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Abstract

We propose a new version of the “theory theory” grounded in the computational framework of
probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but
rigorous and detailed approach to cognitive development. They also explain the learning of both
more specific causal hypotheses and more abstract framework theories. We outline the new
theoretical ideas, explain the computational framework in an intuitive and non-technical way, and
review an extensive but relatively recent body of empirical results that supports these ideas. These
include new studies of the mechanisms of learning. Children infer causal structure from statistical
information, through their own actions on the world and through observations of the actions of
others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old
and include research on causal statistical learning, informal experimentation through play, and
imitation and informal pedagogy. They also include studies of the variability and progressive
character of intuitive theory change, particularly theory of mind. These studies investigate both the
physical and psychological and social domains. We conclude with suggestions for further
collaborative projects between developmental and computational cognitive scientists.
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The study of cognitive development suffers from a deep theoretical tension – one with
ancient philosophical roots. As adults, we seem to have coherent, abstract and highly
structured representations of the world around us. These representations allow us to make
predictions about the world, and to design effective plans to change it. We also seem to learn
those representations from the fragmented, concrete and particular evidence of our senses.
Developmental psychologists actually witness this learning unfold over time. Children
develop a succession of different, increasingly accurate, conceptions of the world and it at
least appears that they do this as a result of their experience. But how can the concrete
particulars of experience become the abstract structures of knowledge?
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In the past there have been no satisfying theoretical accounts of how this kind of learning
might take place. Instead, traditional empiricist accounts, most recently in the form of
connectionist and dynamic systems theories, (Elman, et al., 1996; Thelen & Smith 1994)
denied that there actually was the kind of abstract, coherent, structure we seem to see in
adult representations. They saw instead a distributed collection of specific associations
between particular inputs or a context-dependent assemblage of various functions.
Traditional nativist accounts, most recently in the form of modularity and core knowledge
theories, (Pinker 1997; Spelke, et al. 1992; Spelke & Kinzler 2007) pointed to the structure,
coherence and abstractness of our representations, but denied that they could be learned.

Piaget famously tried to resolve this tension by calling for a “constructivist” theory. But
aside from the phrase itself there was little detail about how constructivist learning processes
might work. Piaget also made empirical claims; he described developmental evidence that
appeared to support constructivism. But in the past thirty years many of those empirical
claims have been overturned. The combination of theoretical vagueness and empirical
inadequacy doomed the Piagetian account.

Recently, however, a new set of computational ideas promises to reconstruct constructivism.
This new “rational constructivism” (Xu, Dewar, & Perfors, 2009) uses the theoretical
framework of probabilistic models and Bayesian learning. In tandem, new empirical studies,
studies of the mechanisms of learning and studies of the progressive character of
development, provide support for these theoretical ideas and suggest new areas of theoretical
investigation. In this paper, we weave together this new theoretical and empirical work. The
basic computational ideas and experimental techniques we will discuss have been applied to
many types of learning–from low-level vision and motor behavior, to phonology and syntax.
In this paper, however, we focus on how these new ideas explain the development of our
intuitive theories of the world.

Our first aim is to make the computational ideas accessible to mainstream developmentalists
(like us). It is certainly rational for psychologists to want to ensure substantial empirical
returns before they invest in a new set of formal ideas. So we want to share our own
experience of how the formal work can be understood more intuitively and how it can lead
to new empirical discoveries. Our second aim is to review and synthesize a large body of
empirical work that has been inspired by, and has inspired, the new theoretical ideas.
Finally, we will suggest new directions that we hope will lead to yet more empirical and
theoretical advances.

The Theory Theory Revisited

20 years ago psychologists began to outline a constructivist set of ideas about cognitive
development and conceptual structure sometimes called “the theory theory.” (see e.g. Carey,
1985; Gopnik, 1988; Gopnik & Meltzoff, 1997; Gopnik & Wellman 1992; Keil, 1989;
Murphy & Medin 1985; Wellman, 1990; Wellman & Gelman 1992). The theory theory
claimed that important conceptual structures were like everyday theories and that cognitive
development was like theory revision in science. Children construct intuitive theories of the
world and alter and revise those theories as the result of new evidence. Theory theorists
pointed to three distinctive aspects of intuitive theories, their structure, function and
dynamics. These aspects distinguish the theory theory from other accounts of conceptual
structure and development. We will recap those points briefly, and add ideas inspired by the
new computational and empirical work.

First, theories have a distinctive structure. They involve coherent, abstract, causal
representations of the world. Often these representations include unobservable hidden
theoretical entities. Theories also have a hierarchical structure: theories may describe
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specific causal phenomena in a particular domain but these specific theories may also be
embedded in more abstract “framework theories”. Framework theories describe, in general
terms, the kinds of entities and relations that apply in a domain, rather than specifying those
entities and relations in detail.

Second, theories have distinctive cognitive functions. They allow wide-ranging predictions
about what will happen in the future. They also influence interpretations of the evidence
itself. Moreover, theories allow you to make counterfactual inferences – inferences about
what could have happened in the past, or, most significantly, what would happen if you
decided to intervene on the world and do something new in the future. These inferences
about counterfactuals and interventions go beyond simple predictions about what will
happen next, and have been a focus of more recent work.

Finally, theories have distinctive dynamic features. These features reflect a powerful
interplay between hypotheses and data, between theory and evidence. In particular, unlike
modules or “core knowledge”, for example, theories change in the light of new evidence,
and they do so in a rational way. Moreover, unlike associationist structures, for example,
theories may change quite broadly and generally—in their “higher” principles not just in
their local specific details.

Recent work has revealed several new and significant aspects of the dynamics of theory
change. First, statistical information, information about the probabilistic contingencies
between events, plays a particularly important role in theory-formation both in science and
in childhood. In the last fifteen years we’ve discovered the power of early statistical
learning.

Second, we’ve also discovered the power of informal experimentation. Adults and children
themselves act on the world in ways that reveal its causal structure. In science and in
childhood, experiments lead to theory change. Children learn about causal structure both
through their own interventions on the world, for example, in exploratory play, and through
observing the interventions of others, for example in imitation and informal pedagogy

Third, theory change often relies on variability. In the course of theory change, children
gradually change the probability of multiple hypotheses rather than simply rejecting or
accepting a single hypothesis. Moreover, this process of revision can yield many
intermediate steps. Evidence leads children to gradually revise their initial hypotheses and
slowly replace them with more probable hypotheses. This results in a characteristic series of
related conceptions that forms a bridge from one broad theory to the next.

Developmentalists have charted how children construct and revise intuitive theories. The
theory theory has been most extensively applied to intuitive psychological and biological
understanding. In infancy and early childhood children begin to construct intuitive theories
of their own minds and those of others (e.g., Gopnik & Meltzoff 1997; Gopnik & Wellman,
1994; Wellman 1990). Throughout early childhood and well into the school-age period they
construct and change intuitive theories of the biological world (Carey 1985; Gelman, 2003;
Inagaki & Hatano 2002). But there is also work on children’s understanding of the physical
world, starting in infancy and proceeding all the way through adolescence, (e.g., Baillargeon
2008;Smith, Wiser & Carey 1985; Vosniadou & Brewer 1992; Xu 2009) and recently there
has been increasing research on children’s intuitive theories of the social world (e.g., Dweck
1999; Rhodes & Gelman in press; Seiver, Gopnik, & Goodman, in press).

This work has detailed just what children know when about these crucial domains and has
tracked conceptual changes through childhood. For example, in the case of intuitive
psychology or “theory of mind” developmentalists have charted a shift from an early
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understanding of emotion and action, to an understanding of intentions and simple aspects of
perception, to an understanding of knowledge vs. ignorance and finally to a representational
and then an interpretive theory of mind. Similarly, others have traced successive phases in
children’s understanding of intuitive biology (Gelman 2003; Inagakai & Hatano 2002).

Of course, there are controversies about just when various conceptual and theoretical
changes take place, and what they mean. There is debate about which features of an
“intuitive biology” emerge in the preschool period (Gelman 2003) and which only appear
later in middle childhood (Carey 1985). There are also debates about infant’s abilities to
predict the actions of others, and about how these abilities are related to the understanding of
the mind that emerges at about age 4 (Leslie 2005; O’Neil 1996; Onishi & Baillargeon 2005;
Perner & Ruffman 2005).

There has also been special debate about the right way to think of development in infancy.
Some investigators have suggested that there are initial non-theoretical structures, such as
perceptual structures or “core knowledge”. These structures only become theoretical, and so
subject to change and revision, later on as a result of the acquisition of language and the
application of analogical reasoning (Carey 2009; Spelke & Kinzler 2007). For others,
including us, its “theories all the way down” – we think that even newborn infants may have
innate intuitive theories and those theories are subject to revision even in infancy itself (see
e.g. Woodward & Needham 2008). By any standard, though, the theory theory has been
remarkably fruitful in generating research.

However fruitful, the theory theory has suffered from a central theoretical vagueness. The
representations that underpin theories and the learning mechanisms that underpin theory
change have both been unclear. The fundamental idea of cognitive science is that the brain is
a kind of computer designed by evolution to perform particular cognitive functions. The
promise of developmental cognitive science is that we can discover the computational
processes that underlie development. The theory theory, like Piagetian constructivism itself,
has lacked the precision to fulfill this promise. Crucially, it lacked a convincing
computational account of the learning mechanisms that allow theory change to take place.
The central analogy of the theory is that children’s theories are like scientific theories. But
this analogy was only a first step. We need to understand how theory change is possible in
principle, either in childhood or in science.

Fortunately, recent advances in the philosophy of science and machine learning have given
us a new set of perspectives and tools that allow us to characterize theories and, most
significantly, theory change itself. We’ll refer to these ideas broadly as the “probabilistic
models” approach though they include a number of different types of specific
representations and learning mechanisms. We’ll give an intuitive and non-technical account
of how these models work, and, in particular, how they allow learning and theory change.

Probabilistic models can be applied to many different kinds of knowledge. But one type of
knowledge is particularly relevant for intuitive theories – namely causal knowledge.
Intuitive theories are representations of the causal structure of the world. This distinguishes
them from other types of knowledge, such as knowledge of language, space or number.
Probabilistic modeling has led to some more specific and very fruitful ideas about causal
knowledge both in the philosophy of science and in computer science.

We also emphasize the hierarchical character of these models. Particularly in recent work,
probabilistic models can describe both specific theories and framework theories and learning
at both local and more abstract levels.
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On the empirical side we will focus on a body of work that has emerged in the past ten years
and that differs from earlier types of “theory theory” research as well as cognitive
development research more generally. This work goes beyond simply charting what children
know and when they know it. One line of research explores particular causal learning
mechanisms. Another line of research looks in detail at progressive changes in children’s
knowledge and the role that variability plays in those changes. We will interweave reviews
of this empirical research with the relevant computational ideas. But we begin by outlining
the basic computational ideas themselves.

New Theoretical Advances: Probabilistic Models and Rational Learning

Probabilistic models have come to dominate machine learning and artificial intelligence over
the last 15 years, and they are increasingly influential in cognitive science (see e.g.,
Glymour, 2003; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Oaksford & Chater,
2007). They have also been proposed as a model for theory-like cognitive development
(Gopnik, 2000; Gopnik et al. 2004; Gopnik & Tenenbaum 2007). Two features of
probabilistic models are particularly important for the theory theory. First, they describe
structured models that represent hypotheses about how the world works. Second, they
describe the probabilistic relations between these models and patterns of evidence in
rigorous ways. As a consequence they both represent conceptual structure and allow
learning.

Imagine that there is some real structure in the world – a three-dimensional object, a
grammar, or, especially relevant to theories, a network of causal relationships. That structure
gives rise to some patterns of observable evidence rather than others – a particular set of
retinal images, or spoken sentences, or statistical contingencies between events. That spatial
or grammatical or causal structure can be represented mathematically, by a 3-d map or tree
structure or a causal graph. You could think of such a representation as a hypothesis about
what the actual structure is like. This representation will also allow you to mathematically
generate patterns of evidence from that structure. So you can predict the patterns of evidence
that follow from the hypothesis, and make new inferences accordingly. For example, a map
or a tree or a causal graph will let you predict how an object will look from a different angle,
whether a new sentence will be acceptable, or that a new event will be followed by other
events. If the hypothesis is correct, then these inferences will turn out to be right.

These generative models then, provide ways of characterizing our everyday representations
of the world and explaining how those representations allow us to make a wide range of new
inferences. For this reason, a number of cognitive psychologists have used these
representations to describe adult knowledge, in particular, causal knowledge (Lu, et al.
2008; Sloman 2005; Waldmann, Hagmayer & Blaisdell 2006), and these representations
have been proposed as a way to characterize adult intuitive theories (Rehder & Kim, 2006)

From the developmental point of view, though, the really interesting question is not how we
use these representations but how we learn them. Critically, the systematic link between
structure and evidence in these models also allows you to reverse the process and to make
inferences about the nature of the structure from the evidence it generates. Vision scientists
talk about this as “solving the inverse problem”. In vision “the inverse problem” is to infer
the nature of 3-d objects from the retinal images they generate. In theory change, the
problem is to infer causal structure from the events you observe. Solving the inverse
problem lets you learn about the world from evidence. It lets you decide which 3-d map or
tree or causal graph best represents the world outside.

The idea that mental models of the structure of the world generate predictions, and that we
can invert that process to learn the structure from evidence, is not itself new. It is the basic
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model underlying both the cognitive science of vision and of language. The big advance has
been integrating ideas about probability into that basic framework. If you think of these
mental models as logical systems with deterministic relations to evidence the inverse
problem becomes extremely difficult, if not impossible, to solve, and that has led to nativist
conclusions (e.g., Gold 1967; Pinker 1984). Typically a great many hypotheses are, in
principle, compatible with any pattern of evidence, so how can we decide on the best
hypothesis? Integrating probability theory makes the learning problem more tractable.
Although many hypotheses may be compatible with the evidence, some hypotheses can be
more or less likely to have generated the evidence than others.

There are many ways to solve the inverse problem but one of the most powerful and general
ways is to use Bayesian inference. Bayesian inference takes off from ideas about probability
first formulated by the Rev. Thomas Bayes in the 18th century and instantiated in Bayes’
rule. Here is the simplest version of Bayes rule. (This will be the only equation in this paper,
but it’s a good one.)

Bayes’ rule is a simple formula for finding the probability that a hypothesized structure (H)
generated the pattern of the evidence (E) that you see, that is the probability of H given E, or
P(H/E). That probability is proportional to the probability of the pattern of evidence given
the hypothesis, P(E/H), and your initial estimate of the probability of the hypothesis, P(H).

Each part of this formula has a conventional name. P(H) is the “prior”, the probability of the
hypothesis before you looked at the evidence. P(E/H) is the “likelihood”, how probable it is
that you would see the observed evidence if the hypothesis were true. P(H/E) is the
“posterior” – the probability of the hypothesis after you’ve considered the evidence. Bayes
rule thus says that the posterior is a function of the likelihood and the prior.

We can represent a hypothesis as a map, a tree or a causal graph, for example. That map or
tree or graph will systematically generate some patterns of evidence rather than others. In
other words the representation will establish the likelihood – that is, tell us how likely it is
that that hypothesis will generate particular patterns of evidence. If we know the prior
probability of the hypothesis, and then observe a new pattern of evidence, we can use Bayes’
Law to determine the probability that the hypothesis is true. So we can decide which map,
tree or graph is most likely to be correct.

Rather than simply generating a yes or no decision about whether a particular hypothesis is
true, the probabilistic Bayesian learning algorithms consider multiple hypotheses and
determine their posterior probability. Often, in fact usually, there are many spatial or causal
structures or grammars that could, in principle, produce a particular pattern of visual, causal,
or linguistic evidence. The structure is “underdetermined” by the evidence. This is the
“poverty of the stimulus argument” that led Chomsky and others to argue for innateness. But
while many structures may be possible, some of those structures are going to be more likely
than others. Bayesian methods give you a way of determining the probability of the
possibilities. They tell you whether some hypothesis is more likely than others given the
evidence. So we can solve the inverse problem in this probabilistic way.

Here’s an example. Suppose Mary is travelling and she wakes up with a terrible pain in her
neck. She considers three possible hypotheses about what caused the pain: perhaps she has a
clogged carotid artery, perhaps she slept in an awkward position on that wretched lumpy
mattress, perhaps it was that dubious lobster she ate last night. She goes to Web MD and
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discovers that both a clogged artery and awkward sleeping are much more likely to lead to
neckaches than bad shellfish – neckaches have a higher likelihood given a clogged carotid
and awkward sleeping than they do given bad shellfish. In fact, she reads that clogged
carotids always lead to neckaches -- the likelihood of a neckache given a clogged carotid is
particularly high. Should she panic? Not yet. After all, it’s much less likely to begin with
that she has a clogged carotid artery than that she slept awkwardly or the lobster was bad –
awkward sleeping and bad lobsters have a higher prior probability than severely blocked
carotids. If you combined these two factors, the likelihood and the prior, you would
conclude that a bad night on the lumpy mattress is the most likely hypothesis.

Eventually though, enough evidence could lead you to accept even an initially very unlikely
idea. Sufficient additional evidence (the ache persists, an x-ray shows blockage) might
indeed lead to the initially unlikely and grim clogged carotid diagnosis. This gives Bayesian
reasoning a characteristic combination of stability and flexibility. You won’t abandon a very
likely hypothesis right away, but only if enough counter-evidence accumulates.

Probabilistic models were originally articulated as ideal rational models of learning. Like
ideal observer theory in vision (Geisler, 1989) they tell us how a system could learn best, in
principle. In fact, Bayesian inference first emerged in the philosophy of science.
Philosophers wanted to determine how scientists ought to react to new evidence, not
necessarily how they actually did react. However, ideal observer theory can help us think
deeply about how evolution actually did shape the visual system. In the same way
probabilistic models can help us think deeply about how evolution shaped human learning
capacities. We can compare an ideal learning machine to the learning machine in our skulls.

These ideal rational probabilistic models have both attractions and limitations as theories of
the actual representations and learning mechanisms of cognitive development. One
attraction is that, at least in principle, this kind of inference would allow children to move
from one structured hypothesis to another very different hypothesis based on patterns of
evidence. Children need not merely fiddle with the details of an innately determined
structure or simply accumulate more and more evidence. They could genuinely learn
something new.

Bayesian inference also captures the often gradual and piece-meal way that development
proceeds. Empiricists emphasize this aspect of development and it is not easily
accommodated by nativism. At the same time, the generative power of structured models
can help explain the abstract and general character of children’s inferences. Nativists
emphasize this aspect of development and it is not easily accommodated by traditional
associationist empiricism. And the integration of prior knowledge and new evidence is just
what Piaget had in mind when he talked about assimilation and accommodation.

The major drawback of the probabilistic model approach is the vast space of possible
hypotheses and possible evidence. Bayesian reasoning gives you a way to evaluate particular
hypotheses, given a particular pattern of evidence. However, you still have to decide which
hypotheses to evaluate, and equally which evidence to gather. A very large number of
hypotheses might be compatible with some particular pattern of evidence, and a child or a
scientist (or even a computational learning algorithm) won’t be able to enumerate the
probability of each one. How do you decide which hypotheses to test in the first place? The
evidence you have is also always incomplete. How do you decide when and how to collect
new evidence?

In particular, computer scientists talk about the “search problem” – that is the problem of
checking all the possible hypotheses against the evidence. There is also a different kind of
search problem, namely, how to search for new evidence that is relevant to the hypotheses
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you want to test. As we will see, there are potential solutions, or at least promising
approaches, to both kinds of search problems.

Bayesian reasoning may be applied to everything from olfactory perception in the fly to
medical decision-making in a hospital. Bayes rule, by itself, is very general. In fact, it’s too
general to explain much without more information about the hypotheses and the likelihoods.
Here is where the models come in. The probabilistic model approaches we emphasize
specify the structure of the hypotheses in a particular domain. They also specify how these
structured hypotheses generate evidence. If we want to characterize the “theory theory” in
these terms, we have to find ways to represent both causal relationships and the patterns of
evidence they generate.

In what follows we will focus on three recent developments that are particularly relevant to
intuitive theories. First, we will describe a subcategory of probabilistic models, called causal
Bayes nets, that are particularly relevant to causal knowledge and learning. We will also
show, empirically, that children’s causal learning can be understood in terms of Bayes nets.

Second, we will discuss some of the learning mechanisms that are implied by probabilistic
causal models, learning mechanisms that could help solve the problem of deciding which
hypotheses to test and which evidence to consider. We will outline new empirical evidence
which shows that young children learn in a similar way. One way to learn a causal structure,
in particular, is to perform planned interventions on the world – experiments. Experiments
can not only provide you with more evidence about a causal structure, they can provide you
with evidence that is designed to eliminate many possible hypotheses and can help you
discriminate between just the most relevant hypotheses. A second way is to watch the
outcomes of the interventions other people perform, particularly when those people are
knowledgeable teachers. Watching what others do can further narrow the hypotheses and
evidence you will consider, and the inferences you will draw. A third, complementary
learning technique is to rationally sample just a few hypotheses at a time, testing those
hypotheses against one another. This sampling process leads to distinctive kinds of learning
with characteristic features of variability and progression.

Finally, we will describe the more recently developed hierarchical causal models. These
hierarchical models can characterize broader framework theories along with more specific
causal relationships as well as characterize the relations between theories at different levels
of abstraction.

Causal Bayes Nets and the Interventionist Theory of Causation

To use Bayes’ law you have to first determine the elements in Bayes’ equation: the
hypothesis, the evidence, and the likelihood, that is, the probability of particular patterns of
evidence given a particular hypothesis. So you need to have some formal way of describing
the hypotheses and systematically relating them to evidence.

Causal hypotheses are particularly important both in science and in ordinary life. As theory
theorists noted 20 years ago theories involve coherent and abstract representations of causal
relationships. Fortunately, over the last 15 years, computer scientists and philosophers have
developed models of causal relations. These models are known as “causal graphical models”
or “causal Bayes nets” (Pearl, 2000; Spirtes et al. 1993, 2000). The models also have both
inspired and been inspired by a particular philosophical view of causation.

What is causation anyway? Theories involve causal relations but what makes those relations
distinctively causal? Traditionally philosophers have approached this problem in several
different ways. David Hume famously argued that there is no such thing as causation.
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Instead, there are simply associations between events. “Mechanists” like Kant in philosophy
and Michotte in psychology (Leslie & Keeble 1987; Michotte 1963), argue that causal
relations involve particular spatiotemporal patterns, such as contact and launching. Piaget
grounded causation in the immediate consequences of our intentional actions

Recently, however, the philosopher James Woodward has articulated and formalized an
alternative interventionist account of causation (Woodward 2003). The central idea is that if
there is a direct causal relation between A and B, then, other things equal, intervening to
change the probability of A will change the probability of B. This view of causality is rather
different from the associationist, mechanistic or Piagetian views that underpin earlier work
on the development of causal knowledge. But this account dovetails with causal Bayes nets;
the models also relate causality to probability and intervention. And, as we will see, the
interventionist idea has particularly interesting implications for causal development.

Why is the interventionist idea different from the Humean idea that causation is just
correlation? Consider the relation between nicotine-stained yellow fingers and lung cancer.
Yellow fingers and lung cancer are correlated and I can predict that if someone has yellow
fingers they are more likely to get cancer. But I don’t think that yellow fingers cause cancer.
This is reflected in the fact that I don’t believe intervening to clean someone’s fingers will
make them any healthier. In contrast, if I believe that smoking causes cancer then I will
think that changing the probability of smoking, say in a controlled experiment, will change
the probability of lung cancer.

The interventionist account is also different from the mechanistic account. In everyday life
we often make causal claims, even when we don’t know anything about the detailed
mechanisms or spatio-temporal events that underpin those claims (see Keil 2006). The
interventionist account explains why – we may not know exactly how a zipper works but we
know how to intervene to open or close it.

The interventionist account also suggests why causal relations are so distinctive and so
important: Understanding the causal structure of the world allows you to imagine ways that
you could do things to change the world, and to envision the consequences of those changes.
As we will see, even young children have ideas about causation that fit this picture, although
they may, of course, also have more mechanistic conceptions as well.

Causal Bayes nets

Causal Bayes nets were first developed in the philosophy of science, computer science and
statistics (Glymour 2001; Pearl 1988, 2000; Spirtes et al. 1993.) Scientists seem to infer
theories about the causal structure of the world from patterns of evidence, but philosophers
of science found it very difficult to explain how this could be done. Causal Bayes nets
provide a kind of logic of inductive causal inference. Scientists infer causal structure by
performing statistical analyses and doing experiments. They observe the patterns of
conditional probability among variables and “partial out” some of those variables (as in
statistical analysis), they examine the consequences of interventions (as in experiments) and
they combine the two types of evidence. Causal Bayes nets formalize these kinds of
inferences.

In causal Bayes nets, causal hypotheses are represented by directed graphs like the one in
Figure 1. The graphs consist of variables, representing types of events or states of the world,
and directed edges (arrows) representing the direct causal relations between those variables.
Figure 1 is a graph of the causal structure of the woes of academic conferences. The
variables can be discrete (like school grade) or continuous (like weight), they can be binary
(like “having eyes” or “not having eyes”) or take a range of values (like color). Similarly,
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the direct causal relations can have many forms; they can be deterministic or probabilistic,
generative or inhibitory, linear or non-linear. The exact specification of these relations is
called the “parameterization” of the graph.

Causal structure and conditional probabilities

The Bayes net formalism specifies systematic connections between the causal hypotheses
that are represented by the graphs and particular patterns of evidence. To begin with, the
structure of the causal graph itself puts some very general constraints on the patterns of
probability among the variables. If we make further assumptions about the parameterization
of the graph, that is, about the particular nature of the causal relations, we can constrain the
kinds of inferences we make still further. For example, we might assume that each cause
independently has a certain power to bring about an effect. This is a common assumption in
studies of human causal learning. Or we might even know the exact probability of one event
given another, say that there is a 70 percent chance that A will cause B. Or we might know
that the evidence we see is a random sample of all the evidence, or instead that it is a sample
that is biased in some particular way. Each of these kinds of knowledge can influence our
causal inferences.

So, given a particular causal structure and parameterization, only some patterns of
probability will occur among the variables. From the Bayesian perspective the graph
specifies the likelihood of the evidence given the hypothesis.

To illustrate how this works consider a simple causal problem, partially embedded in the
graph of Figure 1. Suppose that I notice that I often can’t sleep when I’ve been to a party
and drunk lots of wine. Partying (P) and insomnia (I) covary, and so do wine (W) and
insomnia (I). Suppose also that I make some general assumptions about how these variables
are likely to be related (the parameterization of the graph). For example, I assume that
partying or wine will increase the probability of insomnia, rather than decreasing it, and
similarly, that partying will increase the probability of drinking wine. This contrasts with the
assumption, say, that wine or partying absolutely determine my insomnia or prevent my
insomnia.

There are at least two possibilities about the relations among these variables. Maybe parties
cause me to drink wine and that keeps me awake (a causal chain). Maybe parties are so
exciting that they keep me awake, and they also independently cause me to drink wine (a
common cause). As shown in Figure 2, these possibilities can be represented by two simple
causal graphs which include variables like P+/− and I+/− but also specify the nature of the
relations between them.

In these graphs P+/−, for example, conveys that (to keep things simple) partying can be
present (+) or absent (−). P+/−→I+/− conveys the fact that partying and insomnia are causally
related, and P+→I+ conveys the more specific hypothesis that more partying leads to more
insomnia. So, maybe parties (P+) lead me to drink (W+) and wine keeps me up (I+); or
maybe partying (P+) both keeps me up (I+) and lead me to drink (W+). The covariation
among the variables by itself is consistent with both these structures.

However, these two graphs lead to different patterns of conditional probability among the
three variables, or as statisticians put it, different relations between some variables when
other variables are partialled out. Suppose you decide to keep track of all the times you drink
and party and examine the effects on your insomnia. If Graph 2a is correct, then you should
predict that you will be more likely to have insomnia when you drink wine, whether or not
you party. If instead Graph 2b is correct, you will only be more likely to have insomnia
when you go to a party, regardless of how much or how little wine you drink.
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If I know whether the causal structure of my insomnia is represented by Graph 2a or Graph
2b, and I know the values of some of the variables in the graph (+ or −), I can make
consistent and quite general predictions about the probability of other variables. In Bayesian
terms, each graph tells us the likelihood of particular patterns of evidence given that
particular hypothesis about the causal structure. These predictions can be very wide-ranging
-- a simple graph with just a few nodes can generate predictions about a great many possible
combinations of events. But causal Bayes nets do more than just allow us to predict the
probability of events. They allow us to make more sophisticated causal inferences too.

Bayes nets and interventions

Why think of these graphs as representations of causal relations among variables? Here is
where the interventionist account of causation comes in. According to the interventionist
account, when X directly causes Y, intervening to change the probability of X should
change the probability of Y (other things equal). Causal Bayes net algorithms allow us to
determine what will happen to Y when we intervene on X.

Predictions about observations may be quite different from predictions about interventions.
For example, in a common cause structure like Graph 2b above, we will be able to predict
something about the value of insomnia from the value of wine. If that structure is the correct
one, knowing that someone drank wine will indeed make you predict that they are more
likely to have insomnia (since drinking wine is correlated with partying, which leads to
insomnia). But intervening on their wine-drinking, forbidding them from drinking, for
example, will have no effect on their insomnia. Only intervening on partying will do that.

In causal Bayes nets, interventions systematically alter the nature of the graph they intervene
on. In particular, an intervention fixes the value of a variable and in doing so it eliminates
the causal influence of other variables on that variable. If I simply decide to stop drinking
wine, that means that, no matter what, the wine variable will be set to minus (i.e., W−); so
partying will no longer have any effect. This can be represented by replacing the original
graph with an altered graph in which the specific value of some variable is fixed. As a result
the arrows directed into the intervened-upon variable will be eliminated (Judea Pearl vividly
refers to this process as graph surgery, Pearl 2000). The conditional probabilities among the
variables after the intervention can be read off from this altered graph.

Suppose, for example, I want to know the best thing to do to prevent my insomnia. Should I
quit partying (intervening to make P−) or should I quit drinking (intervening to make W−)? I
can calculate the effects of such interventions on the various causal structures, using “graph
surgery” to see what the consequences of the intervention will be. The altered graphs in
Figure 3, for example, show the same graphs as before but now with an intervention (shown
as a firmly grasping fist) on the variable P or the variable W that sets it to a particular value.

If Graph 2a, from Figure 2, is right, and I eliminate partying (set P to P−) but continue to
drink, then when I drink I’ll have insomnia (W+→I+) but when I don’t I wont (W−→I−).
But if I eliminate drinking (set W to W−) I won’t ever have insomnia (I−). These are the
possibilities shown in Figure 3a. If Graph 2b (from Figure 2) is right, however, if I eliminate
drinking but still party, then when I party (P+) I’ll have insomnia (I+) and when I don’t (P−)
I wont (I−). But if I eliminate partying then I’ll eliminate insomnia too (P−→I−). These are
the possibilities shown in Figure 3b. So, if Graph 2a is right, I should party sober, but if
Graph 2b is right, I should drink at home.

Causal Bayes nets allow us to freely go back and forth from evidence about observed
probabilities to inferences about interventions and vice-versa. That’s what makes them
causal. They allow us to take a particular causal structure and use it to predict the
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conditional probabilities of events, and also the consequences of interventions on those
events.

We can also use exactly the same formal apparatus to generate counterfactual predictions.
Counterfactuals are formally the same as interventions. Instead of saying what should
happen when we make the world different, by fixing the value of a variable, we can say
what would have happened if that variable had been different than it was. The same
reasoning that tells me that I should stop drinking to avoid insomnia can tell me that if I had
only stopped drinking many years ago, I would have avoided all those sleepless nights.

So Bayes nets capture some of the basic structural and functional features of theories. They
describe abstract coherent networks of causal relationships in a way that allows predictions,
interventions and counterfactual reasoning.

Bayes nets and learning

We just saw that knowing the causal structure lets us make the right predictions about
interventions and observations. We can determine the pattern of evidence a particular
hypothesis will generate. This lets us calculate the likelihood of a particular pattern of
evidence given a particular hypothesis. But we can also use Bayes nets to solve the crucial
inverse problem. We can learn the causal structure by observing the outcomes of
interventions and the conditional probabilities of events.

Lets go back to the wine-insomnia example. How could you tell which hypothesis about
your insomnia is the right one? The Graphs 2a and 2b represent two different causal
hypotheses about the world. You could distinguish between the graphs either by intervention
or observation. First, you could do an experiment. You could hold partying constant (always
partying or never partying) and intervene to vary whether or not you drank wine; or you
could hold drinking constant (always drinking or never drinking) and intervene to vary
whether or not you partied. This reasoning underlies the logic of experimental design in
science.

You could also, however, simply observe the relative frequencies of the three events. If you
notice that you are more likely to have insomnia when you drink wine, whether or not you
party, you can infer that Graph 2a is correct. If you observe that, regardless of how much or
how little wine you drink, you are only more likely to have insomnia when you go to a
party, you will opt instead for Graph 2b. These inferences reflect the logic of correlational
statistics in science. In effect, as we noted earlier, what you did was to “partial out” the
effects of partying on the wine/insomnia correlation, and draw a causal conclusion as a
result.

It is not only theoretically possible to infer complex causal structure from patterns of
conditional probability and intervention (Glymour & Cooper, 1999; Spirtes et al., 1993). It
can actually be done. Computationally tractable learning algorithms have been designed to
accomplish this task and have been extensively applied in a range of disciplines (e.g.,
Ramsey et al. 2002; Shipley 2000). In some cases, it is also possible to accurately infer the
existence of new previously unobserved variables (Richardson & Spirtes, 2003; Silva et al.,
2003; Spirtes, et al. 1997).

Causal Bayes nets are particularly well suited to Bayesian learning techniques (Griffiths &
Tenenbaum 2007; Heckerman et al., 1999). Bayesian graphical networks allow us to easily
determine the likelihood of patterns of evidence given a causal hypothesis. Then we can use
Bayesian learning methods to combine this likelihood with the evidence and the prior
probability of the hypothesis. We can infer the probability of particular graphs from a
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particular pattern of contingencies among variables, or from the outcome of some set of
controlled experiments.

We will say more later about probabilistic Bayesian models, and in particular hierarchical
models. But let’s begin by showing how the ideas we’ve described so far apply to empirical
research with children.

Empirical Work on Bayes Nets and Bayesian Reasoning in Children

Over the past ten years, a number of researchers have explored whether children might have
Bayes net-like representations of causal structure, and whether they can learn causal
structure from evidence in the way that the formalism suggests. We know that even infants
can detect complex statistical patterns. In fact, statistical learning has been one of the most
important recent areas of developmental research on linguistic and perceptual learning (e.g.,
Gomez, 2002; Kirkham & Johnson 2002; Saffran et al. 1996; Wu, Gopnik, Richardson, &
Kirkham, 2011). This research shows that even young infants are sensitive to some of the
statistical regularities in the data that would be necessary to engage in Bayesian causal
learning at all.

But more recent research goes further. It demonstrates that very young children, even
infants, can actually use those statistics to make inferences about causal structure.
Researchers have also explored whether children use that knowledge in ways that go beyond
simple association. And they have explored whether children can make similar causal
inferences from the outcomes of interventions – their own or those of others. Finally, they
have also asked whether children will integrate their prior knowledge with new evidence in
a Bayesian way, and whether they will go beyond learning about observable variables to
posit unobservable ones. The quick answer to all these questions is yes.

The methodology of all these experiments has been similar. Obviously, it is not possible to
explicitly ask very young children about conditional probabilities or interventions. Indeed,
the judgment and decision-making literature has demonstrated that even adults have a great
deal of difficulty with explicit and conscious probabilistic reasoning (see e.g., Kahneman &
Tversky, 1996). On the other hand, there is evidence that human minds unconsciously use
Bayesian inference extensively in areas like vision and motor control (Kersten, Mamassian,
& Yuille, 2004; Wolpert, 2007). We can ask whether children might also implicitly use
these inference techniques to develop intuitive theories.

Researchers studying intuitive theories have usually tried to discover a typical child’s
knowledge of familiar causal generalizations, and to track changes in that knowledge as
children grow older. We can ask whether children of a particular age understand important
causal relationships within domains such as psychology, biology and physics. But if we
want to understand the fundamental mechanisms of causal learning we also need to give
children causal problems that they haven’t already solved. So researchers have given
children controlled evidence about new causal systems to see what kinds of causal
conclusions they will draw.

Causal Learning in Young Children

Learning causality from probability—The Bayes net approach to causation suggests

that children might be able to go beyond learning the immediate consequences of their
actions, as Piaget suggested, associating correlated events, as the classical associationist or
connectionist accounts suggest (Rogers & McLelland 2004), or understanding specific
physical events that involve contact and movement (Leslie & Keeble 1987; Michotte 1963).
Instead, children might be able to learn new causal structure from patterns of probability.
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Moreover, according to the interventionist account of causation children should be able to
use that structure to design new interventions on the world. In a first set of experiments
Gopnik et al. (2001) showed just that. Children saw a “blicket detector” -- a machine that lit
up and played music when some combinations of objects but not others were placed on it, as
depicted in Figure 4. For example, children might see that the machine did not activate when
you put B alone on it, but did activate when you placed A on it and continued to do so when
B was added to A (as in Figure 4). Given your prior knowledge about the machine, it could
have any one of the causal structures represented by the Bayes nets in Figure 2. However,
according to the formalism, the pattern of evidence is only compatible with the first structure
where A is a blicket and B is not.

Then children were asked to design an intervention to make the machine go or turn off. If
the causal structure is that illustrated in the top left of the possibilities in Figure 4, you
should intervene on A and not B to make the machine stop. 2-, 3- and 4-year-olds could use
the pattern of covariation between the blocks and the machine’s activation to infer the causal
structure of the machine. Then they could use that causal knowledge to figure out how to
make the machine go or stop. They would add only A, and not B or A and B, to make the
detector activate. They would remove only A, and not B or A and B, to make the machine
stop. Gweon and Schulz (2011) found similar abilities to infer causation from covariation in
infants as young as 16 months.

Sobel et al. (2004) found that preschool children would also make correct causal inferences
from more complex statistical patterns, particularly “backward blocking”. Backward
blocking is a kind of causal inference that requires children to learn about the causal efficacy
of an object using information from trials in which that object never appeared. For example,
children saw A activate the machine by itself, and then saw A and B together activate the
machine. The fact that A alone was sufficient to activate the machine made the children
think that B was less likely to be a blicket.

There are two interesting points about this inference. First, unlike the inference in our first
example, it is probabilistic. B could still be a blicket, but this hypothesis is less likely if A
activated the machine. Second, this inference is particularly difficult to explain with
standard associationist theories. Sobel and Kirkham (2007) found that children as young as
18 months old also showed similar capacities for backward blocking. They also found that,
in an anticipatory looking task, even 9-month-olds seemed to infer causation from
covariation.

Children can also infer more complicated kinds of causal structure. Gopnik et al. (2004)
showed that children could use a combination of interventions and statistics to infer the
direction of a causal relation, that is, whether A caused B or vice-versa. Still further, Schulz
et al. (2007) showed that 4-year-old children could use this kind of evidence to infer more
complex causal structures involving three variables. In these experiments, they distinguished
between a causal chain, where A causes B causes C (as in Graph 2a earlier) and a common
cause structure where A causes B and C (as in Graph 2b earlier).

In these examples, the causal relations were complex but deterministic. Kushnir et al. (2005)
showed that 4-year-old children could also make inferences about probabilistic relationships.
Children could use probabilistic strength to infer causal strength – they thought that a block
that set off the machine 2 of 3 times was more effective than one that worked 2 of 6 times
(although both set off the machine two times).

Integrating prior knowledge and new evidence—Bayesian inference combines

evidence, likelihoods, and the prior probability of hypotheses. Do children take prior
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knowledge into account in a Bayesian way when they are making causal inferences? Several
recent studies show that they do, but that, also in a Bayesian way, new evidence can lead
them to overturn an initially likely hypothesis. Thus, Sobel, Tenenbaum, and Gopnik (2004)
and Griffiths, Sobel, Tenenbaum, & Gopnik (2011) showed that children would take the
baseline frequency of blickets into account when they made new inferences in a backwards
blocking task. They made different inferences when they were told beforehand that blickets
were rare or common. If blickets were rare, for example, children were less likely to
conclude that a block was a blicket than if blickets were common.

Kushnir and Gopnik (2007) explored how children integrated prior knowledge about spatio-
temporal causal relationships with new evidence. To begin with children clearly preferred a
hypothesis about a blicket machine that involved contact, as we might expect based on
perceptual or mechanism accounts of causality (e.g., Leslie & Keeble 1987; Muentener &
Carey 2010). They assumed that a block would have to touch the blicket detector to make it
go. However, children overcame that prior assumption when they were presented with
statistical evidence that blickets could act remotely, without contact. When they saw that the
machine was most likely to activate when an object was waved above it, rather than
touching it, they concluded that contact was unnecessary.

Other studies show the influence of prior knowledge on causal learning. In particular, Schulz
and Gopnik (2004) and Schulz et al. (2007), explored whether children believe that causal
relations can cross domains – that, for example, a physical cause could lead to a
psychological effect or vice-versa. Many studies suggest that children are initially reluctant
to consider such hypotheses – they have a very low prior probability (e.g., Notaro, Gelman
& Zimmerman 2001). However, Schulz and Gopnik (2004) showed that 4-year olds would
use statistical information to learn about cross-domain causal relations. For example,
children initially judged that talking to a machine would not make it go. But if they saw the
appropriate conditional probabilities between talking and activation, they became more
willing to consider the cross-domain cause. Schulz et al. (2007), then gradually gave
children more and more statistical evidence supporting a cross-domain hypothesis. This
systematically shifted children’s inferences in precisely the way a Bayesian model would
predict. As children got more and more evidence in favor of the hypothesis, they were more
and more likely to accept it. These cross–domain inferences are a good example of an
initially low probability hypothesis that may be confirmed by the right pattern of evidence.

Unobserved causes—Children don’t just use statistical patterns to infer observed causal

relations, like the fact that the blicket lights up the detector. They also use conditional
probabilities to infer the existence of unobserved causes--hidden “theoretical entities.”
Gopnik et al. (2004) found that when the observed variables couldn’t explain the evidence,
children would look for unobserved variables instead. Children saw two simple stick
puppets, which we’ll call W and I, that moved and stopped together – they covaried, like
Wine and Insomnia in Figure 2. This pattern of covariation indicated that there was some
causal link between the two events, but didn’t specify exactly what causal structure led to
that link. Then children saw the experimenter intervene to move W, with no effect on I and
vice-versa intervene to move I with no effect on W. These two interventions ruled out the
two obvious causal hypotheses W → I and I → W. Then children were asked if W made I
move, I made W move, or something else made them both move. They chose “something
else” as the right answer in this condition, but not in a similar control condition. Moreover,
many of the children searched for the unobserved cause, looking behind the puppet
apparatus. So 4-year-olds had concluded that some unobserved common cause, U,
influenced W and I, and therefore W←U→I. Similarly, Schulz and Somerville (2006)
found that when children saw an indeterministic machine – that is a machine that went off
only 2 of 6 times--they inferred that some hidden variable was responsible for the failures.
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Inferring psychological causation—Most of these initial experiments involved

physical causation. However, children also extend these causal learning techniques to other
domains. Schulz and Gopnik (2004) found that 4-year-old children used covariation to infer
psychological and biological causes as well as physical ones. In a particularly striking
experiment, Kushnir, Xu & Wellman (2010), found that children as young as 20 months old
would use statistical Bayesian reasoning to infer the desires of another person.

To set the stage, recall that a causal model doesn’t just specify causal structure – it can also
specify the relations between the causal structure (including the parameterization of that
structure) and the evidence. The default assumption for many causal models, including the
models we typically use in science, is that the evidence we see is a random sample from an
underlying distribution. When the evidence doesn’t fit that pattern we either have to revise
our assumptions about the causal structure, or revise our assumptions about the sampling
process. This is the logic behind significance tests. When there is less than a five percent
chance that the pattern of evidence we see was the result of a random sampling process, we
infer that there is some additional causal factor at work.

To begin with, Xu and Garcia (2009) demonstrated that 9-month-olds were sensitive to
sampling patterns. The experimenter showed the infants a box full of white and red ping-
pong balls, in an 80-20 proportion. Then she took some balls from the box. A natural causal
model would be that this sample was randomly generated. In that case, the distribution of
balls in the sample should match the distribution of the balls in the box. Indeed, infants
looked longer when a sample of mostly red balls was taken from a box of mostly white
balls, than when a sample of mostly white balls was extracted. These infants initially seemed
to assume that the balls were a random sample from the distribution in the box.

This result is interesting for several reasons. For one thing notice that the violations of
expectancy were not impossible – you could, after all, pull mostly white balls from a mostly
red box--but merely improbable. Infants appeared to be sensitive to the probability of
different outcomes. It’s as if the infants said to themselves “Aha! less than .05 probability
that this occurred by chance!” But would the surprising evidence drive the children to
another causal model?

Going one step further, Kushnir et al. (2010) found that, in fact, 20-month-olds interpreted
this non–random sampling causally and psychologically. An experimenter took frogs from a
box of almost all ducks or she took frogs from a box of almost all frogs. Then she left the
room and another experimenter gave the child a small bowl of frogs and a separate bowl of
ducks. When the original experimenter returned she extended her hand ambiguously
between the bowls. The children could give her either a frog or a duck. When she had taken
frogs out of the box that was almost all ducks, children gave her a frog. In this case, the
infants concluded that she wanted frogs. In contrast, when she had taken frogs from a box of
almost all frogs children were equally likely to give her a frog or a duck. In this case, the
infants concluded that she had merely drawn a random sample from the box, rather than
displaying a preference for frogs. So these 20-month-old infants had inferred an underlying
mental state—a desire--from a statistical pattern.

In a still later study, Xu and Ma (2011) showed that both 2–year-olds and 16-month-olds
would use non-random sampling to learn that an adults desires might differ from their own.
This is especially interesting because in an earlier “theory of mind” study Gopnik &
Repacholi (1997) demonstrated that 18 month olds could spontaneously appreciate the fact
that their own desires differed from the desires of others, but 15 month olds could not.
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(c et al. (in press) showed that children could make particularly complex inferences about
covariation with probabilistic data in a social setting. Four-year-olds saw that an action
probabilistically covaried either with a person or with a situation (e.g., Sally plays on a
trampoline rather than a bicycle three out of four times, while Josie only plays on it one out
of four times, or in a contrast condition Sally and Josie both play on the trampoline ¾ of the
time but only play on the bicycle ¼ of the time.) Four-year-olds correctly inferred that the
action was caused by a feature of the person in the first case, but by a feature of the toy in
the second. Moreover, in this study, 4-year-olds explained the “person-caused” patterns of
probabilistic covariation by inferring consistent and long-lasting personal traits, and used
those traits to predict future patterns of behavior. This finding is striking because these kinds
of attributions reflect an intuitive theory of traits that usually emerges later in middle
childhood (cf. Dweck, 1999). When children receive the appropriate evidence, however,
they are able to make such inferences even at a much earlier age.

Both this study and the Xu and Ma study of desires are also interesting because they show
that these learning mechanisms can help explain the naturally occurring changes in
children’s theory of mind that were the focus of earlier work. Children not only make
correct inferences in an artificial setting like the blicket detector, they do so in more
everyday settings. In such situations the data can drive children towards a theory change that
occurs in normal development.

Dynamic Features of Theories

To sum up so far, probabilistic models can provide a formal account of both the structure
and function of specific intuitive theories. They can represent complex causal hypotheses
mathematically. They can also explain mathematically how those hypotheses can generate
new predictions, including probabilistic inferences, counterfactual claims, and prescriptions
for interventions. The Bayesian interaction between prior knowledge and current evidence
can also help explain the interpretive function of theories, the way they lead us to interpret
and not just record new data. On the Bayesian view, our prior knowledge shapes the
inferences we draw from new data, as Piaget pointed out long ago. Moreover, as we’ve just
seen, children as young as 16 months old can actually make these kinds of inferences, and
by four these inferences are both ubiquitous and sophisticated.

These results also tell us something about the dynamics of theory change – about learning.
They show that children are learning about causal structure in a normatively correct way –
given the right evidence they draw appropriate causal conclusions. But we can also ask more
deeply about the specific learning processes that are involved in theory change. In some
ways this is the most interesting question for developmentalists. How do children resolve the
search problems we described earlier? How do they decide which hypotheses to test, and
which evidence to use to test them? Here also new empirical work and new computational
insights dovetail. We will describe three different ways children could home in on the
correct hypotheses and the best evidence. They can act themselves, performing informative
experiments. They can watch and learn from the actions of others, particularly actions that
have a pedagogical purpose. And they can use sampling techniques.

Learning from interventions: Exploration, experimentation and play—One of

the insights of the causal models approach is that deliberately intervening on the world, and
observing the outcomes of those interventions, is a particularly good way to figure out the
causal structure of the world. The framework formally explains our scientific intuition that
experiments tell you more about causal relationships than simple observations do. In
particular, the philosopher of science Frederick Eberhardt has mathematically explored how
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interventions allow you to infer causal structure from data (Eberhardt 2007; see also Cook,
Goodman, & Schulz, 2011).

It turns out that by intervening yourself, you can rapidly get the right evidence to eliminate
many possible hypotheses, and to narrow your search through the remaining hypotheses. A
less obvious, but even more intriguing, result is that these interventions need not be the
systematic, carefully controlled experiments of science. The formal work shows that even
less controlled interventions on the world can be extremely informative about causal
structure. Multiple simultaneous interventions can be as effective as intervening on just one
variable at a time. “Soft’ interventions, where the experimenter simply alters the value of a
variable can be as effective as more controlled interventions, where the experimenter
completely fixes that value. What we scientists disparagingly call a “fishing expedition” can
still tell us a great deal about causal structure – you don’t necessarily need the full apparatus
of a randomized controlled trial.

These ideas have led to a renewed and reshaped investigation of children’s play. Anyone
who watches young children has seen how they ceaselessly fiddle with things and observe
the results. Children’s play can look like informal experimentation. Indeed, historically,
Piaget, Montessori, Bruner, and most preschool teachers have agreed that children learn
through play (see Hirsh-Pasek & Golinkoff 2003; Lillard, 2005). But, how could this be,
given the equally convincing observation that children’s play is often just that--playful – that
is, undirected and unsystematic? In fact, other research demonstrates that even older
children and naïve adults are bad at explicitly designing causally informative experiments
(Chen & Klahr 1999; Kuhn 1962). If children’s playful explorations are so unconstrained
how could they actually lead to rational causal learning?

Recent research by Schulz (Bonawitz et al. 2011; Cook et al. 2011; Schulz et al., 2007,
2008; see also Legare, 2012) has begun to address this issue. Schulz and her colleagues have
shown that children’s exploratory play involves a kind of intuitive experimentation.
Children’s play is not as structured as the ideal experiments of institutional science.
Nevertheless, play is sufficiently systematic so that, like scientific fishing expeditions, it can
help children discover causal structure. This research also shows that children don’t just
draw the correct conclusions from the evidence they are given—they actively seek out such
evidence.

In an illustrative series of experiments Schulz and Bonawitz (2007) assessed how preschool
children explored a new “jack-in-the-box” type of toy. The toy had two levers that produced
two effects (a duck and/or a puppet could pop up). Crucially, Schulz and Bonawitz
compared two conditions, one where the causal structure of the toy was ambiguous and one
where it was clear. In the confounded condition, an adult and the child pushed both levers
simultaneously and both effects appeared. With this demonstration it was completely
unclear how the toy worked. Maybe one lever produced the duck, and the other produced the
puppet, maybe one lever produced both effects, maybe both levers produced both effects,
etc. In the unconfounded condition, on the other hand, the adult pushed one lever and it
systematically produced a single effect, and then the child pushed the other lever which
systematically produced the other effect. In this unconfounded condition the causal structure
of the toy was clear.

The experimenter placed this “old” toy and a new, simpler, single-lever toy in front of the
child. Then she left the child alone, free to play with either toy. If children’s play is driven
by a desire to understand causal structure, then they should behave differently in the two
conditions. In the confounded condition, they should be especially likely to explore the
“old” toy. In that condition the old toy’s causal structure is unclear, and further intervention
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could help reveal it. In the unconfounded condition, however, interventions will have no
further benefit, and so children should play with the new toy instead. Indeed, 3- and 4-year-
old children systematically explored the old toy rather than the new one in the confounded
condition but not the unconfounded one. Moreover, after they had finished exploring the
toy, children in the confounded condition showed that they had figured out how the toy
worked. In a second study (Cook, Goodman & Schulz, 2011), children showed an even
more sophisticated implicit ability to determine which experiments would be most
informative, given their background knowledge of the causal context.

So, when young children were given a causally puzzling toy to play with, they
spontaneously produced interventions on that toy and they did this in a rational way. Of
course, children’s play is not rational in the sense that it is explicitly designed to be an
optimally effective experiment. But children’s actions ensure that they receive causally
relevant and informative evidence. Once that evidence is generated through play, children
can use it to make the right causal inferences.

This research is not only intriguing in itself. It also shows how research inspired by
probabilistic models can shed light on classic developmental questions.

Learning from interventions: Imitation, observation and pedagogy—So we can

learn about causation by experimenting ourselves. But we can also learn about causation by
watching what other people do, and what happens as a result. At times other people even try
to demonstrate causal relations and to teach children about what causes what. This kind of
observational causal learning goes beyond simple imitation. It isn’t just a matter of
mimicking the actions of others, instead children can learn something new about how those
actions lead to effects. In fact, a number of experiments suggest that, at least by age 4,
children can use information about the interventions of others in sophisticated ways to learn
new causal relationships (e.g., Buchsbaum et al. 2011; Gopnik et al. 2004; Schulz et al.
2007). For example, by age 4 and perhaps earlier, children can distinguish confounded and
unconfounded interventions, and recognize that confounded interventions may not be
causally informative (Kushnir & Gopnik, 2005). In more recent experiments, Buchsbaum et
al. (2011) showed that 4-year-olds would use statistical information to infer meaningful,
causally effective goal-directed actions from a stream of movements. In an imitation task,
children saw an experimenter perform five different sequences of three actions on a toy,
which activated or did not activate on each trial. A statistical analysis of the data would
suggest that only the last two actions of the three were necessary to activate the toy. When
children got the toy they often produced just the two relevant actions, rather than imitating
everything that the experimenter did.

Further studies show that while children often observe correlational information, they
apparently privilege some of those correlations over others. In particular, recent findings
suggest that very young children act as if correlations that result from the direct actions of
others are especially causally informative.

Bonawitz et al. (2010) showed 4-year-olds and 2-year-olds simple correlations between two
events that were not the outcome of human action. One box would spontaneously move and
collide with a second box several times. Each time the second box would light up and then a
toy plane a few inches away would spin. No human action was involved. Then they asked
the children to make the plane spin themselves. The obvious course is to push the first box
against the second. Four-year-olds would do this spontaneously and they would also look
towards the plane as soon as they had done so. Interestingly, however, 2-year-olds were
strikingly unlikely to spontaneously move the box in order to make the plane go. Although
they would happily move the box if they were specifically asked to do so, even then they did
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not look towards the plane and anticipate the result. However, these younger children were
much more likely to act themselves and to anticipate the result when they observed a human
agent bring about exactly the same events. That is, when they saw an experimenter push the
first block against the second and then saw the plane spin, 2-year-olds would both push the
block themselves and anticipate the result. Meltzoff, et al. (in press) compared 24-month-
olds, 3-year olds and 4-year-olds with different stimuli, and additional controls, with similar
results—younger children were more likely to make causal inferences from correlations
when the correlations were the result of human actions

Intriguingly, children can learn even more effectively from other people by making implicit
assumptions about the intentions of those people. In particular, children appear to be
sensitive to the fact that evidence may be the result of pedagogy – the intention to teach.
Recently, Csibra and Gergeley (e.g., 2006) have suggested that even infants are sensitive to
pedagogy and make different inferences when evidence comes from a teacher. For Csibra
and Gergeley, this is the result of an innate set of cues pointing to pedagogical intent, such
as the use of motherese and eye contact, which automatically lead children to make
particular kinds of inferences.

Alternatively, however, pedagogy might have an effect by leading children to assume
different kinds of probabilistic models. Shafto and Goodman (2008) have modeled these
inferences in Bayesian terms, and have made quite precise predictions about how learners
should make rational causal inferences from pedagogical and non-pedagogical evidence.
Four-year-olds act in accord with those predictions (Buchsbaum et al. 2011; Bonawitz et al
2011).

The central idea behind the Bayesian pedagogical models is that children not only model the
causal structure of the world, they also model the mind of the person teaching them about
the world. Remember that causal models can specify how evidence is sampled. When the
20-month-olds in Kushnir et al.’s frog and duck study saw a non-random sample, they
inferred that the agent deliberately intended to pick the frogs. This can also work in reverse
– you can use what you know about someone’s intentions to make inferences about how the
evidence was sampled. In particular, if one person is trying to teach another they should
provide an informative sample, rather than a random one. So if a learner knows that they are
being taught, they can assume that the sample is informative.

For example, suppose a person shakes up novel toys in a bag, blindly extracts a few and
labels each with a novel name, “dax”. Contrast this with the case where instead the person
looks inside and deliberately extracts exactly the same toys, shows you each one, and labels
it a “dax”. This second case provides pedagogical evidence. You can assume the teacher
drew the sample nonrandomly to instruct you about these toys, in particular. As a result you
can make different inferences about the word and the objects. Specifically, in the second
case you can assume that the word is more likely to apply only to the sampled toys than to
all the toys in the bag, or that all the sampled toys will behave in the same way, while the
toys that were not sampled will behave differently. Even infants make these inferences
(Gweon et al. 2010; Xu & Tenenbaum 2007).

In general, implicit pedagogy is an enormous asset for learning. It allows children to focus
on just the hypotheses and evidence that are most relevant and significant for their culture
and community. On the other hand, implicit pedagogy also has disadvantages. It may lead
children to ignore some causal hypotheses. Bonawitz et al. (2011), showed children a toy
that could behave in many different and non-obvious ways (pressing a button could make it
beep, squeezing a bulb lit it up, etc.). When a demonstrator said that she was showing the
child how the toy worked, children would simply imitate the action she performed. When

Gopnik and Wellman Page 20

Psychol Bull. Author manuscript; available in PMC 2013 November 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



the demonstrator activated the toy accidentally, children would explore the toy and discover
its other causal properties.

Research on “over-imitation” also illustrates this effect. In these studies, children see
another person act on the world in a complicated way to bring about an effect. Sometimes in
these circumstances children act rationally, reproducing the most causally effective action
(Gergeley, Bekkering & Király 2002; Southgate, et al. 2009; Williamson, Meltzoff &
Markman 2008). Sometimes, though, they simply reproduce exactly the sequence of actions
they see the experimenter perform--they over-imitate (Horner & Whiten 2005; Lyons et al.
2006; Tomasello, 1993). These conflicting results may seem puzzling. From a Bayesian
perspective, though, this variability could easily reflect an attempt to balance two sources of
information about the causal structure of the event. The statistics themselves are one source.
The other is the assumption that the adult is trying to be informative.

To illustrate, earlier we described the Buchsbaum et al. (2011) study in which children
rationally picked out and imitated only the causally relevant actions from a longer string.
Buchsbaum et al. also did exactly the same experiment but now included pedagogical
information – the experimenter said “Here’s my toy, I’m going to show you how it works”.
In this case children were much more likely to “over-imitate”, that is, they assumed that
everything the adult did was causally effective and imitated all her actions. Moreover, a
Bayesian model predicted exactly how much children would over-imitate. Again,
probabilistic models can illuminate a classical developmental problem – how, when and why
children imitate.

The interventionist causal Bayes net framework suggests that children might learn causal
structure especially effectively from their own interventions and from the interventions of
others, particularly when those others are trying to teach them. Experimenting yourself can
provide especially rich information about causal structure. Attending to the interventions of
others can point children even more narrowly to just the statistical relationships that are
most likely to support causal inferences. Understanding that those interventions are
pedagogical adds still more information. Empirical work shows that preschoolers do indeed
learn particularly effectively in these ways. Probabilistic models can predict these learning
patterns quite precisely.

Sampling and variability—Earlier we described the search problems, both the problem

of choosing which hypotheses to test and the problem of finding evidence to test them. Since
an extremely large number of alternative hypotheses might be compatible with the evidence,
we can’t learn by simply enumerating all the alternatives and testing each one. Performing
interventions and observing the interventions of others can help to solve this problem. These
interventions give the child additional evidence that is particularly well-designed to
eliminate some relevant alternatives and discriminate among others. This kind of “active
learning” has been explored in machine learning in reinforcement learning paradigms, as
well as in the causal Bayes net literature, but has only just begun to be applied to Bayesian
learning more generally.

Instead, the most common solution to the search problem in Bayesian machine learning is
based on hypothesis sampling (see e.g., Robert & Casella, 1999). (This is different from the
evidence sampling we talked about earlier in the ping-pong ball study) This solution focuses
on searching among hypotheses given the evidence, rather than searching for evidence given
a hypothesis.

The probabilistic Bayesian view suggests that, at least abstractly, the learner has a
distribution of many possible hypotheses, some more and some less probable, rather than
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having just a single hypothesis. Since it is impossible to test all the hypotheses at once, the
system randomly but systematically selects some hypotheses from this distribution and tests
just those hypotheses. In some versions of sampling, hypotheses that are more probable to
begin with are more likely to be sampled than less probable ones, but in all versions the
system will try even low-probability hypotheses some of the time. Then the system can test
the sampled hypotheses against the evidence. As a result of this test, the system will, in a
Bayesian way, change the probability of these hypotheses, and it will adjust the distribution
of all possible hypotheses accordingly. Then it samples again from this new distribution of
hypotheses and so on.

Theoretically, we can think of these algorithms as procedures that search through an
extremely wide space of hypotheses, and take samples from that space in order to find the
correct one. In fact, however, these procedures work in a way that will be more plausible
and familiar to developmental psychologists. They may, for example, take a likely
hypothesis, and then “mutate’ that hypothesis to generate a number of new, slightly different
hypotheses with different probabilities. Or they may take a likely hypothesis and then
consider that hypothesis along with a few other similar hypotheses. Then this set of
hypotheses can be tested against the data, the probability of the hypotheses can be updated
and the process can be repeated. In many cases, perhaps rather surprisingly, statisticians can
prove that, in the long run, this kind of step-by-step constructivist process will give the same
answer you would get by searching through all the hypotheses one by one.

There are many varieties of sampling but all of them have an interesting feature: Variability
among hypotheses becomes a crucial hallmark of the learning process. The probabilistic
Bayesian learner entertains a variety of hypotheses, and learning proceeds by updating the
probabilities of these varied hypotheses.

Developmental researchers have increasingly recognized that children also entertain
multiple hypotheses and strategies at the same time. Children are typically variable.
Individual children often perform correctly and incorrectly on the same task in the same
session, or employ two or three different strategies on the same task on adjacent trials. As
Robert Siegler (1995; 2007) has cogently emphasized this variability may actually help to
explain development rather than being just noise to be ignored. We don’t just want to know
that children behave differently at 4 than at 3, but why they behave differently. Variability
can help.

Siegler’s examples typically come from number development. In his studies children use
variable strategies for exactly the same addition problems. But the same pattern applies to
intuitive theories like theory of mind or naïve biology. Consider standard change-of-location
false belief tasks. A child sees Judy put her toy in the closet and go away. Judy doesn’t see
that her Mom then shifts the toy to the dresser drawer. Judy returns and the child is asked
“Where will Judy look for her toy?; In the closet or in the drawer?” In one intensive study
(Liu, et al. 2007) almost 50 preschoolers were given 20 to 30 false-belief tasks. At one level
of analysis, children were quite consistent: 65% of them passed more than 75% of these
tasks, they were consistently correct, and an additional 30% passed fewer than 25% of these
tasks, they were consistently incorrect – they said that Judy would look first in the drawer,
the “realist” answer. Only three children were in the middle showing a fully mixed pattern.
But when you examine the data in more detail, it becomes clear that there is enormous
variability: All the children produced a mix of incorrect realism answers and correct false-
belief answers.

Related data come from false belief explanation tasks. In these tasks, rather than asking for a
prediction--“Where will Judy search for her toy?”--the experimenter shows the child that
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Judy actually goes to the wrong place and asks for an explanation--“Why is Judy looking in
the closet?” Young children offer cogent explanations; in fact, their explanations are often
better than their parallel predictions (Wellman 2011). But they produce a mix of very
different explanations. On successive tasks a typical child might answer “she doesn’t want
her toy anymore” (desire explanation), “it’s empty” (reality explanation), “she doesn’t know
where it is” (knowledge-ignorance explanation) and “she thinks her toy’s there” (belief-
explanation). Amsterlaw and Wellman (2006) tested 3- and 4-year-old children on 24 such
false belief explanation tasks over 6 weeks. Reality explanations were more prevalent early
on and knowledge-ignorance plus belief explanations were more prevalent later. But all the
children were variable, often producing two or three different explanations on the same day.

This kind of variability has sometimes led developmentalists to claim that there are no
general shifts in children’s understanding. Instead, children’s performance is always
intrinsically variable and context-dependent (see e.g., Greeno, 1998; Lave & Wenger, 1991;
Thelen & Smith, 1994). However, such claims stand in tension with what appear to be
genuine broad, general changes in children’s knowledge. On the other hand, researchers who
are interested in charting these broader changes often treat this variability as if it is simply
noise to be ignored. But this in turn does not jibe with evidence that this variability actually
helps children learn (Amsterlaw & Wellman 2006; Goldin-Meadow 1997; Siegler 1995).

The probabilistic approach helps us reconcile variability with broad conceptual change. In
fact, variability may actually tell us something important about how broader changes take
place. If children are sampling from a range of hypotheses then variability makes sense. The
gradually increasing prevalence of belief explanations, for example, might reflect the fact
that those hypotheses become more likely as the evidence accumulates. As a result they are
more likely to be sampled and confirmed.

But does the variability in children’ answers, both within and across children, actually
reflect the probability of different hypotheses, as the Bayesian view would suggest? For
example, will children produce many examples of high-probability hypotheses and just a
few examples of low-probability hypotheses? In a first attempt to answer that question
Denison et al. (2010) designed a simple experiment where the probability of different
hypotheses could be precisely defined. They told 4-year-old children that either red or blue
chips placed into a machine could make it go, showed them a bag of mixed red and blue
chips, shook the bag and invisibly tipped out one of the chips into the machine, which
activated. Then they asked the children several times whether they thought that the chip in
the machine was red or blue.

In this case the probability of different hypotheses directly reflects the distribution of chips
in the bag. If there are 80 red chips and 20 blue ones then there will be an 80% chance that
the “red chip” hypothesis is right. If children were simply randomly responding they should
guess red and blue equally often. If they were simply trying to maximize their successful
answers, they should always say red. But if their responses are the result of a sampling
process, they should choose red 80% of the time and blue 20% of the time, that is they
should “probability match”. If the distribution is 60/40 instead of 80/20 they should adjust
their responses so that they guess “red chip’ less often, and ‘blue chip” more often. In fact,
this is just what the children do.

Moreover, children did this in a way that went beyond the simple probability matching we
see in reinforcement learning (Estes, 1950). In an additional experiment, children saw two
bags, one with two blue chips and one with a mix of 14 red and 6 blue chips. The
experimenter picked one of the closed bags at random and tipped the chip into the bag. The
probability that a blue chip was in the machine equaled the probability that it would fall out
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of the bag times the 50% chance that that bag was chosen. So blue chips were actually more
likely to end up in the machine than red ones, even though there were more red than blue
chips overall. In this condition, children’s responses did not simply match the frequency of
the chips overall, greater for red than blue, but rather matched the probability that chips of
each color would end up in the machine, greater for blue than red. So children were not
simply updating their behavior based on reinforcement, or matching their responses to the
perceptual distribution of the chips. Instead they seemed to be genuinely generating
hypotheses based on their probability.

More Theoretical Advances: Hierarchical Bayes Nets

Bayes nets are good representations of particular causal structures, even complex causal
structures. However, according to the theory theory often children are not just learning
particular causal structures but are also learning abstract generalizations about causal
structure. For example, in addition to learning that my desire for frogs causes me to take
them out of the box, children may develop a broader generalization that I always prefer
frogs to other toys. Or more generally still, they may conclude that desires are likely to
differ in different people.

In fact, classsic empirical “theory theory” research showed that children develop more
abstract, framework knowledge over and above their specific causal knowledge. For
example, when they make judgments about objects, children often seem to understand broad
causal principles before they understand specific details. 3- and 4-year-olds, like adults,
know that biological objects, like an egg or a pig, have different insides than artifacts, like a
watch or a piggy bank. They also know that those insides are important to identity and
function. At the same time, however, they are notably inaccurate and vague about just what
those insides actually are (Gelman & Wellman 1991). They say that biological objects have
blood and guts (even an egg) and artifacts have gears and stuffing inside (even a piggy
bank). Similarly, in causal tasks, children assume that objects with similar causal powers
will have similar insides, even before they know exactly what those insides are actually like
(Sobel et al. 2007).

These broader generalizations are important in both scientific and intuitive theories.
Philosophers of science refer to “overhypotheses” (Goodman 1955), or “research programs”
(Laudan 1977), or “paradigms” (Kuhn 1962) to capture these higher-order generalizations.
Cognitive developmentalists have used the term “framework theories” (Carey 2009;
Wellman 1990; Wellman & Gelman 1992). In their framework theories, children assume
there are different kinds of variables and causal structure in psychology versus biology
versus physics. In fact, they often understand these abstract regularities before they
understand specific causal relationships (see e.g., Simons & Keil 1995).

Some nativists argue that this must mean that the more abstract causal knowledge is innate.
In contrast, constructivists, including Piaget and theory theorists, insist that this more
abstract causal knowledge could be learned. But how could this be? Bayes nets tell us how it
is possible to learn specific causal structure. How is it possible, computationally, to learn
these more abstract over-arching causal principals?

Griffiths and Tenenbaum (2007; 2009; Tenenbaum, et al. 2011) inspired by both philosophy
of science and cognitive development, have formulated computational ways of representing
and learning higher-order generalizations about causal structure. Following Gelman, et al.
(2003) they call their approach hierarchical Bayesian modeling (HBM) or, sometimes,
theory-based Bayesian modeling. The idea is to have meta-representations, that is,
representations of the structure of particular Bayes nets and of the nature of the variables and
relationships involved in those causal networks. These higher-level beliefs can constrain the
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more particular hypotheses represented by particular Bayes nets. Moreover, these higher-
level generalizations can themselves be learned by Bayesian methods.

In standard Bayesian modeling a particular Bayes net represents a specific hypothesis about
the causal relations among particular variables. Hierarchical Bayesian models stack up
hypotheses at different levels. The higher levels contain general principles that specify
which hypotheses to entertain at the lower level.

Here is an example, from biology. Consider a family of causal graphs representing causal
relations between sleeping, drinking, and exposure to cold etc. on the one hand and
metabolizing energy, being active, being strong, growing, having a fever, and healing etc. on
the other, as in Figure 5. Perhaps the relations might be captured by the graph of nodes and
arrows on the left hand side of Figure 5, graph A. Perhaps instead, the correct causal
structure is graph B or graph C. In fact, something very like graph B is what Inagaki and
Hatano (2002, 2004) describe as the naïve “vitalistic biology” apparent in the cognition of
4-, and 5-year-olds (see their 2004 p. 42, Figure 2.3), while something like graph C would
be more like the theory of scientific medicine.

Although graphs B and C themselves differ they are actually both versions of the same more
abstract graph schema. In this schema, all the nodes fall into three general categories: Input
situations, that is, external forces that affect an organism (sleep, exposure, eating), Outcome
occurrences, that is characteristics of the organism itself (getting sick, healing, growing),
and internal biological Processes (metabolizing energy). Both graphs B and C (in contrast to
graph A) have this general form, but differ in specifics. Both could be generated from a
simple higher order framework theory that goes something like this:

1. There are three types of nodes: Input, Process, and Outcome

2. Possible causal relationships only take the form of Input→Process and
Process→Outcome, or in total Input→Process→Outcome.

Note that Input→Process→Outcome is more general and abstract than any of the more
specific graphs in Figure 5. Input→Process→Outcome is at a higher level in several ways.
Input, Process, and Outcome are not themselves any of the nodes in any of the graphs
(which are instead “eat food”, “heal”, etc.). Further, Input→Process→Outcome does not
itself directly “contact” the evidence, which would include dependencies between “eats
food” and “gets sick”, or “eats food” and “metabolizes energy”.

Recall that Bayesian reasoning means that we can solve the inverse problem and determine
the posterior, the probability of the hypothesis given the evidence, by using what we know
about the likelihood and the prior. P (H|E) is a function of P (H) and P(E|H).

The idea behind hierarchical Bayesian learning is to use the same reasoning but now relate a
particular hypothesis to a higher level framework theory instead of relating the hypothesis to
evidence. We can think of the specific hypothesis H, as evidence for a higher-level theory,
T. Then we can consider the probability of T given H, P(H|T). That is, we can specify the
likelihood of lower-level hypotheses given higher-level theories--P(H| |T)--just as we can
specify the likelihood of the evidence given a lower-level hypothesis--P(E|H). High-level
theories can act as constraints on inference at the lower level. Lower-level hypotheses
provide evidence for the higher-level theories. Moreover, T could also be related to a yet
more general framework theory T1, and so on to produce a hierarchy of theories at different
levels.

Going back to Figure 5, we can think of graphs A, B, and C as specific theories of biology.
Input→Process→Outcome is a higher-level framework theory, not a specific theory. This
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framework theory generates some specific theories (e.g., graphs B and C) but not others (not
graph A, for example). The higher-level framework theory Input→Process→Outcome does
not directly contact the data. But because it generates some specific theories and not others,
the higher-level framework theory will indirectly confront the data via the specific theories it
generates.

There are a variety of possible framework theories just as there are a variety of specific
theories and even more specific hypotheses. Bayesian inference lets us specify the
probability of different framework theories, just as it lets us specify the probability of
different specific theories and different hypotheses. We can infer the probability of a
framework theory from the probability of the specific theories it generates, just as we can
infer the probability of a specific hypothesis from the evidence.

Computational work on HBMs has shown that, at least normatively, hierarchical Bayesian
learning can actually work. Higher level framework theories can indeed be updated in a
Bayesian way via evidence that contacts only lower level hypotheses. Griffiths &
Tenenbaum (2007) provide several simple demonstrations, Kemp, et al. (2007) and
Goodman, et al. (2011) provide more comprehensive and complex ones. These
demonstrations show that it is possible, in principle, for learning to proceed at several levels
at once—not just at the level of specific hypotheses but also at the level of specific theories
and, even more abstractly, at the framework theory level.

At the least, these demonstrations provide intriguing thought experiments. They suggest that
data-driven learning can not only change specific hypotheses but can also lead to more
profound conceptual changes, such as the creation of more abstract theories and framework
theories. These computational thought experiments underwrite the feasibility of
constructivist accounts.

HBMs also help address the hypothesis search problem. If a learner initially assumes a
particular framework theory, she might only test the specific theories that are generated by
that framework theory, rather than other hypotheses. If a 4-year-old believes the “vitalist”
framework theory of biology she may consider hypotheses about whether sleeping well or
eating well makes you grow, but she won’t initially consider the hypothesis that growing
makes you sleep well or that exposure to cold makes you heal poorly.

Constructivists insist that the dynamic interplay between structure and data can yield both
specific kinds of learning and more profound development as well. Hierarchical Bayesian
models provide a more detailed computational account of how this can happen. On the
hierarchical Bayesian picture local causal learning can, and will, lead to broader,
progressive, theory revision and conceptual change.

Abstract Learning in Childhood

While these hierarchical Bayesian models have been inspired by developmental data, they
are new. So only a few very recent experimental developmental studies have specifically
tested hierarchical Bayesian ideas.

Learning abstract schemas

Dewar and Xu (2010) have shown that even infants can infer abstract regularities from
patterns of data in their category learning. In the causal case, more focally, Schulz et al.
(2008) designed an experiment in which blocks from different underlying and nonobvious
categories would interact according to different general causal principles. When some
blocks banged together they made a noise but when others banged together they did not. In
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fact, you could explain the pattern of evidence by assuming that the blocks fell into three
categories, X, Y and Z. X activates Y and Y activates Z but X does not activate Z. Four-
year-old children used a few samples of evidence to infer the existence of these three distinct
categories and then generalized this high-level rule to new cases. They assumed that new
blocks would fall into one of these three general categories.

Lucas et al. (in press) investigated whether children could infer generalizations about the
logic of a causal system. First they showed children a “blicket detector” that followed either
a disjunctive rule (all red blocks make it go) or a conjunctive one (you need both a red and
blue block to make it go). Then they placed a new set of differently colored blocks on the
detector. The children saw an ambiguous pattern of evidence that was compatible in
principle with either the disjunctive or conjunctive principle. 4-year-olds generalized the
prior higher-order rule to the new blocks – they assumed that the new blocks acted
disjunctively or conjunctively based on the earlier evidence.

These two recent studies show that given appropriate patterns of evidence 4-year-old
children can go beyond inferring specific causal relationships. They can also infer more
abstract generalizations in the way that hierarchical Bayes nets would propose. Even before
the children knew exactly which blocks caused exactly which effects they had inferred some
general principles – the blocks would fit into one of three categories, or they would act
conjunctively.

Progressive learning in childhood

Hierarchical Bayesian models also rely crucially on variability among hypotheses. They test
multiple specific theories and framework theories, and update the probability of those
theories in the light of new evidence, just as probabilistic Bayesian models do in general.
From this hierarchical perspective variability can be thought of not only “synchronically”
(children adopt multiple approaches at one time) but also “diachronically” (different
approaches emerge over time). This means that as hierarchical Bayesian learning proceeds
over multiple iterations, intermediate transitional hypotheses emerge. In particular, in the
learning process some abstract hypotheses progressively come to dominate others but then
themselves become dominated by still others. HBMs, as they dynamically operate on
evidence over time, result in characteristic progressions of intermediate hypotheses—
progressions of specific hypotheses and more abstract theories and framework theories
(Ullman, Goodman, & Tennenbaum 2010).

If children are hierarchical probabilistic Bayesian learners, then they should also produce
intermediate hypotheses, and those hypotheses should improve progressively. In fact,
children’s conceptual development does progress in this way. Indirect evidence of such
progressions is available, for example, in studies of children’s naïve astronomy (Vosniadou
& Brewer 1992) and naïve biology (Inagaki & Hatano 2002). But more direct evidence is
provided by “microgenetic” studies that track conceptual change longitudinally over days or
weeks (see e.g., Siegler 2007). Recent research on preschoolers’ theories of mind illustrates
this approach..

Some recent research claims that 12- to 15-month-old infants are already aware that actors
act on the basis of their beliefs and false beliefs (e.g., Onishi & Baillargeon 2005; Surian, et
al. 2007). It is not yet clear how to best interpret these infant “false belief” findings nor how
to integrate them with the preschool research. Some insights from the probabilistic models
framework may be relevant to this problem, however. First, we can ask whether children
represent a coherent network of causal beliefs, like a complex causal Bayes net, or instead
simply have isolated representations of particular causal links. The claim that 3- and 4-year-
olds have different theories of mind is not, and never was, based on their performance on
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false-belief tasks alone. Instead, theory theorists argued for a theoretical change based on the
simultaneous and highly correlated emergence of many conceptually related behaviors.
These behaviors involve explanation as well as prediction, and involve the understanding of
sources of information, appearance and reality, and representational change as well as
predictions about actions (Wellman 2002; Gopnik & Wellman 1992). For example, passing
false-belief tasks is highly and specifically correlated with children’s ability to understand
that their own beliefs have changed, and that appearances differ from reality (Gopnik &
Astington 1988). Similarly, 3-year-old children who are trained on understanding belief
show an improved understanding of the sources of their knowledge, but do not show a
similarly improved understanding of number conservation (Slaughter & Gopnik 1997).
Infants may have early pieces of this network but only integrate them into a coherent whole
between 3 and 5.

A second related issue concerns the distinction between prediction and causal representation
that we outlined earlier. The infant findings largely come from “looking-time methods”
which reflect whether or not infants predict specific outcomes. It may be that these results
reflect the fact that infants have collected correlational evidence that will later be used to
construct causal representations. Infants on this view, might be like Tycho Brahe – the
astronomer who collected the predictive data that Copernicus and Galileo used to construct
the heliocentric causal theory. Brahe could predict with some accuracy what the stars would
do but he could not explain why they acted this way. Later causal representations would
then allow children to use this information in more sophisticated ways, for example, to
design novel interventions on the world, to make counterfactual inferences or to provide
explanations. An infant might notice that people’s actions are consistently related to their
perceptions, without treating those patterns as evidence for a causal model of the mind.

Regardless of whether these distinctions explain the changes from infancy to early
childhood, there are definitely changes in how children think about the mind during the
preschool years. Preschoolers don’t just go from failing to passing false-belief tasks between
2 and 5. Instead they develop a series of insights about the mind. Importantly, individual
differences in how rapidly or in what sequence children achieve these insights predict other
key childhood competences. These include how children talk about people in everyday
conversation, their engagement in pretense, their social interactional skills, and their
interactions with peers (Astington & Jenkins 1999; Lalonde & Chandler 1995; Watson et al.
1999). These individual differences are related to IQ and executive function, but also have a
distinct developmental profile (e.g., Carlson & Moses 2001; Wellman et al. 2008). None of
this is consistent with the idea that all the concepts of intuitive psychology are in place
innately and they are only masked by performance problems.

Let’s look at the progressive changes in preschooler’s theory of mind more closely. It has
been clear for a long time that children can understand peoples’ desires and intentions before
they understand their false beliefs (Wellman & Liu 2004 provide a meta-analytic review).
But this transition actually involves a more revealing, extended set of conceptual
progressions. This becomes apparent when children are assessed using a recently established
Theory of Mind Scale (Wellman & Liu 2004). The scale includes carefully constructed tasks
that assess children’s understanding of (1) Diverse Desires (people can have different
desires directed at the same thing), (2) Diverse Beliefs (people can have different beliefs
about the same situation), (3) Knowledge-Ignorance (something can be true, but someone
doesn’t know it), (4) False Belief (something can be true, but someone might believe
something different), and (5) Hidden Emotion (someone can feel one way but display a
different emotion). Preschoolers solve these tasks in this order and the same 5-step
progression characterizes American (Wellman & Liu 2004; Wellman, et al. in press),
Australian (Peterson, et al. 2005), and German (Kristen, et al. 2006) preschoolers.
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If these progressions reflect hierarchical Bayesian learning, then they should vary depending
on the learners’ experiences. Recent studies demonstrate two kinds of variation. One is
variation in timetables. Deaf children of hearing parents go through the same 5-step
sequence as their hearing peers but they are very delayed. They take 12 to 15 years to
proceed through the same steps that take hearing children 5 or 6 years (Peterson et al. 2005;
Wellman et al. 2011). In contrast, deaf children of deaf parents, who learn sign as a native
language, do not show these delays. The deaf-of-hearing children have much less
conversational experience than hearing or deaf-of-deaf children and this probably leads to
the very delayed appearance of each step, even though the sequence of those steps is the
same.

The other variation involves differences in sequencing which reflect different childhood
experiences. For example, American and Chinese children are immersed in different
languages and cultures, which emphasize quite different aspects of intuitive psychology.
These differences lead to related differences in their early theory-of-mind progression – the
sequence of insights is different rather than delayed (Wellman, et al. 2006).

To elaborate, a theory of mind is the product of social and conversational experiences that
may vary from one community to another. Western and Chinese childhood experiences
could be crucially different. Cultural psychologists have suggested that Asian cultures
emphasize the fact that people are interdependent and function in groups, while Western
cultures emphasize independence and individuality (Nisbet, 2003). These differences lead to
different emphases. Asian cultures may focus on common perspectives while American
cultures focus on the diversity of beliefs. Moreover, Western and Chinese adults seem to
have very different everyday epistemologies. Everyday Western epistemology is focused on
truth, subjectivity, and belief; Confucian-Chinese epistemology focuses more on pragmatic
knowledge acquisition and the consensual knowledge that all right-minded persons should
learn (Li 2001; Nisbet 2003). Indeed, in conversation with young children, Chinese parents
comment predominantly on “knowing”, whereas U.S. parents comment more on “thinking”
(Tardif & Wellman 2000).

In accord with these different cultural emphases Chinese preschoolers develop theory of
mind insights in a different sequence than Western children, Both groups of children
understand the diversity of desires first. But Chinese children, unlike Western children
consistently understand knowledge acquisition before they understand the diversity of
beliefs. (Wellman, et al. 2006; Wellman, et al. 2011).

This extended series of developmental achievements fits the hierarchical Bayesian learning,
theory-construction perspective. On the Bayesian view children should develop a
characteristic sequence of theories as their initial hypotheses become progressively revised
in the face of new evidence. In fact, Goodman et al. (2007) have proposed a Bayesian model
of theory-of-mind learning that captures the characteristic changes in children’s
understanding. Moreover, the probabilistic Bayesian perspective would predict that the
sequence of theories can differ depending on the learner’s exact “diet” of evidence. The
comparison of deaf and hearing children and American and Chinese children supports this
prediction.

The Blessings of Abstraction

So far we have shown that hierarchical Bayesian models can provide computational
accounts that explain how children might learn abstract framework theories from specific
theories, which are learned from evidence. But the developmental findings also suggest that
children sometimes develop abstract framework theories before they develop detailed
specific theories.
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The conventional wisdom in psychology has been that learning at a lower level of
generalization and abstraction – more concrete learning – must precede higher-order, more
abstract, and more general learning. This idea has been presupposed both by empiricists and
by nativists. So when infants or very young children understand abstract structure, this is
often taken to mean that this structure is innate (see e.g., Spelke 1992). Although some
developmentalists have stressed instead that young children often seem to learn abstract
regularities before specific ones (Simons & Keil 1995; Wellman & Gelman, 1998), this is a
distinctively unconventional proposal—it might appear that this kind of learning just
couldn’t work.

In fact, recent work on hierarchical Bayesian modeling has shown that sometimes abstract
generalizations can actually precede specific ones (e.g., Goodman, et al. 2011). In principle,
then, children may be learning both specific facts about my desires, and generalizations
about all desires, from the same evidence and at the same time.

A simple example can illustrate this. Suppose I show you a pile of many bags of colored
marbles and your job is to learn the color of the marbles in each bag. Now I draw some
marbles out the bags. I start with Bag 1. I take out 1 then 2 then 3 then 4 red marbles in a
row. Each time I ask you what you think will happen next. After a while you’ll predict that
yet another red marble will appear from Bag 1. Then I repeat this with Bag 2. This time I
take out a succession of blue marbles. By Bag 3 you might well conclude: “I don’t know the
color, but whatever the first one is I bet all the rest in that bag will be the same color.”
You’ve learned an abstract regularity, and your knowledge of that regularity precedes your
learning of the specific color in Bag 3 or, for that matter, any other remaining bag. Note that
this abstract structure was certainly not innate, it was learned. Under the right circumstances
abstract regularities (e.g., T = all marbles in Bag 3 will be the same color) can be learned in
advance of the specifics ( H = all marbles in Bag 3 are purple). The philosopher Nelson
Goodman (1955) called these more abstract principles “overhypotheses”--hypotheses about
which hypotheses are likely.

Kemp, et al. (2007) demonstrate how overhypotheses can be learned in hierarchical
Bayesian models, and building on these ideas, Goodman, et al. (2011) have used hierarchical
Bayesian modeling to provide a striking set of computational results they call “the blessing
of abstraction.” They have shown that, in hierarchical Bayesian models, it is often as easy to
learn causal structure at several levels at once as it is to simply infer particular causal
structure. Moreover, learning both higher-level and specific structures from the data can be
no slower (that is, requires no more data samples) than learning only the specific structures
and having the abstract ones “innately” specified at the start.

Probabilistic hierarchical Bayesian learners thus learn abstract structures alongside and even
before the specifics that those regularities subsume. Arguably children do the same thing.

Conclusions

The interchange between cognitive developmental scientists and probabilistic Bayesian
modelers has already informed us about theories, learning, and development, and it promises
further insights. The empirical results we have described are not easily compatible with
either traditional empiricism or nativism. The children in these studies are clearly not simply
associating particular inputs. Instead they infer more abstract causal structures, including the
very abstract structures involved in overhypotheses or framework theories. At the same
time, it is plain that these structures are not simply present innately and then triggered, or
masked by performance constraints. In the learning experiments, children receive evidence
for new causal structures that they do not already know – even very young children learn
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these new structures rapidly and accurately. Similarly, the gradual sequence of progressively
more accurate theories, and the fact that this sequence unfolds differently with different
evidence patterns, are both difficult to explain in nativist terms.

Thinking about computation provides new empirical projects for developmentalists and
thinking about development also provides new projects for the modelers. We conclude by
briefly listing some of these future projects.

Several advances in the computational world could inspire new developmental
investigations. Developmentalists have only just begun to explore how the computational
work on hierarachical Bayesian models might be reflected empirically in the development of
framework theories. There is also computational work which suggests that what appear to be
causal primitives, like the very idea of intervention or causation itself, could, in principle, be
constructed from simpler patterns of evidence (Goodman et al. 2011). There is important
empirical work to be done exploring which representations are in place initially and which
are learned. Models can help direct such empirical endeavors.

Perhaps the most significant area where new computational work can inform development
involves the algorithmic instantiations of computational principles. Most of the formal work
so far has been at what David Marr (1982) called the computational level of description.
That is, the models show how it is possible, normatively, and in principle, to learn structure
from patterns of evidence. However, we can also ask how it is possible to actually do this in
real time in a system with limited memory and information-processing capacity. There are
many different specific algorithms being explored in machine learning, and we don’t yet
know which algorithms children might use or approximate. Similarly, formal work specifies
how active intervention can inform learning, and these ideas can also be found in work on
“active learning” in computation. Although we know that children actively explore the
world, we don’t know in detail how their exploration shapes and is shaped by learning.

Ultimately, of course, we would also like to know how these algorithms are actually
instantiated in the brain. A few recent studies have explored the idea that neural circuits
instantiate Bayesian inferences (Knill & Pouget 2004) but this work is only just beginning.

Equally, paying attention to development raises new questions for computationalists. The
conceptual changes that children go through are still more profound than any the
computational models can currently explain. Even hierarchical Bayes nets are still primarily
concerned with testing hypotheses against evidence, and searching through a space of
hypotheses. It is still not clear exactly how children generate what appear to be radically
new hypotheses from the data.

Some learning mechanisms have been proposed in cognitive development to tackle this
issue, including the use of language and analogy. In particular, Carey (2009) has
compellingly argued that specific linguistic structures and analogies play an important role
in conceptual changes in number understanding, through a process she calls “Quinean
bootstrapping”. There is empirical evidence that the acquisition of particular linguistic
structures can indeed reshape conceptual understanding in several other domains, closer to
intuitive theories (see e.g. Casasola, 2005; Gopnik, Choi & Baumberger, 1996; Gopnik &
Meltzoff, 1997; Pyers & Senghas 2009; Shusterman & Spelke, 2005).

But it is difficult to see how language or analogy alone could lead to these transformations.
In order to recognize that a linguistic structure encodes some new, relevant conceptual
insight it seems that you must already have the conceptual resources that the structure is
supposed to induce. Similarly, philosophers have long pointed out that the problem with
analogical reasoning is the proliferation of possible analogies. Because an essentially infinite
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number of analogies are possible in any one case, how do you pick analogies that reshape
your conceptual understanding in relevant ways and not get lost among those that will
simply be dead ends or worse? In the case of mathematical knowledge, these problems may
be more tractable because such knowledge is intrinsically deductive. But in the case of
inductively inferring theories there are a very wide range of possible answers. When many
linguistic structures could encode the right hypothesis, or many analogies could be relevant,
the problem becomes exponentially difficult. These proposals thus suffer from the same
constructivist problem we have been addressing all along. And so, again, characterizing the
influence of language and analogy in more precise computational terms might be very
helpful. If probabilistic and hierarchical Bayesian models can help solve the riddle of
induction, then perhaps they can shed light on these other learning processes as well.

Moreover, empirically, developmentalists have discovered several other phenomena that
seem to be involved in theory change but that have yet to be characterized in computational
terms. Much recent work in developmental psychology has explored how children can learn
from the testimony of others (Koenig, Clément, & Harris, 2004). As we noted earlier,
computationalists are just starting to provide accounts of the sort of social learning that is
involved in intuitive pedagogy: there is still much to be done in understanding how children
learn from other people.

Similarly, there is a great deal of work suggesting that explanations play an important role in
children’s learning (Wellman 2011). Even very young children ask for and provide
explanations themselves and respond to requests for explanations from others (e.g., Callanan
& Oakes 1992), and these explanations actually seem to help children learn (Amsterlaw &
Wellman 2006; Siegler 1995; Legare 2012). But there is no account of explanation in
computational terms.

Schulz and colleagues have shown that exploratory play has an important role in causal
learning. But other kinds of play, particularly pretend and imaginary play, are equally
ubiquitous in early childhood and seems to have an important role in early learning.
However, that role is still mysterious computationally.

The relation between learning in infancy and in the preschool period is also unresolved.
There is extensive evidence that very young infants detect statistical patterns. There is also
evidence that 16 to 20-month-olds can infer causal structure from those patterns (Gweon &
Schulz, 2012; Kushnir et al. 2010; Sobel & Kirkham, 2007, Xu and Ma, 2011). We still
don’t know what happens in between.

More generally, there are questions about the relationship between learning and broader
development. For the hierarchical probabilistic models framework, and for that matter, for
the theory theory itself, there is no principled difference between inference, learning and
development. Accumulated experience can lead to profound and far-reaching developmental
change – the equivalent of “paradigm shifts” in science. Nevertheless, we can still ask
whether there is something about children, in particular, that makes them different kinds of
learners than adults.

Both evolutionary and neurological considerations suggest that this might be true.
Childhood is a period of protected immaturity in which children are free to learn and explore
without the practical constraints of adult life. Children’s brains appear to be more generally
flexible and plastic than adult brains, and children seem to be particularly flexible learners.
From a computational perspective, some of this flexibility may reflect the fact that children
simply have less experience and so have lower “priors” than adults do. But there may also
be more qualitative differences between adult and child learners. In the reinforcement
learning literature, for example, there is a distinction between “exploring” and “exploiting”.
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Different computational mechanisms may be most effective when an organism is trying to
learn novel information and when it is trying to make the best use of the information it
already has. Children may be designed to start out exploring and only gradually come to
exploit. Computational models that reflect and explain these broad developmental changes
would be particularly interesting.

We have shown that new computational ideas coupled with new cognitive development
research promise to reconstruct constructivism. The new computational research relies on
probabilistic Bayesian learning and hierarchical Bayesian modeling. The new cognitive
development research studies the mechanisms of childhood causal learning. The new studies
show how exploration and experimentation, observation and pedagogy, and sampling and
variability lead to progressively more accurate intuitive theories. These advances provide a
more empirically and theoretically rich version of the theory theory. Collaboration between
cognitive development and probabilistic modeling holds great promise. It can help produce
more precise developmental theories and more realistic computational ones. It may even
explain, at last, how children learn so much about the world around them.
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Figure 1.
Causal Bayes net of academic conferences (and their consequences). Causal Bayes nets can
connect any variables with connected edges. In this example, to keep things concrete, A =
attending a conference; P = partying; W = drinking wine; I = insomnia; D = depression; and
M = mania.
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Figure 2.
Simple causal graphs of two alternative causal relations between partying (P), drinking wine
(W), and insomnia (I).
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Figure 3.
Altered graphs showing the results of interventions on Graphs 2a and 2b (from Figure 2)
under two different interventions: eliminating partying or eliminating wine.
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Figure 4.
Example blicket detector and a sequence of events that do and do not activate the detector.
These events allow for four different causal interpretations, presented in abbreviated Bayes
net form at the bottom of the figure.
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Figure 5.
Three different causal Bayes nets of commonplace biological events.
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