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Abstract Model-based reconstruction is an approach to infer network structures where
they cannot be observed. For archaeological networks, several models based on
assumptions concerning distance among sites, site size, or costs and benefits have been
proposed to infer missing ties. Since these assumptions are formulated at a dyadic level,
they do not provide means to express dependencies among ties and therefore include
less plausible network scenarios. In this paper we investigate the use of network models
that explicitly incorporate tie dependence. In particular, we consider exponential
random graph models, and show how they can be applied to reconstruct networks
coherent with Burt's arguments on closure and structural holes (Burt 2001). The
approach is illustrated on data from the Middle Bronze Age in the Aegean.

Keywords Network reconstruction . Structural holes theory. Closure theory .

Exponential random graphmodels

Introduction

Network approaches have been adopted in many disciplines to analyse relational data.
Archaeology is no exception as attested by pioneering studies in the late 60s and 70s
(Clarke 1972; Terrell 1977) and recent applications (Knappett 2011; Brughmans 2013).
Network perspectives provide archaeology with the potential to analyse contacts
between past cultures and communities, so that several phenomena such as migrations
(e.g.Mills et al. 2013), exchange (e.g. Gjesfjeld and Phillips 2013), and the emergence
of settlement hubs (e.g. Broodbank 2002; Malkin 2011) can be better understood. Since
archaeological evidence and historical documentation are fragmentary and do not
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provide enough information to get anywhere near a complete picture of networks in the
past, developing methods to reconstruct archaeological networks and infer missing
links is crucial.

Several approaches have been used to reconstruct archaeological networks. As
suggested by Östborn and Gerding (2014), the main distinction is between procedures
that infer links from archaeological data and those that infer links on the basis of
assumptions concerning the processes that might have generated past networks. Net-
work reconstructions based on the criterion that co-presence and similarity in archae-
ological finds between sites are proxy for the existence of ties (e.g. Sindbæk 2007;
Coward 2010, 2013; Mills et al. 2013) are examples of the former approach. Network
reconstructions resting on models specified by propositions concerning the generative
mechanisms are examples of the second approach.

Various models have been proposed and applied in the archaeological literature. A
main distinction is between agent-based models and models that in this paper will be
referred to as “tie-based models”. Both models aim at explaining how macro (i.e
system-level) characteristics of a network emerged from processes taking place at the
micro level. However, while agent-based models (Graham 2006; Wurzer et al. 2015)
rely on explicit assumptions about the behaviours of heterogeneous individuals, the tie-
based models hinge on assumption formulated at the tie level, i.e. on pairs of nodes
(e.g. Conolly and Lake 2006; Knappett et al. 2008; Terrell 2010). These assumptions
are often formulated as tendencies of nodes to form particular ties, and therefore might
only implicitly describe the behaviour of the individuals. In this paper, we refer to the
tie-based network reconstruction only.

Several deterministic and stochastic tie-based models have been used to reconstruct
archaeological networks. Though, in principle, these models could be used to recon-
struct networks at various scales, nodes are aggregated units (e.g. settlements, commu-
nities, islands) in most of the applications (see Section 2 and the references therein).
Therefore, in the following, we assume that nodes are settlements, whose existence is
proved by the finding of sites, and ties between pairs of nodes represent (the volume of)
contacts between them. Sites are characterized by their geographical location and size.
The terms “contact” and site “size” are used in a very broad sense here. The former
subsumes any type of relation (e.g. exchange and material flow), while the latter refers
to any attribute describing the importance of each site (e.g. the population and the area
of extension).

Tie-based models are specified by propositions and assumptions deriving from
archaeological theory, which in turn is based on archaeological evidence. The simplest
models, e.g. maximum distance networks and proximal point analysis, assume that
distance between sites play a major role in shaping the network of contacts in the past
due to the limitations of travel technology. Gravity models further assume that sites
could sustain a different number of contacts according to their sizes. ariadne (Knappett
et al. 2008) is the most advanced model and aims to reconstruct both the network and
the importance of sites. It assumes that ties are both beneficial and costly to sites and
plausible reconstructed networks are therefore those that maximize the trade-off be-
tween benefits and costs. These networks are referred to as efficient networks.

Thus far, all the hypotheses that have been used in archaeology to specify models for
network reconstruction are formulated at a dyadic level, i.e. on pairs of sites. Specif-
ically, the existence of a tie between any two sites i and j depends only on (constant or
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time-dependent) attributes of sites, such as their geographical location or size, and the
constraints imposed on them. In network terminology, these models assume dyadic
independence, i.e. they assume that the probability of observing a tie in the network
does not depend on the presence of other ties. Intuitively, the presence of a tie between
sites i and j does not depend on the ties between i and any other site, the ties between j

and any other site, and the ties between any other pairs of sites. This assumption is often
unrealistic as, in general, the configuration of a network is also determined by endog-
enous mechanisms whereby ties come to exist in reaction to the existence of other ties.
For instance, if i, j and h are three sites and i is exchanging goods with j and jwith h, we
could suppose that i and h will start an exchange to directly obtain the respective goods.
However, if i and j are close in space and h is far away, it might be more reasonable to
assume that sites i and h will not start an exchange, but rather obtain the respective
goods by means of j. If that is the case, the resulting network structure would be
characterized by a well-developed system of contacts within the close range and the
presence of non-redundant outside contacts controlled by broker sites. Networks
characterized by this structure will be referred to as structurally efficient networks
throughout the paper. Since both of the previous assumptions are based on dyadic
dependence and the latter also accounts for the interaction between existing ties and
distance, earlier models assuming dyadic independence are not able to reproduce
structurally efficient networks. These models can therefore only provide a limited
number of plausible scenarios for networks in the past.

Several statistical models for the analysis of relational data have been developed in
the past three decades (see, e.g., Snijders (2011) and the references therein) to account
for dyadic dependence and its interaction with factors exogenous to the network. In this
paper, using exponential random graph models (ERGMs) to reconstruct structurally
efficient networks in the past is proposed and discussed.

The remainder of the paper is organized as follows. In Section 2 a review of tie-
based models used to reconstruct archaeological networks is presented. The definition
of structurally efficient networks and the logic behind ERGMs are introduced in
Section 3. Section 4 provides an empirical example with results on the reconstruction
of networks in the Aegean during the Middle Bronze Age. These results and further
developments are discussed in Section 5.

Review of Models for Network Reconstruction

The main distinction among the tie-based models is between deterministic and sto-
chastic models. According to the former, the existence of a relationship between two
sites depends on the fulfilment of certain criteria specified by some assumptions.
Consequently, the reconstruction of archaeological networks can be regarded as a
deterministic procedure stating which ties exist, leading to one fixed network of
contacts. On the contrary, a stochastic model-based approach assumes that a network
is the outcome of a probabilistic model which is a synthetic description of the
mechanisms that might have generated the network. The specification of the model is
determined by a set of assumptions regarding tie formation and a set of parameters.
Once the model is fully specified, networks can be sampled from this distribution.
Thus, reconstructing archaeological networks means inferring the structure of a
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network given a set of assumptions regulating the occurrence of ties, and the resulting
network is not fixed but subject to the sampling scheme.

Irrespective of the approach used, the reconstruction of archaeological networks
requires the formulation of assumptions. A fundamental assumption of all the models
we describe in the following is that contacts between sites depend on geographical
space, for which distance is usually a proxy (Renfrew 1975; Terrell 1977; Rihll and
Wilson 1987; Knappett et al. 2008; Evans et al. 2009, 2012). The rationale is that
distances are determinants of whether passive contacts, which are premises for tie
formation, will occur. There are different types of distance particularly relevant to
archaeology: geographical and cost-distance. The former can be a simple (e.g. euclid-
ean distance) or more complex (e.g. great circle distance) measurement. The latter has a
more general definition and accounts for the time and strength required to move from
one location to another (White and Surface-Evans 2012; Hill et al. 2015 and the
reference therein). For instance, uphill movement is slower and more exhausting than
downhill movement and, in some circumstances, sea travel might be faster than land
travel. Regardless of the definition of distance, the model formulations penalize long-
range distances so that contacts between sites close to each other are more likely.
Another popular assumption is that contacts depend on the size of sites (Renfrew and
Level 1979; Rihll and Wilson 1987; Knappett et al. 2008). The size of a site can be
understood as resources (e.g. population and area of a site) available to a site to
maintain the contacts with other sites. It is assumed that the larger the site, the higher
its ability to maintain contacts.

The models presented in the following review differ both on the approach taken and
as how to model the effect of distance and size of sites on ties. We start by introducing
the notations used throughout this paper.

An archaeological network is referred to as a network where the set of nodes N =

{1,2,..,n} comprises settlements, whose existence is proved by the finding of sites, and

ties between pairs of nodes represent (the volume of) contacts between them. Sites are

characterized by their geographical location and size. Archaeological networks are

represented as graphs, where vertices are sites and edges between nodes are contacts,

as well as as an adjacency matrix x, i.e. as an n×n matrix whose generic cell xij
describes the relationship between i and j. For binary relations xij = 1 if there is a

relationship between i and j, and 0 otherwise. For valued relations xij > 0 if there is a

relationship between sites i and j, and 0 otherwise. The set of all the possible network

scenarios that can be defined over the set N is denoted by X. Attributes of sites (e.g.

size and geographical location) are represented by a matrix v whose generic element vip
is the value of site i on the characteristic p. Finally, the distance between sites is

represented as an n×n matrix d where the generic cell dij indicates the (geographical or

cost-) distance between sites i and j.

Maximum Distance Network

Maximum Distance Network (MDN) is a simple way to construct a network and is
based on the hypothesis that binary unweighted networks are only dependent on
physical distance: there is a distance (determined by for instance transportation tech-
nology) beyond which single journeys between pairs of sites become too difficult to
take. Thus, the networks produced capture information about the contacts between sites
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based on a specified threshold of the distance matrix. These networks can be regarded
as inflicting deterrent costs on long single journeys. In the MDN, edges are set as a
simple step function of distance which is equal to one if the distance is below a
specified threshold, and zero otherwise.

Formally, an undirected tie xij between sites i and j exists if the distance dij between
the sites is less than a specified model parameter D, i.e.

xij ¼
1 if dij≤D

0 otherwise :

�

ð1Þ

In other words, the way in which contact falls off with distance is controlled by D.
For distances shorter than D we assume that journeys are relatively easy to make, and
for distances larger than D, they are difficult to make. Another way to think of this
model is as a quantitative way of defining regional clusters. Since we are connecting
sites less than a certain distance D apart, only sites within the same cluster are
connected to each other by a path.

The equivalence of MDNs in geometric graph theory are disk-intersection graphs

(Clark et al. 1990) in which a disk of radius equal to D/2 is put around every vertex,
and an edge between two vertices appear if the corresponding disks have non-empty
intersection. In other words, a disk graph is the intersection graph of a set of disks in the
Euclidean plane.

The MDN model is frequently used in archaeology and in particular, on Middle
Bronze Age (MBA) networks for varying D (Rivers et al. 2011, 2013; Evans et al.
2012; Rivers et al. 2013). In these applications, several points of criticisms are noted by
the authors together with some rather intuitive options to overcome these. The MDN
model produces simple networks where edges are present or not, and have no weights
or direction. This has been considered too simplistic and Rivers et al. (2013)
emphasised the need to consider travel times for which distance is not always a good
proxy. Therefore, introducing a frictional coefficient for land travel in comparison to
sea travel is commonly used as an option. Travel times can also be directional,
particular for maritime journeys with winds and tides. However, an option to deal with
this problem is to expect these trends to cancel each other out over the course of a year
so that the distances can be kept non-direction.

The strongest criticism is towards the choice of D and the edges that are created
based on this choice. If the distance threshold is too small, the network is overpowered
by the geographical distances, and if the distance threshold is too large, the whole
network becomes over connected, giving rise to more edges than reasonable. Further,
while there is no doubt that geography is an important factor for network formation,
ease of travel is only one component to take into account.

Proximal Point Analysis

In MDN, the premise is that communities need to interact but it is just too difficult to
travel (as controlled by D) while in PPA, the premise is that communities need to travel
but it is too difficult to sustain more than a few contacts, as controlled by the parameter
k defined in the following. The parameter k is the number of sites to which a site is
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connected and it is constant over all the sites. This means that PPA implicitly assumes
that sites have the same status, i.e. there are no sites to whom all other sites wish to
connect to.

In PPA, each site is connected to its k-nearest neighbours where by “nearest” is
meant geographically closest. For any site i, the distances between i and all the other n-
1 sites are computed. Let di(1)≤ di(2)≤ … ≤ di(n-1) be the size-ordered sequence of these
distances. Then, the existence of a tie between sites i and j is determined by

xij ¼
1 if dij≤di kð Þ

0 otherwise :

�

ð2Þ

The fact that j is a k-nearest neighbour of i does not imply that i belongs to the k-
neighbourhood of j, and therefore the PPA results in a directed network though the
directions are usually ignored in the literature. Comparison between the tie definition in
(1) and (2) shows that the PPA is a generalisation of MDN. Instead of using a fixed
threshold for the existence of a tie like in MDN, PPA considers distance thresholds
relative to each site. This results in a different network structure where sites that are
separated by large distances from their neighbours will connect nonetheless.

The difference in threshold selection stresses the distinction between the two
models. While MDN assumes that sites have the same travel ability (as described by
D), in PPA sites have the same capability of sustaining a certain number of connections.
Moreover, while MDN is only determined on a geographical base, PPA combine
geography and site status together.

Island archipelagos offer appropriate research contexts for the application of PPA
because of the clear separation of sites. In particular, early application was to anthro-
pological networks in Oceania where Terrell (1977) used PPA to model the probable
behaviour of human populations in Solomon Islands using k=3. As the author wrote:
“The procedure of drawing three lines out from every single point reflects the assump-
tion that village settlements in the Solomons all enjoy an equal status and that none
performs centralized, specialized functions for its surrounding neighbors” (Terrell
1977, p. 37). The final network created shows the most probable directions of inter-
island trade, travel, intermarriage, and migration. Terrell (2010) used PPA to explore
how variation in the material culture records of Sepic communities may be related to
language differences among villages. Here, the expected impact of distance on the
weight of contacts among the communities are modelled with a 1st, 2nd and 3rd order
PPA for each community. Other archaeological applications of PPA include Rivers
et al. (2011), Evans et al. (2012) and Rivers et al. (2013), where it was used to model
MBA networks, and Collar (2013), where it was used to analyse the diffusion of
religious innovation in the Roman Empire.

The aim of using PPA may be to decide which sites have a more prominent role in
regional contacts. This is determined by connectivity or degree centrality where the
degree of a site is the number of links that it has with its network neighbours. Usually
under PPA, the distribution of sites is uneven so that some sites will start to gather more
than their minimum number of ties since they are closer to the other sites in the
network. Thus, some sites will appear more connected than other sites, and portrayed
as more central in the network. Broodbank (2002) used PPAwith k=3 to simulate Early
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Bronze Age Cyclades settlement patterns to obtain results of site centrality or remote-
ness through visual inspection.

Networks built on PPA place a strong emphasis on local geography because most
neighbours are relatively close. However, an opposite effect is that isolated sites will
interact despite the distances separating them. The networks emerging from PPA will
thus lie in a string shape of sites in contrast to MDN networks where sites tend to
cluster. Consequently, the resulting networks may often be composed of several
connected components linking sites that are not necessary far apart (White 2012).
Another downside of PPA is its sensitivity to the emergence of new sites. In particular,
the resulting network is highly dependent on the choice of k; higher k implies denser
network (i.e. a network with many ties).

In graph theoretical terms, PPA is a variant of k-nearest neighbour graphs in which
two nodes are connected if the distance between them is among the k-th smallest
distances from i to all other nodes. If the spatial information of the set of nodes (i.e.
their topological arrangement) is taken into consideration, yet another version of PPA is
obtained. These are the relative neighbourhood graphs (Toussaint 1980) in which there
is a tie between sites i and j if

di j≤max dik ; d jkf g; k≠i; j; ∀k∈N

Thus, the occurrence of a tie between two vertices is determined by taking into
account how close two nodes are to each other and the relative distances of every pair
to the remaining nodes in the network. The inclusion of a tie is thus governed by
determining if any node pairs are relative neighbours or not.

While nearest neighbour techniques measure the absolute distance between the
points, the relative neighbourhood concept considers the region of influence for pairs
of vertices. The concept also allows the recognition of different levels of
neighbourliness by extending or reducing the size of the region of influence. The
notion of relative neighbours is used today in many fields to describe morphological
properties of empirical networks. This is particularly common in many archaeological
contexts where spatial relationships that match symbolic meanings need to be uncov-
ered. For instance, Jiménez and Chapman (2002) examined the spatial distribution of
Mexica offerings which can be described as a set of artefacts whose topology is used to
interpret their semantic and symbolic values.

Gravity Model

The hypotheses presented thus far are that sites have a tendency to interact directly with
other sites but are limited in doing so, either because it is too difficult to travel far or too
difficult to sustain more than a few contacts. Consequently, the networks resulting from
MDN and PPA are binary (a tie from i to j is either present or absent) and determined by
the geographical location of the sites or by the number of sustainable connections.
However, it is well established in network analysis that ties can depend on node
attributes and be characterized by weights describing the strength of the relationship
between two nodes. The Gravity Model (GM) and the subsequent ariadne model
introduced in the next section allows accounting for these elements.
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By analogy with Newton’s law of gravitation, the GM is based on the principle that
“an attracting force of interaction between two areas of human activity is created by the
population masses of the two areas, and a friction against interaction is caused by the
intervening space over which the interaction must take place” (Carrothers 1956, p. 94).

This theory results in the simplest form of the GM, where the number of contacts xij
between sites i and j is given by

xij ¼ cviv j f dij
� �

ð3Þ

where c, usually referred to as demographic gravitational constant, is a proportionality
factor; vi and vj are unspecified attributes of nodes i and j (such as population size, area,
and available resources); and f(dij) :ℝ

+
→ [0, 1] is a cost-distance function (also known

as a deterrence function). Different functional forms of f can be used, given the
assumption that the effect of distance on tie existence decreases as distance increases.
Inverse power law and exponential decay families are usually good candidates for cost-
distance functions. The two families are respectively described by

f dij
� �

¼
1

1þ βdij
� �γ and f dij

� �

¼
1

eαdiji

where α and β are scaling factors, and γ controls the tail weight of the power law
distribution. The two families differ in their tail weight, i.e. in the number of ties at large
distances: for the power law, the tail weight tends to 0 when distance increases more
slowly than for the exponential decay.

Given the relation between the GM and the log-linear models for aggregated choices
(Sheppard 1978; Anas 1983) or for contingency tables (Willekens 1983), the attracting
force xij is usually interpreted as the expected volume of contacts between the locations
i and j. The model in (3) implicitly assumes that such volume is symmetric and
therefore the network produced by a GM is an undirected valued network. In situations
where contacts between two nodes involve some forms of flows, the intensity of the tie
from i to j might differ from that from j to i. Therefore, more general forms of the GM,
yielding directed valued network, have been proposed.

The more generalised form of the GM is the double constrained gravity model
(DCGM), particularly used when xij is interpreted as the flow from i to j, and vi and vj
represent the outflow of the origin and the inflow of the destination respectively. The
DCGM accounts for the dependence of the flow from i to j on both the total flow from i

to any other sites, and the total flow into j from any other sites. This dependence is
formulated using the two constraints vi =∑jxij and vj =∑ixij, and it is included in the
model by replacing the proportionality factor c by two sets of balancing factors Ai and
Bj. This model is given by

xij ¼ AiviB jv j f dij
� �

Note that the DCGM subsumes the single constrained gravity model (either origin or
destination constrained) as a special case. The former can be produced by making one
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of the balancing factors Ai or Bj equal to one, the latter by making both balancing
factors Ai and Bj equal to one (for more details see Wilson (1967)).

The interpretation and the generality of its formula made the GM widely applicable
in many disciplines. For instance, in economics the GM is used to explain the volume
of trade by country market/production sizes (measured by the Gross Domestic Prod-
uct). In demography, the GM is applied to describe the volume of migration movements
as a function of the country population.

In archaeology, GMs have been frequently applied and recognised as a useful tool in
regional analysis since the 70's (Johnson 1977; Conolly and Lake 2006). For instance,
Hodder (1974) explained the distribution of Romano-British wares, and the region of
influence of some production centres in Southern England using some specifications of
the GM. Clarke and Wilson (1983) investigated the sensitivity and the robustness of
GMs to the choice of the parameters via simulations. In this direction, Rihll and Wilson
(1987) applied the GM to reconstruct the network of contact between known settle-
ments in Ancient Greece dated to the 9th and 8th century B.C. By including historical
information concerning the importance of poleis in that period, they also validated their
model analysing the correspondence between the central position of the settlements and
their historical importance. More recently, Wilson (2007) used a GM to analyse the
attractiveness and the consumer area of raw material sources in the Vaucluse region of
southern France during the Prehistoric period.

ariadne

The models introduced in the previous sections rely on assumptions that might be too
simplistic for some archaeological case studies. For instance, as noted by Knappett
et al. (2008), the assumption of PPA for reconstructing networks in the Aegean during
the Bronze Age is coherent with archaeological evidence only when referring to the
early period. Moreover, MDNs, PPA and GMs account only for the effect of site size on
contacts without considering the dependence in the opposite direction. The size of sites
can indeed affect the tendency of sites to maintain contacts with others, but at the same
time contacts might provide resources leading to the growth and the development of the
sites themselves. The ariadne model (Knappett et al. 2008; Evans et al. 2009) was
developed in reaction to these limitations.

By analogy with statistical mechanics, Evans et al. (2009) assumed that sites in a
network can be thought of as interacting particles in an isolated system. Therefore,
archaeological networks can be reconstructed using the Gibbs-Boltzmann distribu-
tion defined over the set of all the possible networks X on N according to

P X ¼ xð Þ ¼
1

κ
exp −H x; vð Þð Þ ð4Þ

where H(x,v) is the energy of the system, and κ is a normalizing constant assuring that
(4) is a proper probability distribution. The energy of the system is determined adopting
a cost-benefit approach and plausible networks are those maximizing the trade-off
between benefits and costs.
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More specifically, for each site costs and benefits depend on the availability of local
resources used to sustain the population, the population itself and the distance between
sites. The benefit of the local resources is proportional to the rate of growth of the
population when the system is isolated (a reasonable assumption for an island setting).
It follows that the benefit of local resources for site i can be evaluated using a logistic
population model (Verhulst 1838)

Ri ¼ αvi 1−
vi

k i

� �

;

where ki is the fixed assigned carrying capacity (i.e. the sustainable population), vi is
the actual population of site i and α is a proportionality factor. Ri is positive (negative)
when the local resources are (not) sufficient to maintain the current population, a
situation that happens when vi< (>) ki. Since local resources are limited, each site
has to face a cost

Ci ¼ γvi

associated with the maintenance of the population. The parameter γ quantifies the cost
for each unit of the population.

When Ri is negative, then sites need to interact with other sites to sustain their
current population. The benefit of exchange from site i to site j is quantified using the
gravitational law

Eij ¼ βviv j f dij

.

dM

� �

xij

where f(dij/dM) is the cost-distance function, with dM the maximum daily travel
distance, xij (0 < xij < 1, ∑jxij = 1) is the volume of contacts from site i to site j, and
β is a parameter playing the role of the gravitational constant. When β is positive,
contacts with large sites located nearby are more rewarding. Following the approach in
the analysis of economic networks, contact ties provide sites with benefits and, at the
same time, entail costs to be created and maintained (Jackson 2010; Goyal 2012). The
cost for a site i to sustain the tie towards site j is represented by

T ij ¼ δvixij;

where δ is a parameter indicating the cost for each unit of the population and volume of
contacts.

Given the set of costs and benefits for each site, the ariadne model assigns to each
possible configuration of site size and ties variables the “cost-benefit” function

H x; vð Þ ¼ −∑
i

Ri−Cið Þ−∑
ij

Eij−T ij

� �

;

where the parameters α and γ are assumed to be constant over all the sites, while the
parameters β and δ are assumed to be constant over all the pairs of sites.
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Different values of H(x,v) correspond to different network configurations. To obtain
plausible networks for the archaeological context, Knappett et al. (2008) suggested to
determine networks characterized by the highest trade-off between the benefits and the
costs, i.e. networks minimizing H(x,v). In other words, given the assumptions of the
ariadne model, archaeological networks are reconstructed using the most likely net-
works according to the distribution in (4). However, the cost-benefit function can have
several local minima, and the minimum of H(x,v) cannot be computed in an analytical
way. Therefore, Knappett et al. (2008) suggested to use a stochastic approach based on
simulated annealing to minimize H(x,v). Simulated annealing (Kirkpatrick et al. 1983;
Robert and Casella 2004; Burke and Kendall 2005) is a probabilistic procedure to
approximate the global optimum of a cost function that might have several local
minima. At each step of the algorithm a change to either the network or the site size
can take place. Given the current state of the network, an element of the vector v or a
cell of the matrix x is randomly selected and a new value is proposed. If the new value
decreases the “cost-benefit” function, the new value is kept and the proposed network is
accepted as the next state of the chain. Otherwise the proposed network is accepted
with a probability depending on the difference between the “cost-benefit” functions of
the current and proposed networks, and a rescaling parameter (defined as the inverse of
temperature) avoiding the trapping attraction of the local minima. If there are too many
consecutive changes the rescaling parameter is increased. These steps are repeated until
the proposed networks are rarely accepted and the current state of the chain is returned.
The procedure results in directed weighted networks corresponding to the local minima
of H(x,v) and considered as approaching the optimal solution.

Intuitively, the optimal network is approached by moving from one network to a
slightly different network (where a new value for either a tie or a site size is proposed)
which is quasi-efficient or more efficient than the original one. Given the propositions
of the ariadne model, a possible interpretation of the algorithm is that the efficient
network is the result of a series of (tie or size) changes made by sites to minimize the
trade-off between the costs and benefits of the entire system.

Compared to the previous models ariadne aims to reconstruct past networks
accounting for the interdependence between strength of contacts and size of sites.
While the reconstruction of the network is based on the usual variables (i.e. distance
and size), the distinctive element of ariadne is the assumption that networks in the
past were shaped by costs and benefits entailed by ties and populations. Moreover,
ariadne enables us to reconstruct missing links and the sizes of sites at the same
time, thereby explaining in more details why certain sites become more important
than others.

Applications of this model can be found, for instance, in Knappett et al. (2011) and
Evans et al. (2012).

Structurally Efficient Networks

The models presented in the previous section reconstruct archaeological networks on a
dyadic basis. In particular, they assume that pairwise site characteristics (e.g. size and
location) and the constraints that are imposed on them are the only determinants of the
existence of ties. However, the shape of a network is also determined by its self-
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organizing tendencies, i.e. endogenous mechanisms modelling the dependence of ties
on other ties and their interaction with exogenous factors such as site attributes. In
general, it cannot be assumed that site i’s relation with site j is completely independent
of its relation with site k even after controlling for site attributes. Accounting for tie
dependence opens up the development of more accurate models for network recon-
struction and the possibility of investigating alternative scenarios.

The ariadne model postulates that networks in the past were efficient in the sense that
ties with a positive trade-off between costs and benefits were more likely to exist. Since
costs and benefits are computed at a dyadic level, networks generated using the ariadne
model will hereafter be referred to as dyadically efficient networks.

Here, we extend the concept of dyadic efficiency to higher order, “structural,”
efficiency. In particular, we assume that archaeological networks were structurally

efficient according to the reconciliation between closure theory and structural holes
theory described by Burt (2001).

In the analysis of social capital, ties are usually considered as channels allowing
flows of information or goods between nodes. Coleman’s closure theory (Coleman
1988, 1990) claims that social capital is the result of a network of strongly connected
nodes. Since the strong connections facilitate trust and the sharing of knowledge, well-
connected nodes have more opportunities to acquire information and produce social
capital. On the contrary, Burt’s argument of structural holes (Burt 1992) states that
social capital is a “function of brokerage opportunities” (Burt 2001, p.34), i.e. it is
“created by a network in which people can broker connection between otherwise
disconnected segments” (Burt 2001, p.31). The absence of ties between these network
segments generates structural holes.

Burt’s theory is based on Granovetter’s (1973) strength of weak ties argument,
according to which strong ties (i.e. frequent ties) with nodes that are themselves
strongly related provide less valuable information than weak ties with nodes that are
not connected with each other. Indeed, strong ties within groups expose nodes to the
repetition of the same information, while weak ties between groups yield the acquisi-
tion of more diverse information. Therefore, nodes that are tied to nodes belonging to
different groups may have the opportunity to get richer information. These nodes are
referred to as brokers. It follows that the structure of the network plays an important
role in the diffusion of information and some structures may perform better than others.

According to Burt’s theory, a structurally efficient network is characterized by the
presence of strongly connected groups and brokers mediating the flow of information
and filling the holes between these groups. This structure reduces the redundancy of
information and allows the flow of information between parts of the network that are
weakly connected.

Burt’s argument combines network closure and structural holes theories and can be
applied to the reconstruction of archaeological networks. A structurally efficient net-
work consists of a well-developed system of contacts within the close range of sites and
the presence of non-redundant outside contacts controlled by broker sites. The rationale
behind this definition is explained here by way of an example. Let i, j, h and k be four
sites. Fig. 1 shows the location of these sites in the geographical space and the ties
among them (solid line). According to network closure, sites in contact with a third site
might be more likely to be in contact themselves. Therefore, i and h may start a contact
tie with k as well (dotted line). However, the benefits of these two ties are likely to be
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lower than the corresponding costs. Since k is in a different neighbourhood, the effort of
maintaining a contact with this site would not be negligible. Moreover, the existence of
the ties between j and all the other sites already assures that the two neighbourhoods are
in contact. Based on these considerations, multiple ties connecting the two
neighbourhoods would not be created and j would continue playing the role of a broker
filling the hole between the neighbourhoods. Multiple ties connecting two
neighbourhoods will hereafter be referred to as redundant ties and their percentage in
a network will be used as a simple way to quantify the redundancy of contacts in a
network. The higher the percentage, the less structurally efficient the network.

The example shows that the existence of the tie between i and k depends on the
existence of the ties between j and i, and j and k (similarly for the tie between h and k).
This suggests that the reconstruction of structurally efficient networks requires the
development of models capable of dealing with tie dependence. Several statistical
models for the analysis of network data have been specifically developed to account
for tie dependence. Thus, they might represent a useful tool to reproduce archaeological
networks.

In the following, we focus on Exponential Random Graph Models (ERGMs), a
family of models used to describe the structure of an observed network. While
Brughmans et al. (2014, 2015) applied ERGMs to model visibility networks in the
past, here we discuss their use to reconstruct structurally efficient networks. Although a
recent extension allows modelling some forms of valued networks (Krivitsky 2012),
and ERGMs are defined for both directed and undirected ties, we consider only
ERGMs for undirected binary networks to illustrate their potential to infer missing
links in past networks.

Exponential Random Graph Models

Exponential Random Graph Models (ERGMs) (Wasserman and Pattison 1996;
Robins et al. 2007; Lusher et al. 2013) are stochastic models for describing,
modelling and testing hypotheses concerning the structure of one single observation
of a complete network. They assume that an observed network results from the
combination of several small blocks of ties, referred to as local configurations,
representing the micro-mechanisms that might have generated the observed net-
work. These micro-mechanisms may depend on both endogenous effects (e.g.
triangles), related to the self-organizing tendencies of the network x, and exogenous
effects, concerning the characteristics v of the nodes (e.g. size) or the attributes w of
pairs of nodes (e.g. distance).

Fig. 1 A contact network defined over four sites located in some geographical space. Nodes having the same
colour belong to the same neighbourhood. Solid lines represent the ties between the sites, dotted lines
represent redundant ties
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Formally, ERGMs are probability distributions over the set X of all the possible

networks defined over N and having the form

P X ¼ xð Þ ¼
1

κ
exp ∑

K

k¼1
θkgk x; v;wð Þ

� �

ð5Þ

The distribution (5) suggests that the probability of observing a network x depends
on a linear combination of statistics gk(x,v,w), counting the number of local configura-
tions of type k, and parameters θk measuring the importance of each local configuration
in shaping the network x. A large and positive (negative) value of θk implies that a
higher (lower) number of configurations of type k is observed in x than expected by
chance, thereby providing evidence for (against) the corresponding social process. The

normalizing constant κ ¼ ∑
x∈X

exp ∑
K

k¼1
θkgk x; v;wð Þ

� �

ensures that (5) is a proper

probability distribution. We can observe that the model in (5) has the same mathemat-
ical form of the ariadne model, but here the energy of the system is represented by the
linear combination of the statistics and the parameters.

Tie dependence assumptions define the set of admissible statistics specifying an
ERGM. Theories concerning the local mechanisms regulating the creation and the
maintenance of ties determine which statistics gk(x,v,w) should be chosen, among those
admissible, to specify the model. The number of triangles is an example of statistic.
This statistic is used to model closure, i.e. the mechanism described by the fact that the
contact of my contact is also my contact. As described in the next section, it is through
the statistics that the assumptions characterizing the previous models, and many other
assumptions, can be incorporated in an ERGM to reconstruct archaeological networks.

Intuitively, an ERGM is a probability distribution for the network variable X. This
probability can also be interpreted as a logistic regression model. In fact, the network
random variable X can be thought of as a collection of the tie random variables Xij , i ,
j∈ N, taking value 1 if the tie between i and j is present and 0 otherwise. Given an

ERGM, the logarithm of the ratio between the probabilities of a tie being present and of

a tie being absent, conditional on all the other ties in the network, can be expressed in

the following form:

log
P X ij ¼ 1jX −ij; θ
� �

P X ij ¼ 0jX −ij; θ
� � ¼ θ1 g1 xþ; v;wð Þ−g1

�

x−; v;w
�� �

þ…

þ θk gk xþ; v;wð Þ−gk

�

x−; v;w
�� �

ð6Þ

where X−ij is the set of all the tie random variables other than Xij, and x+ and x− are the
networks where tie between i and j is present and absent respectively.

Equation (6) suggests that an alternative formulation of the ERGMs is similar to a
logistic regression model where the explanatory variables are differences in the count of
the local configuration between the networks x+ and x−. Consequently, we can interpret
the ERGM parameters in the same way we interpret the parameters of a logistic
regression model. For instance, if gk(x, v,w) is the number of triangles, the greater the
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value of θk, the greater the probability of the presence of a tie leading to higher values of
triangles, everything else being equal in the network. A “social” interpretation of this is
that nodes have a tendency/preference for forming ties that close two-paths so that the
contact of my contact is also my contact. In other words, there is evidence for closure.

Given a specification of an ERGM and values for the parameters θk, it is
possible to sample random networks from (5) using Markov Chain Monte Carlo
(MCMC) methods (Gilks et al. 1996; Robert and Casella 2004). The main idea of
MCMC methods is to simulate the steps of a Markov Chain of networks whose
stationary distribution is (5). At each step, one dyad is randomly selected with
uniform probability and the tie between them is removed or added according to
whether they were already connected or not. If the probability of the network with
one changed tie (proposed network) is higher than the probability of the current
network, then the proposed network is accepted as the next state of the chain.
Otherwise, the proposed network is accepted with a probability depending on how
much more likely the current network is with respect to the proposed network.
When the number of steps is big enough and the simulated chain has reached the
stationary distribution, networks from this distribution can be returned. A “social”
interpretation of this algorithm is that the simulated networks are generated by a
series of tie changes determined by the tendency/preference of nodes for forming
ties according to particular mechanisms. This series of changes is represented by
the steps of the algorithm.

It follows that when archaeological assumptions can be translated into network
configurations, an ERGM can be specified and networks whose structure is coherent
with archaeological evidence can be generated. Moreover, multiple network scenarios
can be simulated and compared when, due to the uncertainty deriving from fragmentary
data, there are competing hypotheses compatible with archaeological knowledge.

ERGM Specification for Contact Networks

Several statistics must be included in ERGMs to reproduce networks coherent with the
assumptions defining the previous models and to account for structural holes and
network closure theories. These statistics, along with the corresponding local configu-
rations and parameter interpretations, are described in Table 1. This table illustrates the
correspondence between the local configurations and the propositions (first two col-
umns), the mathematical formulation of the statistics according to the notation intro-
duced in the previous paragraph (third column) and the parameter interpretation. We
consider here the case of undirected networks. Equivalent statistics can be defined for
directed networks (Robins 2011).

Ties are the constituent elements of a network. Networks can be dense (i.e. having
many ties) or sparse (i.e. having few ties). To control for the number of ties in an
archaeological network, the statistics gE counting the number of edges is included in the
ERGM. Positive (negative) values of the corresponding parameter θE lead to dense
(sparse) networks. The statistic gE must always be included in ERGMs since all the
other statistics are combinations of ties and attributes.

The idea that characteristics of nodes can influence the existence of ties has a long
tradition in ERGMs and therefore several local configurations have been defined to
account for the dependence of ties on node attributes.

240 Amati et al.



One of the assumptions common to all the models summarized in Section 2 is that
contacts between sites close to each other are more likely. This idea underlines the
importance of geographical space in both formation (e.g. MDNs and GMs) and
maintenance (e.g. PPA, RNG and ariadne models) of ties. To define the corresponding
statistic gD, we observe that if sites had a tendency to form geographically bound ties,

Table 1 ERGM specification for the reconstruction of archaeological contact networks. Each row provides a
description of the local configurations along with the theories they represent, the mathematical formulation of
the corresponding statistics and the parameter interpretation. x represents the adjacency matrix of the network
(xij = 1 if sites i and j are in contact; 0 otherwise), v the size of sites, d the distance (dij is the distance between
sites i and j) and y the neighbourhood (yij = 1 if sites i and j are neighbours; 0 otherwise). The symbol I

yi¼y jf g
is an indicator function taking value 1 if sites i and j are in the same neighbourhood and 0 otherwise
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the sum of the distances between connected sites would be small. Otherwise, we would
expect this sum to be quite large. Therefore, a suitable statistic for this assumption is the
sum of the ties weighted by the distance. Weighting ties by the logarithm of the distance
corresponds to assume that the likelihood of a tie between two sites falls off according
to the inverse power law function (Daraganova et al. 2012). Positive (negative) values
of the parameter θD indicate that long-distance ties are more (less) likely than short-
distance ties.

The assumptions that “larger sites can sustain a higher number of contacts” and
“sites prefer to be in contact with sites with a similar size” are included in the ERGM
specification via the size activity and the similar size configurations. If bigger sites
could sustain a higher number of relations, then the count of ties for the larger sites
would be higher than that for the smaller sites. Therefore, a suitable statistic gA
controlling for the activity of sites having a certain characteristic is defined as a
weighted count of ties, where the weights are the size of the sites. Positive (negative)
values of the parameter θA suggest that bigger sites tend to have more (less) contacts
than smaller sites. The same argument applies to the assumption concerning the
similarity with respect to the site size. The corresponding statistic gS is defined as a
weighted count of ties where the weights are the absolute differences between the sizes
of the sites. Positive (negative) values of the parameter θS indicate that ties between
sites with a large difference between site sizes are more (less) likely.

Closure and structural holes theories are modelled via local and bridging triangle
configurations (Table 1) respectively. The local triangle statistic gLT counts the number
of triangles within neighbourhoods, whereas the bridging triangle statistic gBT counts
the number of triangles between two different neighbourhoods, such that two nodes
belong to the same neighbourhood and one belongs to a different one. The ties between
the two nodes in the same neighbourhood and the node in the other neighbourhood are
what we have defined as redundant ties. The rationale behind the definition of these
statistics is that, if networks in the past were efficient, than the number of triangles
within the neighbourhood would be high and the number of triangles between two
different neighbours would be small. Positive (negative) values of the corresponding
parameters θLT and θBT suggest a tendency towards (against) local and bridging
triangles. Therefore, structurally efficient networks result from models with positive
θLT and negative θBT.

Local and bridging triangles are defined as interactions between triangles and
the propensity of sites to form ties between sites in the same neighbourhood.
Consequently, we should control for the tendency of ties to cluster into triangular
structures and form homophilous ties with respect to the neighbourhood. The term
“controlling for” means that we need to check if there are other competing
mechanisms that might have generated a similar network outcome. For instance,
the tendency of sites to connect to the contacts of their contacts (closure) might
also lead to a high number of local and bridging triangles. Therefore, the corre-
sponding statistics gT counting the number of triangles in the network should be
included in the model. The tendency towards closure might be stronger according
to the number of sites that are intermediaries. This is modelled by the alternating-
k-triangles statistic gAT. Positive (negative) values of the corresponding parameters
θT and θAT suggest a tendency towards closure and the overlapping of triangles
respectively.
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Similarly, the tendency of sites to connect to sites within the neighbourhood might
also lead to a high number of local triangles. Therefore, the statistics gH counting the
number of ties within the same neighbourhood is included in the model to control for
the tendency of sites to form ties within a neighbourhood. Positive (negative) values of
the corresponding parameter θH indicate a tendency towards (against) the formation of
ties between sites belonging to the same neighbourhood.

Given this specification of the model, simulations of archaeological networks can be
conducted using the package ergm (Hunter et al. 2008; Handcock et al. 2014) imple-
mented in R. While the local triangle statistic is already defined in the package, the
bridging triangles statistic was added using the package ergm.userterms (Hunter et al.
2013; Handcock et al. 2013).

Application: Middle Bronze Age in the Aegean

By way of example, data collected by Knappett et al. (2011) are used to reconstruct
structurally efficient networks during the middle bronze age (MBA) in the Aegean. The
data set includes 39 major sites along with their geographical coordinates, cost-distance
and size of local resources (Fig. 2). Cost-distance is computed as a linear combination
of land and sea distance weighted by frictional coefficients. We hereafter use the values
1 and 2 for the frictional coefficients of sea and land travel respectively, thereby
assuming that travelling by land is slower and more costly than travelling by sea.
The size of sites is described by an ordinal categorical variable with categories: “1 =
small”, “2 = medium” and “3 = large”. Data and their description can be downloaded
from http://figshare.com/articles/Thirty_Nine_Aegean_Minoan_Sites/97395.

The definition of neighbourhoods can be based on several criteria. One simple
specification depends on the location of sites so that sites lying in the same geograph-
ical region are part of the same neighbourhood. Another specification is based on the
maximum daily travel distance dM so that two sites are neighbours if the distance

Fig. 2 Important sites for the Middle Bronze Age in the Aegean. Size of nodes represents the size of sites
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between them is less than dM. The choice between these two criteria is motivated by the
same reasons leading to the decision between using geographical distance or cost-
distance. In fact, lying in the same geographical region does not always facilitate the
creation and the maintenance of ties. In the following, neighbourhoods are defined
using the maximum daily travel distance, which for the MBA is dM = 110 kilometres
(Knappett et al. 2011). Neighbourhoods of sites are represented by a matrix y, with yij =
1 if i and j are neighbours and 0 otherwise, and visualised in Fig. 3. The presence of a
tie indicates that two sites are neighbours, i.e. the cost-distance between them is lower
than 110 kilometres.

Like any ERGM, a model including the statistics in Table 1 must be fully specified
to simulate structurally efficient networks. We propose to establish appropriate magni-
tudes by first estimating parameters of the specified ERGM on a network obtained from
one of the models described in Section 2 and then tuning these estimated parameters
according to the underlying assumptions.

Note, however, that not all the networks generated from the previous models are
suitable for this approach. In fact, the outcome of the MDN based on maximum
travelling distance corresponds to the neighbourhood structure depicted in Fig. 3.
Hence, the statistics related to the number of edges and the same neighbourhood are
collinear and the specified ERGM cannot be estimated. When statistics are collinear
different combinations of parameter values could represent the same data pattern (i.e.
the same values of the statistics) and therefore the estimation algorithm will not
converge and return high standard errors. Problems arise also when considering the
outcome of the PPA. In this case, the model estimates are inflated because of complete
separation (i.e. there is a threshold value of the exponent of the ERGMs above which
ties are always predicted to be present) no matter what the value of k is. Networks
produced by (simple) GMs and the ariadne model cannot be used directly since they are
weighted and those deriving from the ariadne model are also directed. These networks
can be transformed into undirected binary networks by keeping only those ties whose

Fig. 3 Neighbourhood of sites in the Middle Bronze Age in the Aegean. A tie indicates that two sites are
neighbours. Two sites are neighbours if the distance between them is less than 110 kilometres
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values exceed a certain threshold and ignoring their direction. While the estimation of
the ERGM on the binary outcome of the GM is affected by complete separation and
therefore cannot be used in this specific case, considering a binary undirected outcome
of the ariadne model provides valid estimates. Thus, in this application, the values of
the parameters are chosen and tuned based on networks generated with the ariadne
model.

Fig. 4b shows an example of an undirected binary network generated by the
ariadne model with parameter values α = 4, β = 1, γ = 0.1, δ = 2 and dM = 110
kilometres (Knappett et al. 2011) and a threshold for the presence/absence of ties
equal to the mean of the weights of all the ties. The original weighted network is
shown in Fig. 4a. Given the binary network in Fig. 4b, we estimated the ERGM
specified by the statistics described in Table 1 using the ergm package (Hunter
et al. 2008; Handcock et al. 2014) in R. Table 2 illustrates the corresponding
estimates. Only the parameters concerning the assumptions leading to the ariadne
model turned out to be significant. The parameter related to the distance effect is,
indeed, negative implying that there is a tendency towards the formation of ties
between sites in a close range. Moreover, the parameters related to the size of the
sites are positive suggesting that medium and large sites sustain a higher number
of relations. The parameter of the alternating-k-triangles is also significant and
positive providing evidence for the tendency to share several contact sites. The
model estimates show that there is no evidence for structural holes and closure
theories. Although the parameters are not significantly different from zero, they
are both positive, thereby implying evidence for closure theory but against struc-
tural holes theory. The interpretation of the parameters explains the remarkable
presence of redundant ties in the binary undirected network: 48% (78 out of 161)
of ties are in fact redundant (Fig. 4b). Note that the percentage of redundant ties
can be reduced increasing the threshold used for creating the binary network.
However, the resulting network will be composed of several disconnected com-
ponents and therefore structurally inefficient.

Tuning the parameters in Table 2 enables us to reconstruct possible scenarios
based on Burt’s theory. Fig. 5 shows the effect of the distance parameter θD.
Increasing θD yields dense networks characterized by long distance ties and a high
percentage (63%) of redundant ties (Fig. 5a), whereas decreasing θD leads to
disconnected networks with a few (6%) redundant ties (Fig. 5b). None of these
networks is structurally efficient suggesting that distance per se cannot yield
scenarios where broker sites bridge well-connected regions of a network. Further-
more, since the definition of neighbourhoods is based on the maximum daily
travel distance, the number of redundant ties is simply reduced because of the
tendency of ties to form in a close range rather than the presence of broker sites.

Networks coherent with Burt’s theory might be generated tuning the parameters of
local and bridging triangles and those of the elementary configurations whose interac-
tions define them. Fig. 6a and b show that increasing the parameter θLT of the local
triangles and assigning negative values to the parameter θBT of bridging triangles is not
enough to obtain structurally efficient networks. In fact, the resulting structure of the
network is composed of several components, corresponding to the neighbourhoods,
which might be weakly connected according to the size of the parameters. Again, the
percentage of redundant ties in the network is reduced (9% and 16% respectively) only
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because the choice of the parameters privileges the formation of ties within
neighbourhoods.

To reproduce structurally efficient networks the parameters of triangles, alternating-
k-triangles, distance and the same neighbourhood must also be tuned (Mills et al. 2013;
Peeples and Haas 2013; Borck et al. 2015). In order to obtain networks that are more
connected and characterized by clustering of ties and triangles, the value of the
parameter of the triangles was decreased, whereas the values of the parameters of

a

b

Fig. 4 a) Outcome of the ariadne model with parameter values α = 4, β = 1, γ = 0.1, δ = 2 and dM = 110
kilometres. The thickness of the lines represents the weights of ties (the thicker the line, the higher the volume
of interaction) b) The undirected binary network computed from the ariadne model in b using a threshold equal
to the mean of the weights (= 0.0256). 48% of ties are redundant (dotted lines)
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alternating-k-stars and distance were increased. Fig. 6c and d show two examples of
networks drawn from ERGMs specified by the choice of the parameters described
above. The sampled networks are characterized by one strong component, where each
site can potentially have direct or indirect contacts with all the other sites. This
differentiates these networks from those in Figs. 5b, 6a and b.

Fig. 6c and d differ in the size of θLT and θBT. The two pictures show that increasing
θLT and θBT yield networks characterized by a well-developed system of contacts within
the close range and the presence of non-redundant outside contacts controlled by broker
sites. Compared to the network in Fig. 4b, the percentage of redundant ties is lower
(20% and 2% respectively). This is determined by the value of θLT and θBT: the more
extreme the values, the lower the percentage of redundant ties.

Finally, structurally efficient networks where large sites play the role of brokers can
be reconstructed tuning the parameter related to the effect of the size of sites on the
formation of ties. Fig. 7 provides an example of a network based on this assumption.

Discussion

In this paper we considered the issue of reconstructing past networks when fragmentary
archaeological data does not provide enough information to get anywhere near a
complete picture of network in the past. In this situation, the best we can do is to infer
links using a model-based approach. This procedure requires the formulation of
assumptions regulating the occurrence of ties in the past and the development of
models determining which ties were more likely to exist.

The models used so far assume that presence and strength of ties depend only on
factors which are exogenous to the network so that the only determinants of ties are
characteristics of sites, such as their geographical location and size. Consequently, these
models are not able to infer missing ties based on tie dependence assumptions and they
limit the number of possible network scenarios. In this paper, we provided an example

Table 2 ERGM estimates (θ) and corresponding standard errors (s.e.(θ)) for the undirected binary network
represented in Fig. 4b

θ s.e.(θ)

Edges 9.324 2.735***

Triangles - 0.494 0.300***

Alternating-k-triangles (λ = 1.5) 0.988 0.272***

Local triangles 0.107 0.395***

Bridging triangles 0.018 0.137***

Distance (logarithm) -2.784 0.484***

Size activity (medium) 0.716 0.377**

Size activity (large) 0.924 0.349***

Similar size (diff=1) -0.239 0.287***

Similar size (diff=2) 0.312 0.569***

Same Neighbourhood 0.478 1.159***

*** p < 0.001, ** p < 0.01, * p < 0.05, • p < 0.1
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of assumptions that account for dyadic dependence and we showed how statistical
network models may be used to reconstruct archaeological networks. In particular, we
considered Burt’s theory based on closure and brokerage; we used it to define struc-
turally efficient networks; and, by way of an example, we illustrated how exponential
random graph models (ERGMs) can be applied to reconstruct structurally efficient
networks.

On the one hand, the employment of ERGMs to infer ties in the past takes a step
back from gravity models and ariadne. While ERGMs for binary relations are well-
developed for both directed and undirected relations, extensions to the analysis of

a

b

Fig. 5 Effect of the distance parameter: a) θD = -2.6; redundant ties 60%. b) θD =-2.9; redundant ties 6%
(dotted lines represent redundant ties)
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a

b

c

d

Fig. 6 Applying Burt’s theory. Varying the parameter values of: a) local and bridging triangles: θLT = 0.5, θBT
= -0.3; redundant ties 9%; b) local and bridging triangles: θLT = 0.3, θBT = -0.1; redundant ties 19%; c)
triangles, alternating-k-triangles, local and bridging triangles, distance and same neighbourhood: θT = -0.2, θAT
= 1.0, θLT = 0.9, θBT =-1.8, θD = -2.6, θS = 0.9; redundant ties 20%. d) triangles, alternating-k-triangles, local
and bridging triangles, distance and same neighbourhood: θT = -0.2, θAT = 1.0, θLT = 1.1, θBT = -2.2, θD =-2.6,
θS =0.9; redundant ties 2% (dotted lines represent redundant ties)

Fig. 7 An example of a network reconstructed applying Burt’s theory and assuming that larger sites are
playing the role of brokers in the contact networks. Parameters values: θT = -0.2, θAT = 1.0, θLT = 1.3, θBT = -
2.4, θD = -2.6, θS = 0.9, θA medium = 0.75, θA large = 1.2; redundant ties 4% (dotted lines represent redundant
ties)
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valued networks are still under investigation. Therefore, using ERGMs to reconstruct
archaeological networks is currently limited to binary relations. Moreover, compared
with ariadne, ERGMs do not account for the interdependence between strength of ties
and site sizes. On the other hand, ERGMs takes a step forward from the previous
models since they allow reconstructing networks using assumptions based on tie
dependence and open up a variety of scenarios that cannot always be investigated by
previous models. Furthermore, ERGMs enable us to reconstruct networks based on and
controlling for several archaeological assumptions at the same time.

So far, different propositions describing the formation of ties in the past have always
lead to the definition of new models. In fact, the mathematical formulation of MDN,
PPA, GMs and ariadne is entirely determined by the assumptions on which they rest.
However, archaeological propositions concerning tie formation often depend on time
period, geographical area and the type of relations under investigation. Therefore, the
development of a more flexible model capable of dealing with diverse archaeological
contexts is desirable.

The example in Section 4 illustrated that ERGMs might be this flexible model. In
fact, in ERGMs, different assumptions require only a different specification of the
model, i.e. the choice of the local configurations and the tuning of the corresponding
parameters. For instance, adding to Burt's theory the assumption that larger sites play
the role of the brokers required changing the values of the site activity parameters.

Furthermore, particular specifications of ERGMs correspond to some of the previ-
ous models. MDN and PPA are non-stochastic counterparts of spatial Bernoulli random
graphs (Butts 2002), a special type of ERGMs assuming that ties are independent and
the probability of having a contact between any two sites is solely determined by the
distance between them. When this probability is determined by the step functions in (1)
and (2), the spatial Bernoulli random graphs correspond to MDN and PPA respectively.
In its simple and binary formulation, also the gravity model can be written in an ERGM
form. The corresponding ERGM is specified by the following configurations: edges,
site activity and distance.

It follows that the reconstruction of archaeological networks using ERGMs turns
into a model specification problem rather than the formulation of new models. This
suggests that the “translation” of assumptions into network configurations is an impor-
tant step in network reconstruction. Thus, it is fundamental to provide a framework
where the main archaeological assumptions are matched to the corresponding local
configurations. For instance, propositions stating that sites occupying a special place or
having a special function have a tendency to be connected with a high number of sites
can be incorporated into the model using statistics similar to the size site statistic. The
description of the general framework is a topic of future work and is motivated by
current research in the Caribbean.

Throughout this paper we assumed that archaeological networks are composed of
settlements, whose existence is proved by the finding of sites, and ties representing
contacts between them. We made this assumption because most of the applications of
the previous models concern this type of settings, as attested by the case studies
mentioned in Section 2. However, ERGMs can, in principle, be used to reconstruct
networks on a lower (e.g. households) or a larger scale (i.e. cities, islands or region). In
general, the scale of the network is determined by the scale at which the tie formation
propositions are formulated and the possibility of translating these assumptions into
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local configurations. For instance, Burt’s theory can be applied to a regional level by
assuming that there was a well-developed system of contacts within the close-range
region and the presence of “gateways regions” connecting regions that otherwise would
have been disconnected.

Finally, it must be noted that in the proposed approach ERGMs are used to
reconstruct the global structure of past networks from micro-mechanisms defined on
the tie-level. Although the generated networks can be thought of as the results of a
series of tie changes determined by the tendency/preference of nodes for forming
certain ties, the outcome is essentially a static network. Therefore, research questions
concerning the evolution of the network over-time or the diffusion of practices and
innovations, can be better addressed using agent-based or dynamic network models
rather than ERGMs.
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