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A delay-vector phase space reconstruction in which the delay time satisfies a minimum redundan~ criterion is compared 
with a reconstruction obtained using a singular system approach, Minimum redundancy produces the better reconstruction. 
The reconstructions are compared using a distortion functional .~ which measures how well the location of a point in the 
original phase space can be determ~i~ed on the basis of its image under the reconstruction process. The superiority of the 
redundancy analysis over the singular system analysis ~s found to arise from the former's foundation on the notion of general 
independence as opposed to the latter's foundation on the notion of linear independence. 

1. Inlroduetion 

The observation that the dynamics of a system 

with many degrees of freedom can be investigated 

using time series of a single scalar observable has 

broadened the class of experiments in which com- 

plex behavior can be interpreted as manifestations 

of strange attractors, Packard et al. [1] suggested 

two schemes for reconstructing vector dynamics 

from scalar time series. Takeas [2] suggested the 

same techniques and proved that reconstructions 

are generically diffeomorphic (one to one differ- 

entiable with a one to one differentiable inverse) 

to the original dynamics. 

In the ensuing flood of applications of these 

ideas, eyperimenters observed that some recon- 

structions are better than others. Usually a bad 

reconstruction is one that is not invertible, i.e., 

points in the reconstructed phase space do not 

uniquely identify points in the original phase 

space. In experimental situations, noise makes all 

reconstructions non-invertible and whether a re- 

construction is good or bad is a question of 

degree. It is harder to estimate diffeomorphic in- 

variants using worse reconstructions. For instance 

Haucke et al. [3] studied the dependence of their 

estimates of fractal dimension (a diffeomorphic 

invariant) on the parameters of their reconstruc- 

tions. One is led to ask, "Which reconstruction is 

"most diffeomorphic' to the original phase space?" 

Thus there is a need for techniques of obtaining 

good reconstructions that do not depend on trial 

and error or the taste of the operator. Takens' 

paper is mathematically authoritative, but it does 

not touch on many of the issues that must be 

considered by an experimenter in applying the 

techniques. From Takens' mathematical point of 

view a reconstruction is diffeomorphic to the origi- 

nal phase space or it is not, and an idea such as 

"more diffeomorphic" is meaningless. An experi- 

menter is assured that he can extract diffeomor- 

phic invariants (dimensions, Lyapunov exponents. 

etc.) of an attractor trom an infinite amount of 

noise-free data, but he is given little help in select- 

ing a reconstruction technique that will be robust 

to the limitations inherent in "real" data. In the 

paper by Packard et al. most of the issues involved 

in obtaining good reconstructions are discussed. 
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Their discussion is not rigorous; it focuses on 

describing problems rather than solutions. 

Following a suggestion of Shaw's, Fraser and 

Swinney [4] implemented an information theoretic 

procedure for finding good reconstructions. 

Roughly the procedure requires that the mutual 
information between the components of a two- 

dimensional reconstruction should be as small as 

possible. In [5] we expanded the two-dimensional 

approach to higher dimensions by minimizing re. 
dundancy, which is a generalization of mutual 

information. Brc~ornhead and King [6, 7] have 

introduced an alternative procedure based on sin- 

gular value decompositions, which they call a sin- 

gular systems approaci~. 

In the present paper we try to define more 

precisely what good reconstructions are, and how 

one might determine whether a reconstruction is 

good without having an original phase space tra- 

jectory available. We apply the two suggested pro. 

.,'edu:es to a quasiperiodic time series, and we 

evaluate the reconstructions by measuring how 

closely points in the original phase space can be 

approximated by a piecewise linear map applied 

to points in the reconstructed phase space. We 

find the reconstruction produced by the singular 

system approach to be inferior. We then use the 

exanaple to illustrate the weaknesses of the singu- 

lar system approach. 

2. History 

Takens [2] describes a technique for determin- 

ing whether experimental behavior (such as in the 

transition to turbulence in Taylor-Couette flow) 

can be attributed to the presence of a strange 

attractor. The two characteristics that he uses to 

identify a strange attractor are small noninteger 

dimension and positive entropy. The paper ex- 

plains how a scalar time series of measurements 

can be used to measure attractor dimension and 

entropy. As a first step in developing the tech- 

nique, Takens shows that if the dynamics are 

governed by a finite-dimensional attractor, then it 

is a generic property that a time series of a scalar 

observable can be used to construct a vector time 

series that is diffeomorphic to the original dynam- 

ics. 

2.1. Experimenters' experience 

Since the publication of the papers by Packard 

et al. [11 and Takens [2], hundreds of experi- 

menters have used delay coordinates to recon- 

struct phase space trajectories from scalar time 

series. While some experimenters have found that 

their reconstructions are robust with respect to the 

choice of coordinates (time delay T) [8], the more 

common experience is that the values of "in- 

variants" (dimension, entropy, Lyaponov expo- 

nents, etc.) seem to depend on the reconstruction 

chosen. In the proceedings of one conference [31, 

five different papers stress the importance of 

choosing the correct parameters for a reconstruc- 

tion. 

In section 4 we suggest that the appropriate way 

to quantify the quality of a reconstruction is in 

terms of a distortion functional ,~(S, V) which is 

evaluated over the "original" phase space S and 

the reconstructed phase space V. One would like 

to choose a distortion measure in such a way that 

invariants are easy to estimate if a reconstruction 

has low distortion. The observation that experi- 

menters can tell whether reconstructions are dis- 

torted even when the original phase spaces are not 

available, suggests that it might be possible to 

define a distortion measure that does not involve 

the original phase space S. We examine this ques- 

tion more closely in section 4. 

2.2. The informal analysis of Packard et al. 

Packard et al. discussed how one obtains good 

reconstructions from experimental data in terms 

of the probability densities that are assumed to 

arise from ergodic natural measures of attractors. 

Such probability densities can be estimated from 

experimental data. In order to discuss these densi- 

ties we will use GaUager's notation [9]. An upper 
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case letter Z indicates an ensemble which consists 

of a set of possible values (also indicated by the 

same upper.case letter) and an associated proba- 

bility function Pz- The corresponding lower-case 

letter z indicates an element of the set Z. To 

indicate a vector variable or a set of vectors we use 

boldface letters, e.g. z or g .  

Using this notation, we can describe dynamical 

systems and their measurements as we conceive of 

them in this paper. We denote the phase space S 

with elements s. We suppose that the dynamics 

are given by a map q,: S ~ $ with s(t + 1)ffi 

~(s( t ) )  and that there is a scalar observable func- 

tion I/,: S ~ R. Before the values of the observable 

can be recorded, they are contaminated by mea- 

surement noise. Thus we model the measurements 

X by 

x(t) +,1(t), 

where ~ is an independent noise term. 

The simplest way to reconstruct phase space 

from a scalar time series is by using delay coordi- 

nates, i.e., v(t) -- x~r(t), where we have introduced 

the notational convenience 

Xr, n ( t ) - m ( x ( t ) , x ( t +  T ) , . . . , x ( t + ( m - 1 ) T ) ) .  

We can denote the composition of the observable 

function, measurement pzocess, and method of 

delays by O: S ~ V, where 

are discrete approximations to derivatives, e.g., 

A ~  

0 1 0 . . .  

- 0 .5  0 0.5 . - .  

1 - 2  1 . - .  

• Q . • 

One can imagine generalizing even farther and 

considering nonlinear coordinate functions, but 

for now we consider only delay coordinates, i.e., 

a~,j ---- 8ir.j. 
The idea of a good reconstruction is that the 

conditional probability density Pslr is "extremely 

sharp". Since phase space is not directly accessible 

in an experiment, Packard et al. say that the 

conditional density which should be sharply 

peaked is px(t÷.r)lxro), and that the components 

of X~ should be "independent in an operational 

sense" to obtain such sharpness. They also say 

that the value of m required to get sharp condi- 

tional densities is the topological dimension of the 

attractor. In other words if m is the topological 

dimension of the attractor and a reconstruction is 

done in m + 1 dimensions, then for a typical point 

on the attractor the first m coordinates are suffi- 

cient to predict the last coordinate. They caution 

that T should be small with :espect to A/h~ 
where A is the accu;acy of the " ~easurements and 

h, is the measure theoretic entl .,py. 

,,(t) = v,(t),..., vm_,(t)) 

and 

Vi(t) = ~ ( s ( t  + iT))  + 71(t + iT)  = x ( t  + iT) .  

• is called the reconstruction function. We could 

use a more general reconstruction, e.g., 

v,(t) = E a , , : ( t  +j).  (z) 

Here the coordinate functions are linear. Packard 

et al. suggested trying coordinate functions which 

2.3. Redundancy analysis 

The qualitative analysis of the previous subsec- 

tion is instructive, but a quantitative procedure 

would be more helpful for experimenters. In re- 

sao~e to this need Fraser and Swinney [4] devel- 

oped a procedure for choosing the best delay to 

use for a two-dimensional reconstruction. The cri- 

teflon which was suggested by Shaw [10] is that 

the delay should be set at the first local minimum 

of mutual information between the coordinates. 

The mutual information between two random 

variables Y and Z is a functional defined on their 
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joint probability density [111, 

( I (Y;  Z )  ffi log PrPzJ ' 

and is always positive. Note that I(Y; Z)  is a 

functional of the ensemble Y, Z, not a function 

that has a value at a particular location (y, z). If 

the base of the logarithms is 2, the information is 

measured in bits. For a joint density P v, z the 

number of bits of information about Y that a 

specification of Z yields is given by I(Y; Z). Thus 

when variables are more independent, their mu- 

tual information is smaller. As the symmetry in 

the definition indicates, I(Y; Z)ffi I(Z; Y). No- 

tice that if the joint density factors (pv. z = PrPz), 
then I(Y; Z) ffi 0, which is the smallest value pos- 

sible, and if z determines y exactly, i.e., y = f (z)  

then I(Y; Z)--- oo. 
Fraser and Swinney state that the best value of 

delay T is the smallest T for which I( X(t); X(t + 

T)) is a local minimum. Thus I( X(t); X(t + T)) 

must be calculated from joint densities Px~t). x~t, r) 

for many values of 7'. Mutual information can 

detect nonlinear correlations. Thus while plots of 

I vs. T are reminiscent of simple autocorrelation 

plots, they are sensitive to dependencies of any 

kind. 

In a second paper [5] we generalized the proce- 

dure to reconstructions of arbitrary embedding 

dimensions and added an analysis that determined 

the required embedding dimension. We defined 

the redundancy of a multidimensional distribution 

R,, r, - log Px~t)Pxo+r~ "'" Px~t+~m-t)r~ " 

We also defined the marginal redundancy 

R ,r, = I(  X( t  + roT); Xrm(t)) = Rr,. _l 

-- ('og[ 1 } • 

- R r 

We developed a recursive algorithm for estimating 

redundancy that produces a much more accurate 

estimate than could be obtained by naively apply- 

ing a uniform partition to phase space. The execu- 

tion time for the algorithm is proportional to 

N log N, where N is the number of data points. 

Consideration of redundancy provides a quanti- 

tative foundation for the ideas of "the degree of 

independence" and "sharply peaked distributions" 

discussed by Packard et al. [ll. The variables X(t), 

X(t + T), X(t + 2T) are "more independent" 

when R r is smaller, and the conditional distribu- 

tion px,+,,r~txr is more "sharply peaked"* when 

R ~  is larger. 
To find a good reconstruction using these tools 

one should first choose the embedding dimension 

m so that the conditional densities px,+mr~lxr,~ 

are "sharply peaked", i.e., m is chosen to make 

R~ r large. Next T must be selected so that on the 

average a point on the attractor in the recon- 

structed phase space v(t) provides as much useful 

information about the original phase space point 

s(t) as possible. In [5] we argued that the best 

estimate for this useful information is 

Q( m, T ) -- ( m - 1)( A - h~T ) - R ,  r.  (2) 

Here the accuracy A is defined as the average 

information that an isolated scalar measurement x 

pro~des about the system state S, i.e., A =- 

I(X; S). In maximizing Q(m, T) (eq. (2)), the 

term ( ( m - 1 ) ( A -  h~,T)) assures that T is small 

with respect to A/h~, and the term R r enforces 

independence of the coordinates. 

2.4. The singular systems approach 

Broomhead and King [6, 7] have introduced a 

sophisticated linear analysis of time series which 

was intended to provide good phase space recon- 

structions. They call their analysis the singular 

system approach. It is based on the Karhunen- 

Loeve theorem [12, vol. 2, p. 144], which is dis- 

cussed in the framework of information theory in 

*There are subtleties in these quantifications of "indepen- 
dent" and "sharp" because they are measure theoretic and 
strictly construed are devoid of topological properties. 
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Gallager [9, p. 402]. The basic idea is that the 

mean-squared distance between points on the re- 

constructed attractor should be maximized. 

In order to describe their approach, we intro- 

duce the n.window w(t )  - x~(t). The idea is that n 

should be larger than the embedding dimension m 

and that the reconstruction should consist of a 

linear projection from W to an m-dimensional 

subspace F. The basis of F is chosen to maximize 

(Iv] 2). The first basis vector eo is chosen to maxi- 

mize ( I w .  eo12), and the second is chosen to 

maximize ( I w .  ell2) subject to e o . e  1 - 0 .  The 

procedure is continued in the obvious fashion 

and produces an orthonormal basis such that 

<(e~. w)(ej,  w))=8~.~o~, i.e., the random vail. 

ables v~--(ej.  ,,) are linearly independent. It 

is important to note that this is not statistical 

or general independence but only linear inde- 

pendence. Given an experimental data set this 

analysis can be done using a singular value de- 

composition routine available in many subroutine 

libraries [13]. The aumbers o~-~/( Iw'  ell 2) are 

called singular values (where o 0 >_o I >_ o 2 ~ o~. . .  ). 

Broomhead and King explain that if the data 

are noisy and the variance of the noise is o~, then 

every singular value will be augmented by o~. Thus 

noise dominates any v~ whose corresponding sin- 

gular value o~ is comparable to o~, and such 

components should be discarded. This process re- 

sults in a reduction of the noise power in the 

reconstruction V by a factor m / n  where (n - m) 

is the dimension of the discarded subspace and m 

is the dimension of the retained subspace. They 

say that the significant singular values o o - . .  o~_ 

and the corresponding singular vectors e o . . -  era_ 

represent the deterministic aspects of the time 

series and that the remaining singular values and 

singular vectors represent the noise. 

They comment that the number of significant 

singular vectors m is not invariant with respect to 

diffeomorphisms of the scalar observable 4,. In 

fact m increases if the n-windows are made longer. 

In order to control the size of m they suggest 

selecting an n-window so that nt s = ~*, where ~'* 

is the time corresponding to the first zero crossing 

of the second derivative of the autocorrelation 

function C ( T ) = ( x ( t ) x ( t  + T)) ,  and t, is the 

sample time. 

Broomhead and King's approach to phase space 

reconstruction has two striking advantages over 

the previous approaches. First, the procedure has 

a built-in filter for reducing noise. Second, the 

coordinate functions used to obtain the recon- 

struction are more general, i.e., all linear projec- 

tions are considered, not just delta functions 8,r, j. 

There are also practical advantages in tb~t singu- 

lar value decomposition subroutines arc available 

in many subroutine libraries and these subroutines 

are faster and require fewer data than a redun- 

dancy analysis. These strengths can be over- 

whelmed by the weaknesses that we describe 

below. (The weaknesses of the singular system 

approach have been examined in previous work by 

Brandstater et al. [14] and Meese et al. [15].) 

3. Correlation and independence 

The singular system analysis suggested by 

Broomhead and King and the redundancy analy- 

sis that we suggested are best distinguished by 

their different underlying notions of indepen- 

dence. For the singular system analysis, the inter- 

dependence of random variables is measured by 

their correlation, and for the redundancy analysis 

the connection is measured by mutual informa- 

tion. To illustrate these two measures of depen- 

dence, suppose that there are two random 

variables y and z whose joint probability density 

is described by the Gaussian 

b" z ] xexp - a Y z +  ,. + 20,z 
2 

Here 

Z - l =  
t2 ¢), 

c b 
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where 

Oyy (Iyz 

O YZ fiZZ 
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is the covariance matrix. Given such a distribu- 

tion, the correlation C r, z between Y and Z is 

0 YZ 

Cy.Z-- - ~  ' 

and the mutual information is 

= Ogprpz  " 

In fact if the distribution is Gaussian, mutual 

information and correlation are related by 

l (Y ;  Z ) =  - [ l o g [ l -  C2v, z] • 

While the difference between mutual informa-. 

tion and correlation for Gaussian random vari- 

ables is trivial, the difference becomes significant 

for non-Gaussian densities. If the probability den- 

sity Pr .z  is Gaussian then the following three 

statements are equivalent: 

1. Cr, z = 0, 
2. I(Y; Z)=O,  
3. y and z are generally independent, i.e., p r. z 

= P rPz. 
If p v. z were not Gaussian, then general indepen- 

dence would still be implied by I(Y; Z ) = 0 ,  but 

Cr, z = 0 would only imply linear independence, 

i.e., (yz )  = (y )  (z) .  Since the probability densi- 

ties generated by dynamical systems are not Gaus- 

sian, correlation functions can only indicate lir"ar 

independence. Unfortunately, linear independence 

is not a very important characteristic. 

Broomhead and King [61 point out that the 

autocorrelation function 

C ( T )  = ( x ( t ) x ( t  + - ,(x(t)>2 - 

<x=(,)> ' <,,,(t)> 2 

is the only input required for their singular system 

analysis. Hence the notion of independence that 

underlies their analysis is linear independence 

while the notion of general independence under- 

lies our redundancy analysis. 
Let us illustrate the inadequacy of characteriza- 

tions in terms of autoeorrelation functions by 

considering twt~ time series obtained by integrat- 

ing the Lorenz system [16] of differential equa- 

tions 

= l O ( - x  + y ) ,  

) = 2 8 x -  y -  xz, 

~= - 2 ] z +  xy, 

and recording 65536 y values at intervals of t s --- 

0.02. We added an independent Gaussian noise 

term to each y value, and then did a discrete 

Fourier transform. A low pass filter was accom- 

plished by setting all the terms above 0.5 times the 

Nyquist frequency to zero and transforming back 

to the time domain. We generated a second fil- 

tered time series by setting the same high fre- 

quency terms to zero and using a random number 

generater to adjust the phases of the remaining 

low frequency terms. Thus we obtained two time 

series with identical power spectra and conse- 

quently identical autocorrelation functions (fig. 1). 

The first time series (fig. l(a)) represents noisy 

measurements of a deterministic process of three 

degrees of freedom, while the second (fig. l(b)) is 

essentially filtered noise with 16387 degrees of 

freedom. The different characteristics of the two 

time series can be distinguished by a redundancy 

analysis but not by their autocorrelation func- 

tions. 

4. Comparing reconstructions 

We need a quantitative measure of the quality 

of a reconstruction to compare reconstructions 

suggested by the singular system analysis sug- 

gested by Broomhead and King with reconstruc- 
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X(T) 

C(T) 

R'Tn 

~ 
(a) 

1'°°-o~ (c) 
0 5  

o oo! 7-~.. L--"- ..... : 
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n.3 

~,~2 
n-? 

O] .................. 
0 25 50 75 

-25 

(d) 

, . ~ . 

{f) 

0 25 50 75 

T(sample time) 

Fig. 1. Two time series. Plot (a) is part of a filtered time series 
from the Lorenz system, the  time series in (b) has the same 

power spectrum as (a) but in (b) the phases have been random- 
ized. The autocorrelation functions of (a) and (b) appear in (c) 
and (d) and the redundancy analyses appear in (e) and (f), 
respectively. Notice that the differences between (a) and (b) 
affect the redundancy analyses but not the autocorrelation 

functions. 

tions suggested by our redundancy analysis. We 

develop such a quantitative measure by mimicking 

Shannon's discussion of fidelity evaluation [11, p. 

108]. The reconstruction V should be related in a 

particular way to the original phase space S. We 

want to measure the degree to which such a rela- 

tionship fails to hold with a distortion functional* 

~ ( S , V ) .  

The measure of quality we use is based on the 

idea that a reconstruction should be diffeomorplfic 

to the true dynanfics. We require "--" :" " -  t l l i t t  I t  Og; I J U ~ i -  

ble to approximate the diffeomorphism by a piece- 

wise linear map. We fit a piecewise linear map 

from the reconstruction to our original phase space 

and consider the residual ,,f the fit to be a measure 

of the inadequacy or distortion ~ of the recon- 

*For a good discussion of distortion measures see Shannon 

[11] or Berger [17]. 

struction. Thus we have the distortion measure 

(3) 

where • is the map that describes the reconstruc- 

tion process and L is the best piecewise linear 

inverse of • that we can fit using a particular 

partition. 

We have developed an algorithm to calculate 

9 ( $ ,  V) which operates on two files, one of which 

contains points in $ the origi,~al phase space, 

while the second contains the reconstructions V of 

these points obtained via the noisy scalar time 

series. First the set of reconstructed points is bi- 

sected recursively into a p&~tlon, whose elements 

each contain fewer than 32 points. Then linear 

maps are fit between the points in each partition 

element and the corresponding points in the origi- 

nal phase space S. Finally ~ e  residuals I s ( t ) -  

L ( v ( t ) ) l  2 are added up. 

Beyond using distortion functionals to simply 

compare two specific reconstructions generated by 

different methods, we suggest that the correct way 

to formally approach the question of how to best 

reconstruct phase space from scalar time series is 

in terms of distortion functionals. One should 

start by writing down a distortion functional 

~ ( S ,  V) that describes how one would like the 

reconstruction V to be related to the original 

phase space S. We have coarsely defined such a 

functional in eq. (3). One can then consider a set 

of re~.onstructions #, say all those with linear 

coordinate functions (eq. (1)), and order them 

from the least distorted to the most. One should 

then choose the least distorted reconstruction. 

Since the experimental problem is to choose a 

good reconstruction when the original phase space 

is not available, a way to determine the ordering 

implied by ~(S ,  V~ without using S directly is 

needed. Following Packard et al., we suggest that 

a reconstruction should allow one to pred;ct mea- 

surements that are nearby in time. The idea is that 

if there is an), map from a set of intervals of the 

time series {x(t) . . . . . .  ~(t + ~'): t ~ Z }  to the origi- 

nal phase space, then in order to be confident that 
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there is a map from a gi,en reconstruction V to 

the original phase space, it is sufficient to demon- 

strate a map from V to { x( t ) , . . . ,  x(t + r): t ~ Z}. 

Thus what one wants is a new distortion func- 

tional of the reconstruction and the time series 

,~'(X, V) that gives the same ordering of recon- 

structions as the old ~ ( $ ,  V). 

While we have not implemented the formal 

approach suggested above, we can use the ideas to 

examine the differences between techniques of se. 

lecting reconstructions. Both the singular system 

approach of Broomhead and King and our redun- 

dancy analysis can be thought of as having a 

family of candidate reconstructions P and a dis. 

tortion functional ~ ' (X,  V) that is usedto deter- 

mine which V ~ P is best. For the singular system 

approach suggested by Broom~ead and King, 1~ is 

the set of projections (eq. (1)) with a constraint on 

the window length, and ~ ' (X,  V)= -(Iv12).  The 

redundancy afmlysis that we suggested constrains 

I~ to equally spaced delta functions, i.e., 

5.1. Tt,., time series 

The example we have chosen is a quasiperiodic 

attractor in the flow generated by the following 

system of first-order differential equations: 

= ,,, + a +  o(t - 

Sl ffi I - (S O+ I) 3 , 

[ , .  + . + , . ( ;  - 
(4) 

Here a- -  -0.3811735 is chosen to make ( s t ) - 0 ,  

and b = ¢ ~ +  1 is chosen to give our attractor an 

irrational winding number. The observable is taken 

to be 

¢(s(t)) = + s , ( t ) / 5 ,  

and the measurements are modeled as having 

Gaussian noise ~l(t) with a standard deviation of 

0.03 

t , ~ ( t )  = Et~r ,  i x ( t + j ) = x ( t + k T ) ,  
i 

x(t)  = + n ( t )  = + + n(t). 

(5) 

and uses ~ ' (X,  V)= - Q ( m ,  T) (eq. (2)). 

Broomhead and King draw from a richer set of 

candidate reconstructions V, but their distortion 

functional emphasizes irrelevant features. The idea 

behind the distortion functional that we use for 

our redundancy analysis is that the number of 

distinguishable predictions about the state of the 

time series should be maximized, while Broom- 

head and King simply try to maximize the separa- 

tion between reconstructed points. In other words, 

while we emphasize distinguishability Broomhead 

and King have simply assumed that "bigger is 

better". 

5. Ar~ f ~ample 

In this section we use an example to illustrate 

how seriously flawed Broomhead and King's choice 

of distortion functional is. 

We selected this system and observable because 

the dynamics are very simple, yet reconstruction is 

sl I 

-3 , } ' 

0 10 20 30 40 

time (units of t s) 

Fig. 2. A relaxation oscillation. This component of the solu- 

tion to eq. (4) is a straight line for 70% of a cycle to within 

_+0.03. The sample time is t, = 0.02817 or about 1/40 orbit. 
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' , ;o ~o' 1,o 1so 
t ( t  s) 

Fig. 3. A time series of the model measurements (eq. (5)), The 

bold sections ( length-20t  s) are nearly identical, but they 

correspond to very different parts of the attractor. Thus no 

reconstruction that uses such a short time base can resolve the 

attractor. 

difficult. The system is completely uncoupled be- 

tween s o, s t and s 2, s a, and the uncoupled parts 

are identical except that they have incommensu- 

rate time scales. Thus we get quasiperiodicity by 

design. The nonlinearities have been selected so 

that the solution sl(t) is a rounded sawtooth as 

shown in fig. 2. Such waveforms are typical of the 

relaxation oscillations that appear in many physi- 

ca] situations. Since the measurements consist of 

the sum of two sawtooth functions, they have the 

same slope almost everywhere. Thus by examining 

a small segment of the time series one cannot 

determine the phase of either of the sawtooth 
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Fig. 4. (a) Power spectrum and (b) autocorrelation function of 

the model measurements X, In (b) the first inflection point, 

first zero, and first local minimum are marked at T = 5, T = 9, 

and T = 20, respectively. 

oscillations (see fig. 3). The power spectrum and 

autocorrelation function shown in fig. 4 reflect the 

simple harmonic structure of the signal. Hence- 

forth times will be given in units of the sampling 

interval which is t s ---0.02817 or about forty times 

as frequent as the more rapid oscillation, and we 

will treat the system as a discrete map. 

5.2. Two analyses 

Fig. 5 shows the singular values and basis vec- 

tors produced by the analysis that Broomhead and 

King suggest for this signal. The length of the 

window vectors was chosen to be 5, as given by 

the Broomhead-King criterion (the first inflection 

point in the autocorrelation function). Fig. 6 shows 

the reconstruction these basis vectors produce. 

The dense flat region at the top of fig. 6(a) arises 

from the long straight regions of constant slope in 

the time series. As indicated by the Poincar6 sec- 

tions of figs. 5(c) and 5(d), these segments of the 

time series are so straight that information about 

the second phase cannot be extracted from them. 

Fig. 7 shows the type of redundancy analysis we 

suggested in [5]. Rather than simply invoking eq. 

(2) to select the best m and T values to use for a 

reconstruction, let us derive the values by an intu- 

itive discussion of fig. 7. Notice that the R "T 

curves in fig. 7(a) accumulate along a horizontal 

line at about 5 bits. The slope of this accumula- 

tion fine is zero because the measure theoretic 

entropy is zero (h~ = 0). The fact that the curves 

R~ T and R'2 T fall significantly below the accumula- 

tion line indicates that neither a single measure- 

ment nor a pair of measurements are sufficient to 
r~rAa:~et C l l h e o n l l o n t  m o ~ t n r o m ~ n t  I n  n t h c r  w o r c l %  

neiv~er PxtT+t)lx(t) n o r  Px(2r~_t)lxr(t) is as " s h a r p "  
I as fiX(3T+t)lxr(t). Thus a 3-d measurement is re- 

quired to specify the state of the system, and we 

set rn = 3. Next we turn to fig. 7(b) to determine a 

value for 7". Because h~, = 0, the best choice of T 

is simply the one which minimizes R r. Since the 

R r curve is almost flat, the choice of T is not 

critical. R 34 is the actual minimum of R3 r and we 
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Fig, 7. A redundancy analysis of the model measurements. 
The marginal redundancy curves in (a) indicate that a three- 
dimensional reconstruction is appropriate, and the total redun- 
dancy curve (b) indicates that the best delay is T -  34. 
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Fig. 8. The reconstruction suggested by the redundancy analy- 
sis (fiZ- 7). A projection is shown in (a). The location of the 
Poincar~ section shown in (b) is indicated by pb in (a). The 
openings in the Poincar~ section indicate the quasiperiodic 
character of the dynamical system (there are no ~uch openings 
in fig. 6). 

choose T = 34. Fig. 8 indicates that the choice of 

m = 3 and T -  34 produces a good reconstruction. 

We have estimated the distortion (eq. (3)) of the 

reconstructions represented in figs. 6 and 8 using 

the algorithm described in the previous section. 

For the reconstruction suggested by the singular 

system approach (fig. 6) ~ =  1.01, and for the 

reconstruction suggested by a redundancy analysis 

(fig. 8) ~ =  0.16. Thus the reconstruction suggested 

by redundancy analysis is six times better than the 

reconstruction suggested by the singular system ap- 

proach. To give a sense of scale to these numbers 

note that if the reconstruction were simply a single 

point the distortion would be the variance in the 

original phase space os 2 = ( ( (s)  - s) 2) = 4.4. 

5.3. An even better reconstruction 

It could be argued that we have not been fair, in 

that the reconstruction of fig. 6 reflects a time base 

of 5t s while the reconstruction of fig. 8 reflects a 

time base of 68t v It is true that with a longer time 

base it is possible to get a better reconstruction, 

but even with a longer window the singular value 

decomposition technique cannot determine what 

the good reconstructions are. Fig. 9 shows the first 

8 basis vectors and singular values associated with 

a 520-window, and fig. 10 shows the reconstruc- 

tion obtained from the first three basis vectors. 

The reconstruction is terrible because even though 

the random variables v 0, vt, and v 2 are linearly 

independent, they are very dependent by any other 

measure. The first component suggested by fig. 9 

that is not very dependent on v 0 is v4. 

Fig. 11 shows that a ,wnlinear reconstruction 

obtained by 

, ,o(t)  = (12 + , , , .  , , , ( t ) ) , ,o .  ,,,(, ), 

Vl ( t )=(12  + e 4 " w ( t ) ) e l ' w ( t  ), 

v2(t) =es"w( t )  

(6) 

is very good. The point is that the singular value 

decomposition says very little about general indepen- 

dence, and the first statistically independent basis 

vector could have been made to fall arbitra:'ily far 

down in the sequence of basis vectors by ad/usting 

the amplitude with which we mixed the second fre- 

quency into the observable. We have checked recon- 

structions based on other window lengths, and as 

the data in table I indicate, all of these reconstruc- 

tions have b_i~her distortion ~ than the one ob- 

tained from a redundancy analysis. The window 

lengths of 9 and 20 were chosen because in the 

autocorrelation function they correspond to the 

first zero and first local minimum, respectively. 

The filtering provided by discarding noise- 

dominated basis vectors is equivalent to doing a 

weighted average that is local in time. Kostelich 

and Yorke [18] note that it is better to use a filter 

that is local in phase space. Using their filter and 
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Fig. 10. The reconstruction generated by the first three singu- 

lar vectors from the analysis of 520-windows (fig. 9). Plots (a), 

(b), and (c) are projections while plot (d) is the Poincar~5 

section whose location is marked by pd in (a). This reconstruc- 

tion is a limit cycle to within the noise, while the original 

attractor is quasiperiodic. 

the delay suggested by a redundancy analysis pro- 

duces a reconstruction with .@= 0.046 which is 

better than any of the other reconstructions using 

linear coordinate functions in table I. 

We selected this example because the dynamics 

are very simple and reconstruction is difficult. The 

simplicity of the dynamics is due to quasiperiodic- 

ity, while the difficulty in reconstruction is due to 

the sawtooth character of the relaxation oscilla- 

tions. Both quasiperiodicity and relaxation oscilla- 

tions are frequently seen in physical systems. 

6. Conclusion 

In this paper we have explored the strengths 

and weaknesses of two approaches to reconstruct- 

ing attractors from scalar time series. While each 

approach has areas of relative strength and neither 

approach is best for all time series, we have argued 

that on the whole our redundancy analysis [5] is 
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Fig. 11. A reconstruction using a 520-window and the nonlinear coordinate functions of eq. (6). Plot (a) is a projection, and plot (b) 
is the Poincar6 section whose location is marked by pb in (a). 

Table I 
Distortion of various reconstructions. All reconstructions are 

3-d. The abbreviation SSA stands for the singular system 
approach suggested by Broomhead and King [6, 71, and RA 
stands for the redundancy analysis we suggested in 15]. The 
distortion measures the degree to which a reconstruction is 
non-invertible (eq. (3)). The K-Y filter used for the penulti- 

mate entry is described in Kostelich and Yorke [18]. 

Description Distortion Average samples/element 

SSA 520-window 1.579 15.0 
SSA 5-window 0.999 19.8 
SSA 9-window 0.647 18.0 

SSA 80-window 0.306 17.2 
SSA 20-window 0.241 17.3 

RA unfiltered 0.156 17.7 
RA K-Y filtered 0.045 18.1 

Nonlinear eq. (6) 0.0001 18.3 

superior to Broomhead and King's singular system 

approach [61. 
We have used an operational measure of distor- 

tion, i.e., ~ (S ,  V) in eq. (3), to compare a recon- 

struction produced by the singular system analysis 

of Broorahead and King with a reconstruction 

produced by our redundancy analysis. For the 

particular time series we considered, our redun- 

dancy analysis produced a reconstruction that was 

6.4 times less distorted than the reconstruction 

produced by Broomhead and King's singular sys- 

tem analysis. 

Each of the two approaches has a family of 

possible reconstructions I~ from which it selects a 

single reconstruction V. The selection procedures 

are intended to ensure a particular relationship 

between the original phase space S and the se- 

lected reconstruction 1I. Since only the time series 

measurements X and not the phase space S is 

accessible to an experimemer, each procedure se- 

lects a reconstruction V on the basis of a derived 

distortion measure ~ ' (X,  V). For the singular sys- 

tem approach suggested by Broomhead and King, 

I~ is the set of linear projections (eq. (1)) with a 

constraint on the window length, and 9 ' ( X ,  V )  = 

- ( Iv l2 ) .  The redundancy analysis that we sug- 

gested constrains t 5 to equally spaced delta func- 

tions and uses ~ ' ( X , V ) = - Q ( m , T )  (eq. (2)). 

The singular system approach selects from a 

broader class of candidate reconstructions, while 

the redundancy analysis has a better distortion 

measure. For the example we considered, the ad- 

vantage of a good distortion measure proved to be 

more important than the advantage of selecting 

from a broad class of reconstructions. 

We hope that better reconstruction techniques 

will be developed. A technique that would draw 

from a family of candidate reconstructions as large 

as that considered by Broomhead and King and 

would use a distortion functional that was as good 

as ours would be an improvement. Until such an 
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improved distortion measure can be integrated 

into Broomhead and King's singular system ap- 

proach, we suggest that any reconstruction pro- 

duced by their technique be regarded with 

caution. 
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