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Abstract

This paper proposes algorithms for reconstructing convex sets given noisy support

line measurements. We begin by observing that a set of measured support lines may

not be consistent with any set in the plane. We then develop a theory of consistent

support lines which serves as a basis for reconstruction algorithms that take the form

of constrained optimization algorithms. The formal statement of the problem and

constraints reveals a rich geometry which allows us to include prior information about

object position and boundary smoothness. The algorithms, which use explicit noise

models and prior knowledge, are based on ML and MAP estimation principles, and

are implemented using efficient linear and quadratic programming codes. Experimental

results are presented. This research sets the stage for a more general approach to the

incorporation of prior information concerning and the estimation of object shape.
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I. Introduction

In this paper we consider algorithms for reconstructing 2-D convex sets given support line

measurements for which the angles are known precisely but the lateral displacements are

noisy. Our initial motivation for studying this problem was provided by a problem in

computed tomography (CT) (see [1], for example). Specifically, in CT one makes measure-

ments of integrals of an object property (absorption density) along various straight lines. As

illustrated in Fig. 1, perfect measurement of a projection - i.e. of a full set of integrals along

the parallel lines L(t, 6) with 0 fixed - provides us knowledge of the two extreme lines at

this angle that just graze the set on either side. These are known as support lines. Note that

knowledge of these support lines in this case is completely equivalent to knowledge of the

silhouette at this angle [2,3], i.e. to a function that is 1 if L(t, 0) intersects the object and 0

otherwise. Given such support lines from many different angles, it is possible to reconstruct

a convex 2-D polyhedron, which contains the object, by intersecting all of the halfplanes

defined by the measurements (since each support line also comes with information on which

side of the line the object lies). When the projections are noisy, however, such as is the case

in low-dose CT, then the estimates of the lateral positions of the support lines will also be

noisy. In this case, the set of measured lines may be inconsistent - that is, taken together,

there may be no set S which has all of the measured lines as support lines.

The consistency conditions on support lines, which will be discussed in detail later, form

the basis of the algorithms presented in this paper. These algorithms use the consistency

requirements, along with known noise statistics and prior information, to reconstruct a

convex set which is in a specific sense the optimal estimate based on all the available infor-

mation. In our work on CT, we have found that such knowledge of support - provided by a

procedure of the type developed here - can assist dramatically in the problem of complete

reconstruction, particularly when only limited data is available [4]. In this sense the work

presented here can be viewed as a natural successor to that of Rossi and Willsky [5] and
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Bresler and Macovski [6] who developed maximum likelihood (ML) methods for estimating

parametric descriptions of objects in a CT cross section. In contrast to this previous work,

we do not constrain objects to lie within specified parametric classes but rather use the

fundamental properties of support lines to develop geometric reconstruction algorithms.

This framework also allows us to incorporate prior information concerning object shape in

a more flexible manner by specifying prior distributions on sets of support lines rather than

by constraining objects to be simple shapes characterized by a few parameters.

It is also worth noting that the reconstruction problem considered in this paper is also

of interest in a number of other applications. For example, in tactile sensing [7], a parallel

plate robot jaw may provide two support line measurements as it clamps down on a "thick

2-D object" which is completely enclosed by the jaw. The jaw may then clamp down from

different angles yielding a finite set of support line measurements, as in the CT example

above. Other applications include robot vision [8] and chemical component analysis [9].

The problem described in this paper is fundamentally a problem in computational geom-

etry [10], [11]. In contrast to most work in this field which assumes perfect measurements of

information such as points, lines, and sets, and focuses on issues such as algorithm complex-

ity, we focus explicitly on an estimation/optimization theoretic perspective so that we may

deal with uncertain measurements and, where appropriate, incorporate prior knowledge.

As we will see, the incorporation of measurement error statistics, prior knowledge, and

the fundamental constraint on support lines can lead to optimization-based algorithms of

considerable efficiency. Indeed the algorithms presented here are implemented with linear

programming and quadratic programming methods, both useful tools in computational

geometry.

The support line measurements we consider in this paper have known angles evenly

spaced over 2Xr. In addition, we assume that a support line measurement consists not only

of a lateral position, but also indicates on which side of the line the object lies. A natural first

guess at a reconstruction then would be to intersect the halfplanes determined by each of the
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support lines. To see why this intersection method might not be a desireable reconstruction

and also to give some insight into the fundamental support constraint, consider Fig. 2.

Fig. 2(a) shows a set of six perfect support line measurements corresponding to the unit

circle. The reconstruction resulting from the intersection method is the shaded hexagonal

region which is obviously the best reconstruction given these measurements. Suppose now,

however, that there are measurement uncertainties and in particular that all six lines have

the lateral measurement errors indicated in Fig. 2(b). In this case, the intersection method

produces the diamond shaped estimate indicated by the shaded region. Note that the two

vertical lines on either side do not touch the diamond, and in fact, it should be apparent

that given the other four measurements as indicated, there is no set that has these six lines

as support lines. This demonstrates, geometrically, what is meant by inconsistency. Now

consider what the diamond estimate implies about the noise model. What this estimate

is telling us is that the two vertical lines (the outermost lines) are in error, and that the

remaining four lines (the innermost lines) are perfect. Obviously, this does not correspond

to any reasonable noise model, in general. The algorithms developed in this paper, in

contrast to the intersection method, use explicit noise models to develop optimum methods

given the model.

The paper is organized as follows. In Section II, we define the support vector and

describe the fundamental support line constraints, i.e., the consistency conditions. In

Section III we define the set of all consistent support vectors, called the support cone,

and elaborate on the geometry of the support cone and of objects represented by points

in this cone. Section IV presents the noise models and algorithms that use the geometry

of the support cone to advantage, and Section V contains experimental results. We give

concluding remarks in Section VI, including a brief discussion of how more elaborate models

of prior shape information can be included.
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II. Support Line Constraints

Support Lines and Support Functions

Fig. 3 shows what is meant by the support line Ls () of a set S. It is the line orthogonal to

the unit normal w which just "grazes" S in the positive w direction. The quantity h(O) is

the value of the largest possible projection of any point in S onto the w-axis. One can see

that S lies completely in a particular one of the two halfplanes determined by Ls (8). We

may now define the above quantities precisely. The support line at angle 8 for the closed

and bounded 2-D set S is given by

Ls() = {x E IR2 I XTw = h()} (1)

where w = [cos 0 sin 8]T and

h(6) = sup x T . (2)
zES

The function h(e) is called the support function of the set S; for any particular value of 6

we call h(8) the support value at angle 8.

The support function h(8) has important and well-known properties which are analogous

to properties we shall be developing for the support vector defined below (see [12], [13], and

[14]). For example, h(e) uniquely determines the convex hull of S, hul(S). It is also true

that if h(6) is twice differentiable then S itself must be convex, and the boundary of S

must be continuous and smooth (i.e., it has continuously turning normals). In this case,

the curvature of the boundary of S at the boundary point e(8) = Ls(8) n S (see Fig. 3) is

given by h"(0) + h(8). Then, since S is convex, the curvature of its boundary must be non-

negative, which leads to the conclusion that support functions which are twice differentiable

must satisfy the constraint

h"(0) + h(0) >O . (3)

The constraint we derive below is analogous to (3), but is more fundamental since it applies

to any set in the plane, not just convex sets with smooth boundaries. We shall also develop
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an analog to the radius of curvature which will be exploited by algorithms designed to

incorporate prior knowledge.

Support Vectors and Constraints

We shall require some additional notation in this section. From this point on, we consider

a finite number M of angles Oi = 2r(i - 1)/M, i = 1,... , M, spaced evenly over [0, 27r), and

associated sets of lines Li, orthogonal to the corresponding unit vector wi = [cos 9i sin i]T .

In what follows the index i is always interpreted modulo M. The line Li is defined by its

lateral displacement hi, via

Li = {u E IR2 I uT wi = hi} (4)

The most important quantity in this paper is the vector made by organizing the M lateral

displacement values of the M lines under consideration as a vector h = [hi h 2 ... hM]T.

We call the vector h a support vector if the lines Li, for i = 1,... , M are support lines for

some set S E IR2 , i.e. if hi = h(Oi) where h(O) is the support function of some set S. In this

case we refer to the hi as support values.

Before proceeding to the basic theorem of this paper, let us characterize, in terms of the

quantities defined above, the estimate produced by the intersection method introduced in

Section I. Given measurements hi, i = 1,..., M of the lateral displacements of M lines, the

intersection method simply produces the set of all points u E JR2 which satisfy uTwi < hi

for all i = 1,..., M, i.e.l

SB = {U EIR
2 I uTwl w 2 ... <M][h h 2 ... hM]} . (5)

The two shaded regions in Fig. 2 correspond to SB for two different vectors h. In Fig. 2(a),

h is a support vector since the lines actually support SB, however in Fig. 2(b), h is not a

support vector because there is no set which the given lines support. We now proceed

1A vector inequality such as zT < yT where z, y E IR' implies that zs < yi for i = 1,..., n, where z; and

yl are the ith elements of the vectors z and y respectively.
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to state the basic theorem of this paper, which characterizes precisely the consistency

constraints satisfied by support vectors.

Theorem 1 (The Support Theorem)

A vector h E IRM (M > 5) is a support vector if and only if

hTC < [O ... 0] (6)

where C is an M by M matrix given by

1 -k 0 -k

-k 1 -k ...... O

0 -k 1
C = (7)

O -k ...... O

o 0 --00 -k

-k 0 0 1

and k = 1/(2 cos(27r/M)). 

It is important to point out the similarity between the continuous support function

constraint of (3) and the the discrete support vector constraint of (6). The quantity -hTC,

which has non-negative entries, is analogous to the quantity h"(8) + h(O), which is also non-

negative. It can be shown, in fact, that in the limit as M - oo the expression -hTC > 0

goes to h"(0) + h(e) > 0 [15]. As a further extension of the analogy, we shall reveal in a

subsequent section that the entries of the vector -hTC can be directly interpreted from the

geometry as a type of discrete radius of curvature. This interpretation allows us to propose

methods for incorporating prior shape information related to boundary smoothness in the

algorithms of Section III.

Before proceding with the proof, we give a brief indication of the geometric intuition

behind it. First, consider the situation depicted in Fig. 4, in which we have shown two

lines Li-l and Li+j. A third line Li is parallel to the dashed line in the figure, and we
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seek constraints on the lateral displacement of this line so that the 3 lines Li_1, Li, and

Li+l could possibly be support lines of some set. If Li- 1 and Li+l are support lines of a

set S, then S is contained in the set Di illustrated in the figure. Now suppose that the

line Li were located to the left of (and parallel to) the dotted line. Then it is possible

to construct a set S c Di which touches each of the three lines Li-l, Li, and Li+l -

these lines are consistent. However, if Li were measured to the right of the dotted line,

then it is impossible to construct such a set - these lines are inconsistent. When stated

in mathematical notation and applied to all lines Li, i = 1,..., M, this relationship yields

precisely the vector constraint in (6).

The above observation leads to the necessity of (6), but in order to establish the

sufficiency of (6) we need to define a new set Sv, IR2 which may be thought of as another

choice of reconstruction, different than SB. As shown in Fig. 5, S, is formed from the

convex hull of the points of intersection of lines Li and Li+j for i = 1,..., M. Formally, we

have that

S. = hul(vl,v 2 ,*..,CM) (8)

where the vi's are given by

vi = Li n Li+l (9)

and hul(.) denotes the convex hull. We refer to the points vi as vertex points rather than

vertices because, as one can see from Fig. 5(b), they need not be distinct points. In Fig. 5(a)

the support line L1 is located to the right of the point L 2 n Ls, and from our discussion

on Fig. 4, we know that these lines do not satisfy (6). Note that in this case SB : S.,.

However, in Figs. 5(b) and 5(c) the lines do satisfy (6) and SB = S,. Indeed what we show

in the proof is that (6) implies that SB = S, and h is the support vector to this set.

Proof of Theorem 1:

First, we show the necessity of condition (6). By hypothesis, h is a support vector of

some set S. Now consider the set Di defined by the two support lines Li-l and Li+l as
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shown in Fig. 4. Note that by hypothesis M > 5, which implies that 8i+1 - i-l1 < -r.

This in turn implies that the two lines Li-l and Li+i have a finite intersection point Pi (see

Fig. 4), and that wi may be written as a positive combination of wi-l and wi+1. These two

facts are necessary and in fact easily allows us to conclude that the support value at angle

Oi for the set Di is pTwi. Then, since S c Di we must have that hi < pTwi. With some

algebraic manipulation (see Appendix A), this inequality may be shown to be equivalent to

the condition given by the ith column of (6).

To prove the sufficiency of (6) we must show that a vector h which satisfies (6) is a

support vector for some set. In Appendix B we show that (6) implies that SB = S, = S,

and what remains then is to show that S has h as its support vector. To see this, first note

from the definition of SB in (5), that we must have

sup xTwi < hi.
zES

On the other hand, vi E S, = SB = S and iTwi = hi. Consequently, hi is the support

value at this angle. C

The immediate use of the support theorem is as a test of consistency. Given a test vector

h we may determine whether h specifies a consistent set of support lines by evaluating hTC

and seeing whether the elements of the resultant row vector are all non-positive. From an

estimation viewpoint, we see that if we are trying to estimate a support vector h from a set

of noisy measurements, then we must make sure that our estimate h satisfies hTC < 0. In

the following section we examine the geometry of these constraints in more detail.

III. Object and Support Cone Geometry

Geometry of the Support Cone

The convex polyhedral cone given by

C = {h E RM I hTC < [0...0]} (10)



consists of all M-dimensional support vectors. We call C the support cone.2 The matrix C

is circulant and, therefore, its eigenvalues are given by the discrete Fourier transform of the

first row [16]. After simplification (see Appendix A), the eigenvalues are found to be

Ak-- = 1 cos(2r(k - 1)/M) k = 1,...,M.

cos(27r/M)

We now recognize that exactly two eigenvalues are identically zero: A2 = AM = 0. Hence,

C is singular, and a basis for the nullspace At (and also of the left nullspace since C is

symmetric), is found to be

n 1= 1cos 0 cos ... co. cos(M-1)0o]

2 = [ sin2 . sin2 0 ... sin(M- 1)o ] (11)

where 0o = 27r/M.

The geometrical consequence of C being singular is that the support cone C is not

a proper cone; i.e., there is a linear subspace (of dimension 2) contained entirely in C.

Therefore, the support cone is composed of the Cartesian product of a proper cone, Cp =

{h E C I hTnl = O, hTn2 = 0}, and At, the nullspace of C. Accordingly, any support vector

may be written as the sum of two orthogonal components, hp and hn, as

h = hp + h, (12)

where hp E Cp and hn E N. We will see in the following section that the nullspace component

of a support vector h may be interpreted as a simple shift of the set in the plane that

corresponds to h.

Object Geometry

Given a (consistent) support vector h, there are, in general, an entire family of sets which

have h as their support vector. The largest of these sets, which is uniquely determined by

2C is a cone because it obeys the usual property of cones: if h is in C then ah (a > O) is also in C. It is

a polyhedron because it is the intersection of a finite number of closed half spaces in IRM.
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h is the polygonal set SB defined in (5). We call SB the basic object of support vector h.

Two examples of basic objects for M = 5 are shown in Figs. 5(b) and 5(c). Note that for

M small, SB may not be a good approximation to the true set S, but as M gets larger, SB

becomes an increasingly better approximation to hul(S).

Suppose we were to add a nullvector hn to support vector h. What happens to the basic

object? We show here that it is simply shifted (or translated) in the plane. We start by

noting that any nullvector may be written as

h, = Nv (13)

where

N = [n, n2] (14)

(see (11)) and v is a two-dimensional vector. Next, we notice that SB may be written as

SB = {U E I 2 I TNT < hT}

Now suppose that w is an element of SB; then, clearly, w satisfies

h > Nw . (15)

Now we may add, component by component, equations (13) and (15) (preserving the

inequality) yielding

h + hN > N(w + v)

Finally, we now see that w + v must be an element of the basic object corresponding to

h + hn, i.e., the new basic object is just a shifted version of SB. Clearly, the reverse holds

as well: shifting SB by v corresponds to adding the nullvector Nv to h.

The extreme points of the basic object, which we have termed vertex points, are given

by the points vl, ... , VM in (9) (see Figs. 5(b) and 5(c)). An explicit equation for the vertex

point vi is easily found using the definition of Li and Li+l and solving a system of two



linear equations (see Appendix A). We find that

T 1 = , · r· sin 1i+1 - cos i+ 

g 1sink [ hi8 hi+ icos i=n,.., M (16)

where 8o = 8i+1 - 8i = 27r/M. The "shift" property given above relates to the relative

position of two identically-shaped and oriented basic objects. It turns out that a useful

definition of the absolute position of a basic object is the average position of its vertex

points, denoted P. The relationship between the support vector h and P is found to be (see

Appendix A)

I[ [ ] 1 M Ti=
RE Vy i N =1f~~= MN~h . (17)

We shall see in Section IV that (17) can be used as a constraint on estimated support

vectors if the position of the true object is known a priori. Note, in particular, that when

h has no nullspace component, i.e., h is in Cp, then NTh = 0 and, therefore, P = 0 - the

basic object is centered on the origin.

Now we develop the idea of 'discrete radius of curvature" to characterize the smoothness

of the boundaries of basic objects. Suppose that in Fig. 4, the line Li were to pass through

the intersection point Pi of Li and Li+1 . Then the boundary of SB is "sharp" at that point.

As Li moves toward the left of Pi, the boundary is made "smoother". Now consider the

more detailed drawing in Fig. 6. As the boundary is traced along the ith face from vi-1

to vi, the outward unit normal to the boundary changes in angle by 8o = O8 - 8i-1 over

a distance fi. In analogy to the usual radius of curvature, which is defined as the rate of

change of arclength with respect to the angle the unit normal makes to the x-axis, we define

the ith discrete radius of curvature as

fi
ri = . (18)

It can be shown from the geometry (see Appendix A) that the distance from pi to Li is

given by Pi -hTci, where ci is the ith column of C. Then, by simple trigonometry, we
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have that

fi = 2i (19)
tan So

and, hence

Pi = 2rio tan 00 (20)

Hence, the vector p = -hTC has elements that are proportional to the discrete radii

of curvature, ri. The elements of p which are small correspond to "sharp" corners; the

larger elements correspond to "smoother" boundaries. We use this idea in Section IV to

incorporate prior knowledge about object shape.

This completes the discussion of geometry of the support cone and basic objects. Using

the constraints established in Section II and the geometrical ideas established in this section,

we proceed to develop algorithms for estimating support vectors (and hence the basic

objects) given noisy observations. The geometrical ideas play a role both in the development

of prior information to be included in the statement of the algorithms, and in the execution

and analysis of the actual computational methods.

The algorithms we develop in the following section are constrained optimization algo-

rithms because the support vectors to be estimated are constrained to lie in the support

cone. Fortunately, the constraints are linear inequalities, which are simple enough to allow

efficient computational methods. A further constraint which may be imposed if the position

of the object is known a priori, is a linear equality constraint, which is even simpler. The

algorithms are designed to illustrate how to incorporate these constraints along with prior

information and noise models to reconstruct convex sets. We have elected to demonstrate

only the simplest formulations necessary to accomplish this goal. As a result, the algorithms

use the very efficient computational methods of linear programming (LP) and quadratic

programming (QP). In Section VI, we discuss possible extensions which include more

sophisticated models of prior information and that will undoubtedly lead to somewhat

more complex algorithms.
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IV. Estimation Algorithms

We now present three estimation algorithms based on the ideas developed in Sections II

and III. We assume that the measured support values are given by

yi = hi + ni, i=1,...,M (21)

where hi are the true support values which we are estimating and ni are samples of either

1) independent white Gaussian noise with zero mean and variance a2 , or 2) uniformly dis-

tributed noise over the range [--, -y]. Because of the noise, it is likely that the measurement

vector y = [Yl ... , yM]T is not a feasible support vector. Therefore, the first objective of

the following algorithms is to obtain a feasible support vector from the measurements. The

second objective is to use prior information to guide the estimates toward "preferable"

values. The development begins with the Closest algorithm, which uses a minimum of

prior knowledge in a maximum likelihood (ML) formulation, and concludes with the Close-

Min algorithm, which uses prior shape information in a formulation much like maximum

a posteriori (MAP) estimation. The algorithms also tend to increase in complexity as we

proceed, but are each solved by efficient quadratic or linear programming methods.

The Closest Algorithm

Here, we assume the Gaussian noise model given above. In the absence of any prior

probabalistic knowledge we may form the maximum likelihood estimate of h given the

measurement vector y and subject to h e C as (see, for example, [17])

hc = hML = argmax - (y - h)T(y _ h) . (22)
h: hTC<O 2

We see that this estimate is the support vector h in C which is closest (in the Euclidean

metric) to the observation y. If y is in C then hc = y, otherwise the solution may be found

by (efficient) quadratic programming (QP) methods (see, for example, [18] and [19]).
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The Mini-Max Algorithm

The Mini-Max algorithm incorporates the following prior knowledge: objects of interest

tend to have smooth boundaries. To cause objects to have smooth boundaries we define

the Mini-Max estimate to maximize the minimum discrete radius of curvature. As the

problem is stated, however, the solution is unbounded, since basic objects circumscribing

circles of ever increasing radii have unbounded discrete radii of curvature. This problem

is partially solved by incorporating the uniform noise model. In this case, since the noise

is bounded by ±-1y, each element of the true solution cannot be farther than -y away from

the corresponding element of the observation. Formally, we write that the true vector, and

therefore the estimate, must be an element of the hypercube

B = {h E EM I y - <_ .7 .**]' < h < y + [7y a y. * (23)

Finally, recognizing that the estimate must also be in the support cone, and recalling the

proportionality of pi = -hTci to the discrete radius of curvature ri (see (20)), we define the

Mini-Max estimate as

hMM = argmax min{-h T c l , -hTc 2, ... ,-h T cM } (24)
h: hECnB

where cl, ... , cM are the columns of C.

The solution to (24) may be found by linear programming (LP) techniques (see [20], for

example). To show that this is so, we define a new scalar variable p which satisfies

_u <-hTc, i=l,..., M . (25)

Now consider the two augmented vectors

u=-- . and b= (26)
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We now notice that the solution to (24) may be found by maximizing uTb, subject to the

original constraints and the new constraints given in (25). The new objective function is

clearly linear in u; and both sets of constraints are linear in u. Therefore, the augmented

problem is an LP and may be solved by any LP code, or a QP code with the Hessian matrix

set to zero.

Unfortunately, as is often true of LP's, the solution to (24) may not be unique. We

may see a potential non-uniqueness by observing that adding a vector from the nullspace

of C does not change the value of the objective function. Therefore, providing that the

constraints are still met, there may be a family of shifted objects, each one corresponding

to an optimal solution to (24). The Mini-Max estimate is also tied to the observations only

by the hypercube B, and as -y (and therefore the size of B) increases, the influence of the

measurements on the solution may decrease dramatically. For example, we expect that the

basic object corresponding to the estimate resulting from this objective function will be as

largest possible given the bounds, and as near to circular as possible so as to maximize the

minimum discrete radius of curvature. Thus, even if the true object is quite eccentric, and

the observation is just barely infeasible, the Mini-Max estimate may resemble a circle if the

bound -y is large. We shall see examples of both types of behavior in Section V. In addition,

these observations provided part of the motivation for the next algorithm.

The Close-Min Algorithm

The Close-Min algorithm is designed to combine the Closest and Mini-Max algorithms to

produce an estimate which attempts to match the observations, as in the Closest algorithm,

yet also incorporate prior knowledge, as in the Mini-Max algorithm. The concept is simple:

we define a new cost function which is a convex combination of the two objective functions.

We note that this method resembles MAP estimation where the Closest objective function

plays the role of the logarithm of the measurement density (assuming the Gaussian model),

and the Mini-Max objective function plays the role of the logarithm of the prior density.

16



The trade-off between these two objective functions is controlled by the parameter a which

has a value between 0 and 1. This provides the means for weighting prior information and

that available from the measurements as is done in optimal MAP estimation.

The Close-Min estimate is defined as

hCM = argmax afc(h) + (1 - a)fM(h) (27)
h: hECnB

where 0 < ca < 1 and

fc(h) = -- (y-h)T(y-h)

fM(h) = min{-h T c l , -hTc 2,...,
- h T c M

are the objective functions corresponding to the Closest and Mini-Max algorithms, respec-

tively. The solution to (27) may be found using QP after augmenting h as in (26). Note

that provided a :A 0, the constraint B may be removed and the solution will be unique.

Shift Corrected Algorithms

As we suggested previously, prior positional information may be included in the estimation

process. Suppose one knows that the true object is centered at P, that is, that the average

position of its vertex points is p. Then the estimate should also be centered at p. From

Equation (17) we see that this may be assured provided that we enforce the following linear

constraint

NTh = M. (28)

Since this is a linear equation, (28) may be incorporated into the three algorithms as an

additional linear constraint causing no essential change in the nature of the solution method.

The effect of this added prior knowledge can be quite dramatic, however, as we shall see in

the following section.
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V. Experimental Results

To show the behavior of the three algorithms, we use noise-corrupted measurements of a

10-dimensional support vector corresponding to either 1) a circle with radius 1/2, centered

on the origin or, 2) an ellipse, also centered on the origin, with major axes in the x-direction

with radius 3/4 and y-direction with radius 1/3. The measurements are given by (21) where

ni are independent random variables, uniform over the range [-r-, 'y], with several values

of -. To plot the data (for either the feasible support vectors or infeasible observations) we

simply connect the vertex points {vJl, v2,..., vM, v1} in sequence, producing a vertex plot.

For a (feasible) support vector, this plot produces an outline of the basic object; however,

for a (infeasible) measurement, the plot crosses itself, clearly demonstrating the infeasibility.

We refer to a point where a vertex plot crosses itself as a point of inconsistency.

Figs. 7(a) and 8(a) show both the true basic object corresponding to the circle (dashed

line) and the vertex plot for the measured vector (solid line), where y = 0.2 and a = 0.4,

respectively. Figs. 9(a) and 10(a) show the corresponding figures for the ellipse. The shaded

regions shown in the (a) panels of Figs. 7-10 are estimates produced by the intersection

method which is described in Sections I and II. One can see that, in each case, there is at least

one measured line which does not support the shaded region, which clearly demonstrates

the infeasibility of the measurements. It is important to point out that the set constructed

from the raw measurements using the intersection method is a bad estimate of the true set,

in general. This is because, as mentioned before, the construction of this set essentially

ignores the support lines that are farthest out. In contrast, each of the algorithms proposed

here uses all of the measurements to "pull" the inner support lines out, if necessary.

In panels (b)-(d) of Figs. 7-10, the shaded regions correspond to the estimated basic

objects produced by the three algorithms using the measurements shown in the respective

(a) panels. The results of the Closest algorithm are shown in the (b) panels, the Mini-

Max algorithm in the (c) panels, and the Close-Min algorithm in the (d) panels. For
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comparison, we have also included the outline of the true basic object (dashed line) in

each of these panels. The most important observation to make here is that the Closest

estimates strongly resemble the measurements, the Mini-Max estimates strongly resemble

our prior expectation (large circular objects) and the Close-Min estimates "blend" these

two outcomes. Note that we have chosen a = 0.5 for the Close-Min experiments; clearly,

there are a range of different estimates corresponding to different a's which should yield

figures ranging between the Closest and Mini-Max solutions.

Let us examine the results in more detail. The Closest estimates show the following

behavior: the lines are moved just enough in order to correct the points of inconsistency.

Note that, around a point of inconsistency, the inner lines are "pulled" out and the outer

lines are "pushed" in. This is in accordance with the Closest criteria which, in words, is to

adjust the lateral positions of the lines in order to make them consistent, but in such a way

that minimizes the sum of the squares of the lateral movements. For example, in Fig. 7(b)

we see that three lines were moved to correct the single point of inconsistency. Note that

it is possible to move only one line to fix such a point, but clearly that move yields a larger

squared difference between observation and support vector. Because of this behavior, the

Closest estimate always produces a basic object which is larger than the intersection method

(provided that the measurement is infeasible). Then, for almost all noise models, we expect

that the Closest estimate is better than the intersection method, since it is not as biased

toward small figures.

To clarify some of the behavior of the Mini-Max estimates, it is useful to examine the

estimates together with the bounds imposed by the hypercube B of (23). Fig. 11 shows the

vertex plots for the Mini-Max estimate (solid line), the inner bound ya = y - [77 ... .]T

(dotted line), and the outer bound Yb = y+ [17Y ... y]T (dashed line) for the example shown

in Fig. 7. First, this figure demonstrates how the Mini-Max estimate, in effort to maximize

the minimum discrete radius of curvature, produces a figure which is as large as possible

given the bounds, yet is also nearly circular (that is, nearly a regular polygon). Second,
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it is clear from the figure that the estimated basic object may be shifted down a short

distance and still remain within the bounds. Since, as we have already pointed out, adding

a nullvector to the estimated support vector does not affect the value of the Mini-Max

objective function, any feasible shifted version of the solution is also optimal. Therefore, in

this example, the solution is not unique. In the shift-corrected algorithms discussed below,

this component of non-uniqueness is eliminated by imposing a known object position. As

we shall see, this simple correction has dramatic effects on the Mini-Max estimates.

The Close-Min algorithm produced the "blended" estimates that we expected. In

particular, where the Closest algorithm corrected the points of inconsistency, it invariably

left a sharp corner on the boundary. The Close-Min algorithm produced estimates which

appear quite similar to the results of the Closest algorithm but which have smoothed these

corners.

Finally, we present one experiment which demonstrates the results of shift correction

applied to the Mini-Max algorithm. Fig. 12 shows three vertex plots corresponding to the

true support vector (solid line), the Mini-Max estimate from Fig. 7(c) (dotted line), and

the Mini-Max shift-corrected (for P = 0) estimate (dashed line). We see that the shift

correction does not simply shift the original Mini-Maz solution down. To understand this

we recall Fig. 11. We saw that due to non-uniqueness we could shift the solution vertically

over a finite range. But, evidently, none of these shifted positions causes the sum of the

vertex points to be exactly zero. To allow this to occur, the shift-corrected algorithm was

forced to shrink the estimate as well. Clearly, prior information about the position of the

object may have a very strong influence on the performance of the algorithms.

VI. CONCLUSIONS

In this paper we have introduced several important ideas related to the reconstruction of

convex sets from support line measurements. The primary contribution of this paper is in

20



the formulation of the problem as a constrained optimization problem which includes the

fundamental support vector constraint, prior information, and uncertainty in the measure-

ments. We have shown how knowledge of

1. Fundamental geometric constraints,

2. Object shape and position, and

3. Underlying measurement noise models,

may lead directly to optimization-based or probabilistic-based algorithm formulations. We

have shown how these methods produce better reconstructions, which are more consistent

with the available information, than the conventional intersection method, which does not

use any of this information.

The algorithms we have proposed in this paper are of the very simplest type, however,

they serve the purpose of illustration of the fundamental ideas, and they are implemented

using particularly efficient codes. The Closest algorithm gives the constrained maximum

likelihood estimate assuming the noise is Gaussian. It requires the minimum amount of

prior knowledge about the set to be reconstructed, and is implemented in a straightforward

manner using quadratic programming techniques. The Mini-Max algorithm gives one

method to produce smoother boundaries which results in fast linear programming codes.

However, the Mini-Max solution is not necessarily unique and tends to produce large, nearly

circular objects. The Close-Min algorithm blends the preceding two objective functions to

produce estimates that balance the prior information and the information contained in

the measurements. Finally, we have shown that prior knowledge of object location can

lead to considerable improvement for the resulting shift-corrected algorithms. Note that

object location is one quantity that can typically be estimated with great accuracy in CT

applications.

Many extensions of this work are possible, both in the inclusion of additional constraints

or in the development of more elaborate objective functions. Among the possible constraints
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one might consider including is a known object area. The area of a basic object is a quadratic

function of h, however, which leads to inherently more complicated computational methods.

A simpler extension of the constraints may arise if one has only partial information about

the position of the object in the plane. For example, if the position were bounded, then

instead of having two linear equality constraints (corresponding to the x and y position) as

in the shift-corrected algorithms, one would have four linear inequality constraints.

A potentially important extension of the form of the objective function involves the

development of explicit prior probabilities on support vectors. For example, if one interprets

the Close-Min algorithm as an explicit MAP formulation, one finds that the implied prior

distribution on h strongly favors large objects. This, in general, is not desirable. One would

prefer to specify a prior distribution which permits separate control of size and smoothness,

for example, and perhaps also makes explicit such quantities as eccentricity and orientation.

Once specifying such prior distributions, the algorithms may be formulated precisely using

MAP techniques with the additional knowledge of the measurement noise statistics. Results

along these lines will be reported in a subsequent paper.

Another extension of these methods may be made to account for situations where one

has missing measurements. This application is particularly important to the CT problem

mentioned in Section I in the case when one has limited-angle or sparse-angle observations.

For example, suppose one has M measurements but wishes to reconstruct a support vector

of dimension 2M. One may think of this as an interpolation or extrapolation procedure, and

provided there is some prior shape information, this may be accomplished with relatively

simple additions to the current algorithms [15].

A. FORMULAS

We collect here for convenience several formulas and brief derivations that are often referred

to in the text. Here So = 27r/M.
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The point pi of intersection of Li-1 and Li+, (see Fig. 4):

Pi = [hi hi+,|[ Wi-1 Wi+1

cos ,I COS ,i+l 1

sin 0i-1 sin 0i+l

1 sin Oi+1 -cos Oi+

sin 280 hi- hi+
s2sin 0i-1 cos 0i-i

Also

T 1 sin hi+l -cos0 1i+l [ os ]i
Pi; i sin 200 hi-i hi+i

1 sin 0 i-- COS 0i-1 sin ]i

1 sin 80

sin'20 0 h1 + sino 

-cs 26 (hi-, + hi+i)
2 cos 00

Since hi < pTwi, we see that this result yields the necessary result in Theorem 1.

Discrete radius of curvature:

Pi - -h T ci

-- ~ o(hi-l + hi+l)- hi
2 cos -o

= PTWi - hi

Vertex points:

Vi = [h hi+l ] [i i+l1

- [ h] h[, cossi cos~i+l 1G

sin 0i sin oi+1

- n1 [ I [sin ,i+l -cos Oi+l

sin#o [ - sin Oi cos ej2
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Eigenvalues of the constraint matrix:

M

Ak = > Clne- j 2
r(k-1)(n-1)/M k = 1, , M

n=l

-1 -1 e-i2r(k-1)/M + e-j2r(k-1)(M-1)/M

2 cos 27r/M 2 cos 2r/M

- cos 2r(k- 1)/M
cos 27r/M

The x and y coordinates of the center of gravity of the vertex points:

1 M 1 sin Oi+l

- i=l sn sin0O+

sin 02 sin OM

sin 83 sin 81

- 1 (hT . - hT

M sin 00

sin OM sin OM-2

sin 81 sin OM-1

sin(01 + 0o) - sin(01 - 00)

hT
M sin 0o

sin(OM + 0o) - sin(OM - o0)

cos 01

2 T

cos OM

2 hTn

M -

v M/~ sin 0 hi hi+ cos

i24 cosG0
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cOS 82 cos 8M

cos 83 cos 81

(_aT + h
M sino 0 +

cos OM COS OM-2

cos 1 cos 8M_ 1

cos(O1 - oo) - cos(9 + So)

hT h

M sin 80

cos(eM -
0
o) - COS(8M + 0o)

sin 81

2 hT
M

sin OM

2 hTn2
M

B. PROOF OF THEOREM 1 (cont.)

To complete the proof, we must show that (6) implies SB = S,. This is done in two stages.

First we show that SB C S,, then that Sv c SB. Since SB is a bounded (convex) polytope

(proof omitted), it may be written as

SB = hul(el, e2,..., ep) (B.1)

where ei are the extreme points of SB. Consider one particular extreme point of SB, ei; it

must satisfy with equality at least two inequalities in (5). Let one of those inequalities be

indexed by k. Then we have

eTwk = hk , (B.2)

i.e., ei lies on the line Lk. Two of the vi's also lie on Lk: vk-1 and vk. Now suppose ei

could be written as the convex combination of vk- 1 and vk. Then any extreme point of SB
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could be written as the convex combination of two points in S,. And since both SB and Sv,

are convex, then we must have that SB C SV, proving this stage of the theorem.

We now show that ej can indeed be written as the convex combination of vk-1 and vk.

Here, there are two possibilities: vk-1 = vk and vk-1 4 Vk. Each of these cases require

some development.

In the case where Vk-1 = Vk, we show that ej = Vk-1 = vk. First, since ei and vk are

on the line perpendicular to wk, we may write ek as

e, = k + 1wkl, (B.3)

where

co - -10- wWk Ik
1 0

is the perpendicular to wk. Taking inner products of both sides of (B.3) with ok-1 and

using the fact that ej is in SB we may write

kTlej = hk-l + kwT 1Wk_ < hk-1

and, similarly, for wk+l

wkT+ei k= hk+l + PwkT+lw C hk+l

Hence,

j8TlCk% < 0 and 13wk+lwl < 0

After simplifying the above expressions using the definitions of wk-1, wk+l, and wkl, we are

led to the contradictory equations

,8(- sin 80) O0 and 8j(sin o) < O ,

hence, /P must be zero, and therefore ej = 7 k = Vk-l, as required.
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In the case where Vk-1 # Vk we first need an auxiliary result relating the unit vectors

Wk-l, Wk, and wk+l. From the geometry it is easy to verify that

1
wk (wk-l + Wk+l) (B.4)

2 cos 8o

where 0o = 27r/M. Next, since ej, vk-1, and vk all lie on the same line Lk, and vk-1 and

Vk are distinct points, we may express ej as a linear combination of vk-1 and vk using the

single parameter a as

ej = cavk-1 + (1 - a)vk (B.5)

Taking the inner product of both sides of (B.5) with wk-1 we have

T T T
ewk-l = VklWk-1+ (1 - Wk-1

= ahk-1 + (1 - a)vk Sk-l

< hk-_l (B.6)

The last inequality results from the fact that ej is, by definition, in SB. Now we eliminate

Wk-1 from (B.6) using (B.4) yielding

chk-l + (1 - a)vl(2cosu 00 Wk - wk+l) < hk-l

which may be further reduced to

(1 - a)(2 cos o0 hk - hk-1 - hk+l) < 0 - (B.7)

Since from (6) the quantity 2 cos 0o hk - hk-l - hk+l must be non-positive we immediately

recognize that a < 1.

Taking the inner product of both sides of (B.5) with Wk+l and using a similar sequence

of steps leading to (B.7) one may show that

a(2 cos o0 hk - hk-l1 - hk+l) < 0 (B.8)

from which we conclude that a > 0. Hence, we have that 0 < a < 1 and, therefore, that ej

is, in fact, a convex combination of vk-1 and Vk. This completes the proof that SB C S,.

27



Now we begin the proof that S, c SB. In what follows, we show that vi E SB for each

i = 1,..., M. Since SB is convex this is sufficient to prove that Sv is contained in SB.

Accordingly, we intend to show that

ViT[W1 l 2 ... WM] < [hi h2 ... , hM] (B.9)

for all i = 1,...,M. Substituting expressions for vi and wi j = 1,..., M into (B.9) and

simplifying yields

sin [qi l qi2 ... qiM] < [hi h2 ... hM] (B.10)

where qij = hi sin(6i+l - ij) - hi+l sin(Oi - 8j). Our task is to show that (B.10) is true given

hTC < 0.

Equation (B.10) is true if each term is separately true. Hence, we must show that

sin (hi sin(8i+l - ij) - hi+l sin(6i - ij)) < hj (B.11)
sin 00

for i = 1,... , M (each vi) and j = 1,... .,M (each term in (B.9)). Because of the rotational

symmetry of the problem we may, without loss of generality, choose j = 1 and prove that

(B.11) is true for i = 1,... , M. Since 0i = (i - 1)27r/M = (i - 1)8o, then for j = 1 we may

simplify (B.11) to

1
i 6 (hi sin i8o - hi+l sin(i - 1)80o) < hi (B.12)

sin 80

Denoting the left-hand side of (B.12) by Ei we have for i = 1 that

E1 = (h sin o - 0) = hi
sin 8o

which satisfies (B.12) trivially. The general expression Ei for i = 2,..., M may be related

to E 1 using the relation hTC < 0 as follows. From (B.12) we have that

Ei = i (hi sin 0 - hi+sin(i - 1)8o)
sin 80

Using the formula sin ia = 2 sin(i - 1)a cos a - sin(i - 2)a, this becomes

Ei = sin [hi (2 sin(i - 1)80 cos 8o - sin(i - 2)80o) - hi+l sin(i - 1)8o]

=- sin [(2h cos o - hi+ 1)sin(i - 1)8o - hisin(i - 2)80] (B.13)
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Now we notice that the ith constraint in hTC < 0 may be written as 2 cos Oi hi- hi+l < hi- 1.

Using this inequality in (B.13) yields

Ei n< h 1_sin(i - 1)0o - hi sin(i - 2)0o]

which may be reduced to Ei < Ei-1. This is the result that we sought. Now we may

conclude that

EM < EM-1 < ... < E2 < E1= hi

which concludes the proof of sufficiency and, hence, the theorem. o
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Footnotes (also appear in text)

1. A vector inequality such as xT < yT where x,y G IRn implies that xi < yi for

i = 1, ... , n, where xi and yi are the ith elements of the vectors x and y respectively.

2. C is a cone because it obeys the usual property of cones: if h is in C then ah (ce > 0) is

also in C. It is a polyhedron because it is the intersection of a finite number of closed

half spaces in IRM.
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Index Terms

* Set Reconstruction

* Support Lines

* Computational Geometry

* Constrained Optimization

* Computed Tomography

* Shape Estimation
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Figure Captions

Figure 1. The geometry of computed tomography.

Figure 2. A circle with (a) six true support lines, and (b) six noisy measurements.

Figure 3. The geometry of support lines.

Figure 4. For consistency, line Li must lie to the left of the dotted line.

Figure 5. (a) Inconsistent lines, the sets SB and Sv, and the vertex points vi. (b),(c)

Consistent lines, the sets SB and S,, and the vertex points vi.

Figure 6. Three support lines and a face of SB.

Figure 7. (a) The true object (circle), the measured support vector (-Y = 0.2), and the

reconstruction obtained using the intersection method. (b) Closest, (c) Mini-Max,

and (d) Close-Min estimates.

Figure 8. (a) The true object (circle), the measured support vector (fY = 0.4), and the

reconstruction obtained from the intersection method. (b) Closest, (c) Mini-Max,

and (d) Close-Min estimates.

Figure 9. (a) The true object (ellipse), the measured support vector (y = 0.2), and the

reconstruction obtained from the intersection method. (b) Closest, (c) Mini-Max, and

(d) Close-Min estimates.

Figure 10. (a) The true object (ellipse), the measured support vector (-y = 0.4), and the

reconstruction obtained from the intersection method. (b) Closest, (c) Mini-Max, and

(d) Close-Min estimates.

Figure 11. The observation bounds and the Mini-Max estimate.

Figure 12. Shift-corrected Mini-Max estimate.
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