complexity. (a) As more actions and, consequently, diverse poses are
added to the training corpus, the maximum reconstruction error incurred by a linear
dimensionality reduction model increases. (b) Maximum reconstruction error for each
action separately using PCA. Each action can be compactly modeled with a linear
basis. (c) Using a sparse representation in an overcomplete dictionary estimated using
Orthogonal Matching Pursuit (OMP) achieves lower reconstruction error for 3D pose.

3 Sparse Representation of 3D Human Pose

A 3D configuration of P points can be represented by X =
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X+ t⌦ 1P×1, (1)

where x 2 R2P×1, ⌦ denotes the Kronecker product, s 2 R2×2 is a diagonal scale
matrix with sx and sy being the scales in the x and y directions , R 2 SO(3)
and t 2 R2×1 denote the rotation and translation parameters of the weak per-
spective camera that we collectively denote as C. We assume the camera intrinsic
parameters are known. Estimating X and C from only the image evidence x is,
fundamentally, an ill-posed problem. We see from Equation 1 we have 3P + 7
parameters that we need to estimate from only 2P equations.

If the points form a semantic group that deform in a structured way, such
as anatomical landmarks on a human body, we can reduce the number of pa-
rameters that need to be estimated using dimensionality reduction methods that
learn the correlations between the points [23]. Linear dimensionality reduction
methods (e.g., Principal Component Analysis (PCA)) can be used to represent
the points as a linear combination of a small number of basis poses,

X = µ+

K
X

i=1

biωi, (2)

where K is the number of basis poses, bi are the basis poses, ωi are the coef-
ficients, and µ 2 R3P×1 is the mean pose computed from training data. Under
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this model, we now have to estimate onlyK+7 parameters instead of the original
3P + 7 parameters.

A direct application of PCA to all the poses contained in the corpus2 raises
difficulties as shown in Figure 2(a). For a single action, PCA performs well.
As the diversity in actions in the data increases, the number of PCA compo-
nents required for accurate reconstruction increases, and the assumption of a
low dimensional linear subspace becomes strained. In particular, the maximum

reconstruction error increases as the diversity in the data is increased because
PCA inherits the occurrence statistics of poses in the corpus and not just the
extent of variability.

3.1 Sparse Representation in an Overcomplete Dictionary

In Figure 2(b) we see that each individual action is compactly representable by a
linear basis. Therefore, an arbitrary pose can be compactly represented by some
subset of the set of all bases,

X = µ+
PK

i=1 biωi,

{bi}i∈IB∗
2 B∗ ⇢ B,

(3)

where µ is the mean pose, B 2 R
3P×(

P
Na

i=1
Ni

b
) is an overcomplete dictionary of

basis components created by concatenating N i
b bases computed from Na differ-

ent actions, B∗ is an optimal subset of B, and IB∗ are the indices of the optimal
basis B∗ in B. We validate this observation in Figure 2(c) by using Orthogonal
Matching Pursuit (OMP) [24, 25] to select a sparse set of basis vectors to recon-
struct each 3D pose in a test corpus. The sparse representation is able to achieve
lower reconstruction error with higher compaction on the test set than using
a full PCA model. It is instructive to note the behavior in Figure 2(c) of the
maximum reconstruction error, which usually correspond to atypical poses. For
human poses, we conclude that the sparse representation demonstrates greater
generalization ability than full PCA.

3.2 Anthropometric Regularity

Linear models allow cases where the 2D projection appears to be valid (i.e., the
reprojection error is minimized), but the configuration in 3D violates anthro-
pometric quantities such as the proportions of limbs. Enforcing anthropometric
regularity (i.e., that limb lengths follow known proportions) would discourage
such implausible configurations. For a limb3 between the ith and jth landmark
locations, we denote the normalized limb length as lij . The normalized limb

2 We use the Carnegie Mellon Motion Capture Database [3] to obtain a large corpus
of 3D human poses.

3 We loosely define a limb to be a rigid length between two consecutive anatomical
landmarks in the tree.
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lengths are set by normalizing with respect to the longest limb of the mean pose
(µ). For a 3D pose X, we can ensure anthropometric regularity by enforcing

kXi �Xjk2 = lij ,

8(i, j) 2 L (4)

where L = {(i, j)}Nl

i=1 is the set of pairs of joints between which a limb exists and
Nl is the total number of limbs in the model. Unfortunately, applying quadratic
equality constraints on a linear least squares system is nonconvex. A necessary

condition for anthropometric regularity is

X

∀(i,j)∈L

kXi �Xjk
2
2 =

X

∀(i,j)∈L

l2ij . (5)

This constraint limits the sum of the squared distances between valid landmarks
to be equal to the sum of squares of the limb lengths4. The feasible set of the
constraint in Equation 5 contains the feasible set of the constraints in Equa-
tion 4. The necessary condition on the sum of squared limb lengths is therefore
a relaxation of the constraints in Equation 4. As shown in [8], this necessary
condition can be applied in closed form.

4 Projected Matching Pursuit

We solve for the pose and camera by minimizing the reprojection error in the
image. The resulting optimization problem can be stated as follows

min
Ω,C,IB∗

kx� (I⌦ sR) (B∗
Ω+ µ)� t⌦ 1k2

s.t.
P

∀(i,j)∈L

kXi �Xjk
2
2 =

P

∀(i,j)∈L

l2ij ,

B∗ ⇢ B.

(6)

Although the problem is non-linear, non-convex, and combinatorial, it has
the following useful property in the set of arguments (C,Ω, IB∗): we can solve
optimally, or near-optimally, for each subset of the arguments given the rest. This
property suggests a coordinate descent-style algorithm. Algorithm 1 describes
a matching pursuit algorithm we refer to as Projected Matching Pursuit for
coordinate descent on the reprojection error objective.

4.1 Algorithm

The combinatorial challenge of picking the optimal set of basis vectors from an
overcomplete dictionary to represent a given signal is NP-hard. However, tech-
niques exist to solve the sparse representation problem approximately with guar-
antees [25, 26]. Greedy approaches such as orthogonal matching pursuit (OMP)

4 Note that since we are using normalized limb-lengths, these constraints become
constraints on limb proportions rather than on limb lengths.
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Algorithm 1 Projected Matching Pursuit

1. Initialize r0 = x� (I⌦ sR)µ� t⌦ 1

2. While (krtk � tol)
3. imax = argmax

i
hrt, (I⌦ stRt)Bii

4. B∗ = [B∗ Bimax
]

5. Solve: {C∗,Ω∗} = argmin kx̂� (I⌦ sR)B∗

Ωk2
subject to constraints in Equation (8) using Section 4.2 & Section 4.3

6. Recompute residual rt+1 = x� (I⌦ s∗R∗) (B∗

Ω
∗ + µ)� t∗ ⌦ 1

7. Set Ωt+1 = Ω
∗

8. Return {C∗,Ω∗,B∗}

[27, 25] reconstruct a signal v with a sparse linear combination of basis vectors
from an overcomplete dictionary B. It proceeds in a greedy fashion by choosing,
at each iteration, the basis vector from B that is most aligned with the residual
r (the residual is set equal to v in the first iteration). The new estimate of the
signal v̂ is computed by reconstructing using the basis vectors selected at the
current iteration and the new residual (r = v � v̂) is computed. The iterations
proceed on the residual until K basis vectors are chosen or a tolerance on the
residual error is reached.

In our scenario, we do not have access to the signal of interest, namely the
3D pose X. Instead, we are only given the projection of the original 3D pose
in the image x. We present a matching pursuit algorithm for reconstructing a
signal from its projection and an overcomplete dictionary. At each iteration of
our algorithm, the optimal basis set B∗ is augmented by matching the image
residual with basis vectors projected under the current camera estimate and
adding the basis vector which maximizes the inner product to the optimal set.
Given the current optimal basis set B∗, the pose and camera parameters are re-
estimated as outlined in Section 4.2 and Section 4.3. The algorithm terminates
when the optimal basis set has reached a predefined size or the image residual
is smaller than a tolerance value. The procedure is summarized in Algorithm 1.
We have an intuitive and feasible initialization in the mean 3D pose computed
from the training corpus.

4.2 Estimating Basis Coefficients with Anthropometric

Regularization

To encourage anthropometric regularity we enforce the necessary constraint from
Equation 5 which limits the sum of squared limb lengths. We can write each 3D
landmark Xi = EiX, where Ei = [· · · 0 I3×3 0 · · · ] is a 3 ⇥ 3P matrix that
selects out the ith landmark.
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We can write Eij = Ei �Ej , and express each limb length as kEijXk = lij .
Equation 5 can now be rewritten in matrix form as:

kCXk22 =
X

∀(i,j)∈L

l2ij , (7)

where C is a 3Nl ⇥ 3P matrix of the Nl stacked Eij matrices. Where Nl is the
number of limbs.

Given the optimal basis set B∗ and the camera C, solving for the coefficients
of the linear model Ω can now be formulated as the following optimization
problem:

min
Ω

kx̂� sR⌦ IP×PB
∗
Ωk2

s.t. kCB∗
Ω�Cµk22 =

P

∀(i,j)∈L

l2ij ,
(8)

where x̂ = x � sR ⌦ IP×Pµ � t ⌦ 1P×1. The above problem is a linear least
squares problem with a single quadratic equality constraint that can be solved
optimally in closed form as shown in [8].

There also exists a natural lower bound on the length of the limb between
the estimated joint locations, X∗

i and X∗
j , in terms of the image projections xi

and xj . Using the triangle inequality we can show that

kX∗
i �X∗

jk � ks−1(xi � xj)k. (9)

The above inequality shows that the estimated limb lengths are bounded by the
length of the limbs in the image. Thus we can guarantee that the estimated limb
length will not collapse to zeros as long as the limb has finite length in the image.

4.3 Estimating Camera Parameters

Given the pose X = B∗
Ω+ µ, and the image projections x, we need to recover

the weak perspective camera parameters C. We solve this as an instance of the
Orthogonal Procrustes problem [28]. We first write x and X in matrix form as
x 2 R

2×P and X 2 R
3×P respectively. We denote the mean-centered image

projections as x̂ = sRX . Using the singular value decomposition, we can write

M = x̂X T (XX T )−1 = UDVT . (10)

We obtain the scale s by taking the first 2⇥ 2 section of the matrix D and the
rotation by setting R = UVT .

5 Evaluation

We perform quantitative and qualitative evaluation of our method. We use the
Carnegie Mellon motion capture database for quantitative tests and compare our
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Fig. 3. Quantitative evaluation on optical motion capture. (a) We compare our method
against two model baselines - a nearest neighbor approach and a linear model that uses
PCA on the entire corpus. Reconstruction error is reported against annotation noise σ

on a test corpus. (b) We evaluate the sensitivity of the reconstruction to each anatom-
ical landmark annotation. (c) We show the sensitivity in reconstruction to missing
landmarks. The radius of each circle indicates the relative magnitude of error in 3D in-
curred when the landmark is missing (d) The additional reconstruction incurred when
the landmark is missing.

Fig. 4. Our method is able to handle missing data. We show examples of reconstruction
with missing annotations. The missing limbs are marked with dotted lines. We are able
to reconstruct the pose and impute the missing landmarks in 3D.

results against using a representation baseline (direct PCA on the entire corpus)
and a non-parametric nearest neighbor method.

For all experiments, an overcomplete shape basis dictionary was constructed
by concatenating the shape bases learnt for a set of human actions. We use a
model with 23 anatomical landmarks. Each pose in the motion capture corpus
was aligned by procrustes analysis to a reference pose. Shape bases were then
learnt for the following motion categories- ‘running’, ‘waving’, ‘arm movement’,

‘walking’, ‘jumping’, ‘jumping jacks’, ‘run’, ‘sit’, ’boxing’,’bend’ by collecting se-
quences from the CMU Motion Capture Dataset and concatenating PCA com-
ponents which retained 99% of the energy from each motion category.
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5.1 Quantitative Evaluation

Optical Motion Capture. To evaluate our methods we test our algorithm on
a sequence of mixed activities from the CMU motion capture database. We take
care to ensure that the motion capture frames come from sequences that were
not used in the training of the shape bases. We project 30 frames of motion
capture of diverse poses into 4 synthetically generated camera views. We then
run our algorithm on the 2D projections of the joint locations to obtain the
camera location and the pose of the human. We report 3D joint position error
with increasing annotation noise σ in Figure 3(a).

We compare our method against two baselines. The first baseline uses as
a linear model, a basis computed by performing PCA on the entire training
corpus. Anthropometric constraints are enforced as in Section 4.2. The second
baseline uses a non-parametric, nearest neighbor approach that retains all the
training data. The 2D projections in each test example are matched to every
3D pose in the corpus by estimating the best-fit camera using the method in
Section 4.3. The 3D pose that has the least reprojection error under the best-
fit camera estimate is returned. The results are reported in Figure 3. We find
that our method that used Projected Matching Pursuit achieves the lowest RMS
reconstruction error. We also tested the effect of imposing an equality constraint
on the sum-of-squared limb length ratios and find that we deviate from the
ground truth on our test set by 13.1% on average.

We evaluate the comparative importance of the anatomical landmarks by
performing two experiments:

Joint Sensitivity. We test the sensitivity of the reconstruction to each land-
mark individually. Each pose in the testing corpus is projected into 2D with
synthetically generated cameras and each landmark is perturbed with Gaussian
noise independently. Figure 3(b) shows the sensitivity of the reconstruction to
each landmark. The maximum length of a limb in the image is 200 pixels, the
minimum limb length is 20 pixels, and the average length of a limb in the image
is 94.5. pixels The noise is varied to about 10% of the average limb length in the
image.

Missing Data. An advantage of our formulation is the ability to handle
missing data. In Figure 5 we show examples of reconstructions obtained with in-
complete annotations. We perform an ablative analysis of the joint annotations
by removing each annotation in turn and measure the increase in the recon-
struction error. We plot our results in Figure 3(d). The radius of each circle is
indicative of the error incurred when the annotation corresponding to that joint
is missing. We find that the extremal joints are most informative and help in
constraining the reconstruction.

5.2 Qualitative Evaluation

Comparison with recent work. We compare reconstructions obtained by our
method to recent work by Valmadre et al. [22]. Their method requires multiple
images of the same person and requires a human annotator to resolve depth
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Valmadre et al.
(Uses multiple images)

Our Method
(Uses a single image)

Fig. 5. Comparsion with recent work. Valmadre et al., estimate human pose using
multiple images and requires additional annotation to resolve ambiguities. Our method
achieves realistic results operating on a single image and does not require additional
annotation

ambiguities. We present our comparative results in Figure 5. Our method is
applied per frame to images of the ice skater Yu-Na Kim and compared to the
reconstructions obtained by Valmadre et al. We can see in Figure 5 that we are
able to obtain good reconstructions per image, without the requirement of a
human annotator resolving the depth ambiguities.

Internet Images. We downloaded images of people in a variety of poses
from the internet. The 2D joint locations were manually annotated. We present
the results in Figures 7(a) and 6. In Figure 6 we first obtained individual camera
and pose estimates for each of the annotated human figures. We then fixed the
camera upright at an arbitrary location and placed the human figures using
the estimated relative rigid pose. It can be seen that the camera estimates are
consistent as the actors are placed in their correct locations.

Non-standard viewpoints. We also test our method on images taken from
non-standard viewpoints. We reconstruct the pose and relative camera from
photographs downloaded from the internet taken from viewpoints that have
generally been considered difficult for pose estimation algorithms. We are able
to recover the pose and the viewpoint of the algorithm for such examples as
shown in Figure 7(b).

Monocular video. We demonstrate our algorithm on a set of key frames
extracted from monocular video in Figure 7(c). The relative camera estimates
are aligned to a single view-point to obtain a sequence of the person performing
an action. Note that we are able to estimate the relative pose between the camera
and the human correctly resulting in a realistic reconstruction of the sequence.



12 Varun Ramakrishna, Takeo Kanade, Yaser Sheikh

Fig. 6. Reconstruction with multiple people in the same view. The camera estimation
is accurate as the people are placed consistently.

(a) Reconstruction of people in arbitrary poses from internet images.

(b) Reconstruction of people viewed from varied viewpoints.

(c) Our algorithm applied to four frames of an annotated video.

Fig. 7. We acheive realistic reconstructions for people in (a) arbitrary poses, (b) cap-
tured from varied viewpoints and (c) monocular video streams.
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Fig. 8. Failure Cases. The method does not recover the correct pose when there are
strong perspective effects and if the mean pose is not a good initialization.

6 Discussion

We presented a new representation for human pose as a sparse linear embed-
ding in an overcomplete dictionary. We develop a matching pursuit algorithm
for estimating the sparse representation of 3D pose and the relative camera from
only 2D image evidence while simultaneously maintaining anthropometric regu-
larity. Every step in the matching pursuit iterations is computed in closed form,
therefore the algorithm is efficient and takes on average 5 seconds per image to
converge. We are able to achieve good generalization to a large range of poses
and viewpoints. A case where the algorithm does not result in good reconstruc-
tions are in images with strong perspective effects where the weak perspective
assumptions on the camera model are violated and in poses where the mean pose
is not a reasonable initialization (See Figure 8).
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