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Recently we have derived a set of mapping relations that enables the reconstruction of the family of

Horndeski scalar-tensor theories which reproduce the background dynamics and linear perturbations of a

given set of effective field theory of dark energy coefficients. In this paper we present a number of

applications of this reconstruction. We examine the form of the underlying theories behind different

phenomenological parametrizations of modified gravity and dark energy used in the literature, as well as

examine theories that exhibit weak gravity, linear shielding, and minimal self-acceleration. Finally, we

propose a new inherently stable parametrization basis for modified gravity and dark energy models.

DOI: 10.1103/PhysRevD.98.044051

I. INTRODUCTION

The observation of the late-time accelerated expansion of

our Universe [1,2] remains one of the greatest puzzles in

physics. Owing to the large number of theories that have

been proposed as explanations for the accelerated expan-

sion [3–6], efficient methods must be devised to narrow

down the theory space. In doing so, one hopes to achieve a

deeper understanding of the physical mechanism driving

the cosmic late-time expansion. One of the simplest

approaches to tackle the accelerated expansion, beyond a

cosmological constant, is to assume that it is driven by the

dynamics of a scalar field that acts on large scales. This

scalar field could be the low-energy effective remnant from

some more fundamental theory of gravity, the fine details of

which are not relevant on the scales of interest. When one

adds a scalar field to gravity it is necessary to do so in such

a way that it evades Ostrogradski instabilities. The most

general scalar-tensor action yielding up to second-order

equations of motion was originally derived by Horndeski

and independently rediscovered much later in a different

context [7–9]. More general, higher-order actions have then

been devised that avoid Ostrogradski ghosts by the avoid-

ance of the nondegeneracy condition [10–13].

The recent LIGO/Virgo measurement of the gravitational

wave GW170817 [14] emitted by a binary neutron star

merger with the simultaneous observations of electromag-

netic counterparts [15–17] has led to a significant reduction

of the available theory space at late times, as was first

anticipated in Refs. [18,19]. The GW170817 event

occurred in the NGC 4993 galaxy of the Hydra cluster

at a distance of about 40 Mpc and enabled a constraint on

the relative deviation of the speed of gravity cT from the

speed of light (c ¼ 1) at Oð10−15Þ for z≲ 0.01 [15]. This

agrees with forecasts [18,20] inferred from the increased

likelihood with increasing volume at the largest distances

resolved by the detectors, expecting a few candidate events

per year, and emission time uncertainties. It was anticipated

that the measurement would imply that a genuine cosmic

self-acceleration from Horndeski scalar-tensor theory and

its degenerate higher-order extensions, including the

Galileon theories, can no longer arise from an evolving

speed of gravity and must instead be attributed to a running

effective Planck mass [18]. The minimal evolution of the

Planck mass required for self-acceleration with cT ¼ 1 was

derived in Ref. [19] and was shown to provide a 3σ worse

fit to cosmological data than a cosmological constant.

Strictly speaking, this only applies to Horndeski theories,

where cT ¼ 1 breaks a fundamental degeneracy in the

large-scale structure produced by the theory space [18,21].

Generalizations of the Horndeski action reintroduce this

degeneracy [21] but self-acceleration in general scalar-

tensor theories is expected to be conclusively testable at the

5σ level with standard sirens [18] (also see Refs. [22–25]),

eventually allowing an extension of this no-go result. The

minimal model serves as a null-test for self-acceleration

from modified gravity. It is therefore worth examining

whether future observational probes of the large-scale

structure are capable of tightening the constraint beyond

the 3σ-level. Finally, the measurement of cT ≃ 1 with

GW170817 in particular implies that the quintic and kineti-

cally coupled quartic Horndeski Lagrangians must be neg-

ligible at late times [26,27] (also see e.g., Refs. [18,28–37]

for more recent discussions). The measurement also led to a
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range of further astrophysical and cosmological implications

(see, e.g., Ref. [38]).

Despite giving strong restrictions on the set of scalar-

tensor theories that could explain the accelerated expan-

sion, there remains a great deal of freedom in the model

space after the GW170817 observation and the phenom-

enological study of the quintic and kinetically coupled

quartic Horndeski Lagrangians should not be dismissed so

soon. There are two important aspects to be considered in

this argument. On the one hand, the speeds of gravity and

light are only constrained to be effectively equal at the low

redshifts of z≲ 0.01. This certainly applies to the regime of

cosmic acceleration but not to the early Universe, where a

decaying deviation in cT could still lead to observable

signatures without invoking fine-tuning. Moreover, for

more general scalar-tensor theories, the linear shielding

mechanism [21] may be extended to a modified gravita-

tional wave propagation, where the Horndeski terms could

cause cosmic self-acceleration while other terms may come

to dominate for the wavelengths relevant to GW170817.

These wavelengths differ by those associated with cosmic

acceleration by Oð1019Þ [39]. Hence, in this paper we will

not exclusively restrict to the models satisfying the

GW170817 constraint, envisaging more general applica-

tions of the methods presented.

To cover the vast landscape of dark energy and modified

gravity models and compare predictions to observations, it

is desirable to develop efficient and systemic frameworks.

The effective field theory of dark energy (EFT) is such a

tool [40–47]. At the level of the background and linear

perturbations Horndeski theory can be described by five

free functions of time. Despite the utility of EFT, by its

construction it cannot give a full description of the under-

lying physical theory. Currently, one either has to start from

a given fully covariant theory and compute the EFT

coefficients in terms of the functions defined in the

covariant action or take a phenomenologically motivated

parametrization for the EFT functions. In the first instance,

one is essentially left with the original problem of having a

large range of theories to compare with observations.

Following the second approach gives a general indication

of the effects of modified gravity on different observational

probes, but it is generally unclear what physical theories are

being tested when a particular parametrization is adopted.

In a recent work [48] we have developed a mapping from

the EFT coefficients to the family of Horndeski models

which give rise to the same background evolution and

linear perturbations. This mapping provides a method to

study the form of the Horndeski functions determined from

observations on large scales. One can furthermore address

the question of what theories various phenomenological

parametrizations of the EFT functions correspond to.

This paper provides a number of applications of this

reconstruction. For example, we examine the form of the

underlying theories corresponding to two commonly used

EFT parametrizations for late-time modifications motivated

by cosmic acceleration. Reconstructed actions that exhibit

minimal self-acceleration and linear shielding are also

presented. We furthermore apply the reconstruction to

phenomenological parametrizations such as a modified

Poisson equation and gravitational slip [49–53] as well

as the growth-index parametrization [54–56]. These are the

primary parameters that the next generation of galaxy-red-

shift surveys will target [57–59].With the reconstruction it is

possible to connect these parametrizations with viable

covariant theories and explore the region of the theory space

being sampled when a particular parametrization is adopted.

The reconstruction is also applied to a phenomenological

model that exhibits a weakening of the growth of structure

relative toΛCDM today, which may be of interest to address

potential observational tensions [60,61]. Finally, in every

analysis of the EFTmodel space it is necessary to ensure that

the chosenmodel parameters do not lead to ghost or gradient

instabilities.When comparingmodels with observations this

can, for instance, lead to a highly inefficient sampling of the

model space and misleading statistical constraints due to

complicated stability priors. To avoid those issues, we

propose an alternative parametrization of the EFT function

space, which uses the stability parameters directly as the

basis set such that every sample drawn from that space is

inherently stable.

The paper is organized as follows. In Sec. II we briefly

review the EFT formalism and specify the stability criteria

imposed on the model space. We then propose our new

inherently stable EFT basis that we argue is most suitable

for statistical comparisons of the available theory space to

observations. Section III covers a number of different

reconstructions, ranging from commonly adopted para-

metrizations encountered in the literature (Sec. III A) to

models for minimal self-acceleration (Sec. III B), linear

shielding (Sec. III C), phenomenological modifications of

the Poisson equation and gravitational slip (Sec. III D), the

growth-index parametrization (Sec. III E), and weak gravity

(Sec. III F). In Sec. III G we provide an example of a

reconstruction from the inherently stable parameter space.

Finally, we discuss conclusions in Sec. IV and inspect the

impact of the choice of EFT parametrization on the

reconstructed theories in the Appendix.

II. HORNDESKI GRAVITY AND EFFECTIVE

FIELD THEORY FORMALISM

The most general local four-dimensional scalar-tensor

theory evading Ostrogradski instabilities and restricted to at

most second-order equations of motion is given by the

Horndeski action [7–9]

S ¼
X

5

i¼2

Z

d4x
ffiffiffiffiffiffi

−g
p

Li; ð1Þ
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where each Li is given by

L2 ≡G2ðϕ; XÞ; ð2Þ

L3 ≡G3ðϕ; XÞ□ϕ; ð3Þ

L4≡G4ðϕ;XÞR−2G4Xðϕ;XÞ½ð□ϕÞ2−ð∇μ∇νϕÞð∇μ∇νϕÞ�;
ð4Þ

L5 ≡ G5ðϕ; XÞGμν∇
μ∇νϕ

þ 1

3
G5Xðϕ; XÞ½ð□ϕÞ3 − 3ð□ϕÞð∇μ∇νϕÞð∇μ∇νϕÞ

þ2ð∇μ∇νϕÞð∇σ∇νϕÞð∇σ∇
μϕÞ�; ð5Þ

andX ≡ gμν∂μϕ∂νϕ. Note that the GW170817 result cT ≃ 1

implies that G4X ≃G5 ≃ 0 [26,27] at redshifts z≲ 0.01.

Throughout we adopt the flat Friedmann-Lemaître-

Robertson-Walker (FLRW) metric for the background

ds2 ¼ −dt2 þ a2ðtÞdx2; ð6Þ
which describes a statistically spatially homogeneous and

isotropic Universe. The scale factor aðtÞ is normalized such
that it equals one today.
The EFT formalism involves breaking time diffeomor-

phism invariance by adopting the unitary gauge where the
scalar field is set equal to a timelike, monotonic function
of time ϕðtÞ. Specifically we choose the value of the scalar
field to correspond to constant time hypersurfaces such that

ϕ ¼ tM2
�; ð7Þ

where M� is the bare Planck mass. The broken time diffeo-
morphism invariance implies that the only terms which are
allowed in the EFTaction are thosewhich are invariant under
spatial diffeomorphisms with free time-dependent coeffi-

cients. The allowed operators which are sufficient to describe
Horndeski theory are the time-time component of the metric

g00 as well as the extrinsic curvature of the spacelike
hypersurfaces Kμν ¼ hσμ∇σnν, where the induced metric is

hμν ¼ gμν þ nμnν and nμ is a timelike normal vector to the

hypersurface. The last allowed operator is the three-dimen-

sional Ricci tensor R
ð3Þ
μν , defined in the same way as the full

Ricci tensor Rμν but using hμν in place of gμν.

At second order, Horndeski gravity corresponds to the

EFT action [42–44,48,62]

S ¼ Sð0;1Þ þ Sð2Þ þ SM½gμν;Ψm�; ð8Þ

Sð0;1Þ ¼ M2
�

2

Z

d4x
ffiffiffiffiffiffi

−g
p ½ΩðtÞR − 2ΛðtÞ − ΓðtÞδg00�; ð9Þ

Sð2Þ ¼
Z

d4x
ffiffiffiffiffiffi

−g
p �

1

2
M4

2
ðtÞðδg00Þ2 − 1

2
M̄3

1
ðtÞδKδg00

−M̄2

2
ðtÞ

�

δK2 − δKμνδKμν −
1

2
δRð3Þδg00

��

; ð10Þ

where Sð0;1Þ describes the cosmological background evo-

lution and Sð2Þ in addition to Sð0;1Þ describe the linear

perturbations around it. In general, various subsets of

Horndeski theory lead to separate contributions from the

EFT coefficients. In particular, theories compatible with

the GW1710817 observation must satisfy M̄2

2
ðtÞ ≃ 0 at

z≲ 0.01. Taking into account the Hubble expansion

HðtÞ≡ _a=a and the two constraints from the Friedmann

equations, Eqs. (8)–(10) contain five independent functions

capable of describing the background and linear perturba-

tions of Horndeski theory.

One can also define an alternative basis for the EFT

functions with a more direct physical interpretation [46].

See Table I of Ref. [63] and Table II of Ref. [48] for the

connection between the two descriptions, although bear in

mind the different conventions. This basis is defined via

αM ≡
M2

�Ω
0 þ 2ðM̄2

2
Þ0

M2
�Ωþ 2M̄2

2

; ð11Þ

αB ≡
M2

�HΩ
0 þ M̄3

1

2HðM2
�Ωþ 2M̄2

2
Þ ; ð12Þ

αK ≡
M2

�Γþ 4M4

2

H2ðM2
�Ωþ 2M̄2

2
Þ ; ð13Þ

αT ≡ −
2M̄2

2

M2
�Ωþ 2M̄2

2

; ð14Þ

where throughout this section primes denote derivatives

with respect to ln a. Here αM describes the running of the

effective Planck massM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
�Ωþ 2M̄2

2

p

defined through

αM ¼ d lnM2=d lna, allowing for some variation in the

strength of the gravitational coupling over time. The function

αB describes a braiding or mixing between the kinetic

contributions of the scalar and tensor fields. The function

αK enters through the kinetic term of the scalar field and only

becomes relevant on scales comparable to the horizon.

Finally, αT describes the deviation of the speed of gravita-

tional waves from the speed of light with c2T ¼ 1þ αT .

A. Stability criteria

To ensure the absence of ghost and gradient instabilities

it is necessary to impose certain constraints on the EFT

functions. For instance, in order to avoid a kinetic term with

the wrong sign or an imaginary sound speed for the scalar

modes one must have [46]

α≡ αK þ 6α2B > 0; c2s > 0; ð15Þ

where the soundspeed cs is given by

c2s ¼ −
2

α

�

α0B þ ð1þ αTÞð1þ αBÞ2

−

�

1þ αM −
H0

H

�

ð1þ αBÞ þ
ρm

2H2M2

�

: ð16Þ
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Furthermore, the stability of the background to tensor

modes requires

c2T > 0; M2 > 0: ð17Þ

One must be careful when using parametrizations of the

EFT functions to reconstruct covariant theories that the

stability conditions are satisfied. Away to achieve this that

we adopt in Secs. III A–III E is to set the soundspeed equal

to unity and use this as a constraint on the EFT coefficients.

It then remains to check that the other conditions are also

satisfied by hand. This is somewhat restrictive as there are

many viable stable scalar-tensor theories that do not have

c2s ¼ 1. An alternative approach is to directly parametrize

the stability conditions as a new set of EFT functions

(Secs. II B and III G).

B. A new inherently stable parametrization

For generic tests of modified gravity and dark energy, a

range of different time parametrizations (see Sec. III A) are

commonly adopted for the EFT coefficients in Sð0;1Þ and
Sð2Þ or for the αi functions. These parametrizations do not

a priori satisfy the stability criteria in Eqs. (15) and (17). As

a consequence the sampling in this parametrization, for

example when conducting a Markov Chain Monte Carlo

(MCMC) analysis to constrain the EFT parameter space

with observations, can be highly inefficient. Only a small

fraction of the samples will hit a stable region of parameter

space [64]. Moreover, the stability criteria can yield

contours on the parameter space that are statistically

difficult to interpret. For instance, ΛCDM can be confined

to a narrow corner of two intersecting edges produced by

the stability requirements. This corner may only be sparsely

sampled and could lead to spurious evidence against

concordance cosmology.

To avoid those issues, we propose here a new basis for

the parametrization of modified gravity and dark energy

models in the effective field theory formalism. We will

make use of the GW170817 constraint αT ≃ 0 at z≲ 0.01

and assume that it applies throughout the entire late-time

domain of interest here. We define a function B through

1þ αB ≡
B0

B
: ð18Þ

Equation (16) can then be expressed as a linear homo-

geneous second-order differential equation for B with

B00 −

�

1þ αM −
H0

H

�

B0 þ
�

ρm

2H2M2
þ α c2s

2

�

B ¼ 0: ð19Þ

By the existence and uniqueness theorem for ordinary

differential equations a real solution exists for real boun-

dary conditions on B and B0. Alternatively, we may provide

an initial or present value αBi or αB0, respectively.

Hence an inherently stable parametrization of the EFT

function space for modified gravity and dark energy can be

defined by parametrizations of the basis

M2 > 0; c2s > 0; α > 0; αB0 ¼ const; ð20Þ

along with the Hubble parameter H. The braiding function

αB can be determined from the integration of Eq. (19) and

αK from αB and α.

We advocate that this basis should be used for obser-

vational constraints on the EFT function space to avoid the

problems described earlier. It also provides a direct physical

interpretation of the observational constraints. While para-

metrizations inH classify quintessence dark energy models

where α > 0, c2s describes more exotic dark energy models

with αB0 ≠ 0 adding an imperfection to the fluid and

M ≠ M� modifying gravity. In ΛCDM M ¼ M� with α

and αB0 vanishing. Note that c2s is undefined in the strict

ΛCDM limit, but a particular choice of c2s has no impact on

the perturbations and can be marginalized over. This para-

metrization furthermore addresses the measure problem on

the parameter space. While it is difficult to know a priori

what is a reasonable prior range to place on theαi parameters,

it is much clearer in this physical parametrization. In

addition, if measurements of these physical parameters seem

to approach a fixed value it becomes easier to place bounds

on the desired accuracy. We shall apply the reconstruction to

a model defined in this basis in Sec. III G. Finally, note that

one can easily add the beyond-Horndeski parameter αH to

this basis with the according adaption in Eq. (19).

III. RECONSTRUCTING COVARIANT THEORIES

We now present a series of applications of the mapping

relations derived inRef. [48].We beginwith a reconstruction

of common parametrizations of the EFT functions used in

the literature (Sec. III A) and then examine the form of the

underlying theory of the minimal self-acceleration model

(Sec. III B) and theories that exhibit linear shielding

(Sec. III C). Following this, we discuss reconstructions from

more phenomenological modifications of gravity with a

modified Poisson equation and a gravitational slip

(Sec. III D) as well as the growth-index parametrization

(Sec. III E). We then present a reconstruction of a model

which has a weakened growth of structure relative toΛCDM

(Sec. III F) before concluding with an example of a

reconstruction from the inherently stable parametrization

introduced in Sec. II B (Sec. III G).

The reconstructed Horndeski action is defined such that

when expanded up to second order in unitary gauge one

recovers Eq. (8) with the Horndeski functions given by [48]

G2ðϕ; XÞ ¼ −M2
�UðϕÞ − 1

2
M2

�ZðϕÞX þ a2ðϕÞX2 þ ΔG2;

ð21Þ
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G3ðϕ; XÞ ¼ b0ðϕÞ þ b1ðϕÞX þ ΔG3; ð22Þ

G4ðϕ; XÞ ¼
1

2
M2

�FðϕÞ þ c1ðϕÞX þ ΔG4; ð23Þ

G5ðϕ; XÞ ¼ ΔG5: ð24Þ

Each term UðϕÞ, ZðϕÞ, a2ðϕÞ, b1ðϕÞ, FðϕÞ, and c1ðϕÞ is
expressed in terms of the EFT functions. See Table I in the

Appendix for the full set of relations. Note that any

contribution from b0ðϕÞ can be absorbed into ZðϕÞ after

an integration by parts. The ΔGi terms are corrections one

can add on to the action in Eqs. (21)–(24) to move between

Horndeski theories which are degenerate at the background

and linear level [48]. This reflects the nonlinear freedom in

the family of reconstructed Horndeski models from linear

theory. It is worth noting that taking cT ≃ 1 as a linear

constraint sets c1 ¼ 0 in Eq. (23) but does not directly make

a statement about ΔG4X=5. However, excluding the highly

unlikely cancellation of c1 and ΔG4X=5, and assuming

approximately linear theory from the outskirts of the

Milky Way with c1 ¼ 0, the nonlinear contributions

ΔG4=5 are still constrained by jcT − 1j≲ 10−13. We refer

the reader to Ref. [48] for a more detailed discussion of the

ΔGi terms.

In illustrations of the reconstructed Horndeski functions

Gi, each contributing term is divided by the powers of H it

receives multiplying the EFT functions in the reconstruction

(see Table I in the Appendix). This ensures a meaningful

comparison of the effective modifications from ΛCDM

rather than providing illustrations for deviations that are

suppressed and do not propagate to the cosmological back-

ground evolution and linear perturbations. For instance, we

have UðϕÞ=H2 ∼ b1ðϕÞ=H ∼ M̄2

2
. As a reference, we show

in Fig. 1 the Horndeski functions Gi that correspond to

ΛCDM, where G4 ¼ 1, G2 ¼ −2Λ and G3 ¼ G5 ¼ 0, i.e.,

in particular the term Λ=H2. The Planck 2015 value Ωm ¼
0.308 [65] for the matter density parameter is adopted

throughout the paper. We also work in units where the bare

Planck massM� ¼ 1, such that the vertical axis on each plot

indicates the deviation from this value. Because the choice of

how the scalar field is defined is arbitrary, we present the

reconstructed terms as functions of lna rather than ϕ, except
for the examples given in Secs. III A and III B. The color

scheme is set such that the terms in blue correspond to terms

that can be identified as some exotic dark energy component,

whereas the terms in red can be considered genuine mod-

ifications of gravity (Sec. III B) that change, for instance, the

propagation of gravitational waves. These modified gravity

terms are FðϕÞ and c1ðϕÞ, the latter being nonzero when the
αT ¼ 0 constraint is dropped.

It is worth noting that one always has the freedom to

redefine the scalar field ϕ in the action. We shall briefly

discuss how one can recast the reconstructed coefficients

of the covariant theory from functions of ln a to a more

standard description. For this purpose, we choose the

Brans-Dicke representation, where FðϕÞ≡ ψ , and then

reexpress all of the terms in the reconstructed action as a

function of the new scalar field ψ . This choice implies ϕ ¼
F−1ðψÞ and

∂μϕ ¼ fðψÞ∂μψ ; ð25Þ

where for simplicity we have defined the function

fðψÞ≡ dðF−1Þ=dψ . After this field redefinition the recon-

structed action written in terms of ϕ is transformed into a

scalar-tensor action for ψ with ð∂ϕÞ2 ¼ f2ðψÞð∂ψÞ2 and

□ϕ ¼ fðψÞ□ψ þ df=dψð∂ψÞ2. The new representation of

the theory then involves the terms

ŨðψÞ ¼ UðψÞ; ð26Þ

Z̃ðψÞ ¼ f2ðψÞZðψÞ; ð27Þ

b̃1ðψÞ ¼ f3ðψÞb1ðψÞ; ð28Þ

ã2ðψÞ ¼ a2ðψÞf4ðψÞ þ b1ðψÞf2ðψÞ
df

dψ
: ð29Þ

Depending on the functional form of fðψÞ higher-deriva-
tive terms may be enhanced or suppressed in this descrip-

tion. For consistency, in this representation we also

transform the Hubble parameter to be a function of ψ

such that H → H̃. We will show examples of this trans-

formation in Secs. III A and III B.

A. Reconstruction of common EFT parametrizations

A common choice of phenomenologically motivated

functional forms of the EFT modifications is to parametrize

them in such a way that they only become relevant at late

FIG. 1. Reconstructed contributions to the Horndeski action for

ΛCDM, normalized with powers of H received in the

reconstruction (Table I in the Appendix). The curves serve as

reference for the comparison of the reconstructed modifications

in Secs. III A–III G. Due to the normalization with H2, the

cosmological constant appears to decay at high redshift.
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times. Typically their evolution is tied to the scale factor

aðtÞ or to the dark energy density ΩΛðaÞ≡H2

0
ΩΛ=H

2

raised to some power q. Note that now, with the GW170817

constraint, self-acceleration from modified gravity is

strongly challenged as a direct explanation for the late-

time accelerated expansion [19] and it can be questioned

whether the functional form of such parametrizations

continues to be well motivated. On the other hand, a dark

energy model may still introduce a related modification of

gravity, for instance, as a means to remedy the old

cosmological constant problem of a nongravitating vac-

uum. We set this issue aside for now and adopt the two

parametrizations

A∶ αi ¼ αi0aðtÞqi ; ð30Þ

B∶ αi ¼ αi0

�

ΩΛðaÞ
ΩΛ;0

�

qi
; ð31Þ

where the background expansion HðtÞ is set to match

ΛCDM and the standard Planck mass is recovered at early

times. Here the label i runs over the set of functions

fi ∈ M;T;K; Bg in Eqs. (11)–(14). The two parametriza-

tions can be used to study the effect of small deviations

from ΛCDM in the linear late-time fluctuations resulting

from a set of nonvanishing αi.

In principle, there are many alternative parametrizations

that could be used beyond these simple ones. For the

purposes of this paper we shall however restrict ourselves

to these two examples which have been frequently used in

the literature (see e.g., Ref. [66]). It was recently suggested

that those are sufficiently general to encompass the linear

effects of the different time dependencies in a variety of

modified gravity theories [67] (however, also see Ref. [68]).

The reconstruction from EFT back to manifestly covariant

theories provides a method to examine how the underlying

covariant theory changes with a different choice of para-

metrization. One can thus begin to address the question of

what scalar-tensor theory is actually being constrained when

a particular parametrization is adopted.
To provide concrete examples for the models that are

reconstructed from Eqs. (30) and (31), we parametrize αM,

αB and αT withA or B and then set αK such that c2s ¼ 1 (see

discussion in Sec. II A). Note that strictly speaking this

deviates from adopting Eqs. (30) and (31) for all αi but it

simplifies the stability treatment of the model. Furthermore,

the deviation is only relevant on near-horizon scales.

Numerical values for αi0 are then chosen to ensure that

the stability condition α > 0 in Eq. (15) is satisfied. For

illustration, we set αM0 ¼ 1, αB0 ¼ −0.3 and αT0 ¼ 0 with

qi ¼ q ¼ 1. This yields a stable scalar-tensor theory for

both parametrizationsA and B. The corresponding terms of

the Horndeski functions are shown in Fig. 2. The behavior

of the reconstructed theories is tied to the functional form of

the parametrization used, with the Horndeski modifications

becoming more relevant at later times. We note that the

general form of these modifications is independent of the

particular parametrization adopted between A and B.

However, one can identify minor differences. For instance,

the magnitude of the reconstructed modifications for A are

larger. This is due to saturation of the modifications in B at

late times. This particular choice for each αi0 leads to a

model with an enhanced potential relative to ΛCDM and

the standard kinetic term ZðϕÞ dominating the action at late

times. There is a small contribution from the cubic term

b1ðϕÞ but the k-essence term a2ðϕÞ is negligible. In the

Appendix we present a number of examples which examine

the sensitivity of the reconstruction to changes in αi0 and qi.
For instance, by increasing the powers qi in each of the

parametrizations, the effects of modified gravity and dark

energy are delayed to later times. Changing the amplitude

of each αi0 on the contrary has a larger effect on the

underlying theory. For example, when αB dominates over

FIG. 2. Examples of reconstructed actions arising from two different parametrizations of the EFT functions A and B specified in

Eqs. (30) and (31). We chose equal amplitudes for the comparison. The general evolution of the modifications is unaffected by the

particular choice of time parametrization, although the magnitude of the various terms is enhanced when using parametrization A. This

can be attributed to the convergence to constant αi at late times in B. The reconstructed terms of the scalar-tensor action can be converted

into functions of a scalar field ψ , for instance, by adopting a Brans-Dicke representation and casting the functions in terms of F → ψ (see

Fig. 3). However, as the choice of scalar field is arbitrary, the reconstructions shall generally be illustrated as functions of ln a.
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αM the cubic Galileon term b1ðϕÞ dominates over the
potential UðϕÞ at late times, whereas when αM dominates
over αB the potential and kinetic term ZðϕÞ are enhanced
with smaller contributions from the k-essence and cubic
Galileon terms. However, we find that the mapping is
relatively robust, with small deviations in the αi parameters
around some fixed values not significantly altering the
underlying theory. While we have checked this for a
number of examples, further work is necessary to inves-
tigate this aspect more thoroughly. More details can be
found in the Appendix.

Finally, in Fig. 3 we illustrate the corresponding Brans-

Dicke representations of the reconstructed theories for A

and B that are presented in Fig. 2. In this description the

behavior of each term in the reconstruction is now

dependent on the evolution of FðϕÞ. It is clear that the

functional form of each term in the theory remains broadly

similar whether parametrization A or B is chosen.

B. Minimal self-acceleration

TheLIGO/Virgo constraint of jcT − 1j≲Oð10−15Þ and its
implication that a genuinely self-accelerated Universe in

scalar-tensor gravity must be attributed to a significant

evolution in M2 was first anticipated in Ref. [18]. This

trivially excludes acceleration arising froman evolving speed

of gravity cT and the according class of gravitational models

such as genuinely self-accelerated quartic and quintic

Galileons and their Horndeski and higher-order generaliza-

tions with αT ≠ 0, i.e., G4X, G5 ≠ 0 for Horndeski gravity

(see e.g., Refs. [26,27]). With this expectation, Ref. [19]

devised the minimal surviving modification of gravity that

can yield cosmic self-acceleration consistent with an event

like GW170817. We briefly review this model, before

presenting a corresponding reconstructed covariant scalar-

tensor theory.
While self-acceleration may generally be defined as

cosmic acceleration without a cosmological constant or a
scalar field potential, this definition includes exotic dark
energy models like k-essence [69] or cubic Galileon and

kinetic gravity braiding (KGB) [70] models. Hence, a more

precise definition is required if cosmic acceleration is

genuinely to be attributed to an intrinsic modification of

gravity. This definition also needs to distinguish between

models where dark energy or a cosmological constant drives

cosmic acceleration but where a modification of gravity may

still be present.As a definition of a genuinely self-accelerated

modification of gravity in chameleon gravity models,

Ref. [71] argued that while cosmic acceleration in the scale

factora should be present in the Jordan framewithmetric gμν,

it should not occur in the scale factor ã of the conformally

transformed Einstein frame g̃μν ¼ Ωgμν with the conformal

factor Ω. Otherwise, the acceleration should be attributed to

an exotic matter contribution rather than a genuine modifi-

cation of gravity. This can also be understood as assigning the

effect of late-time acceleration to the magnitude at which the

strong equivalence is broken, which defines the gravitational

modification [5]. In Ref. [18] this argument was generalized

to include an evolving speed of gravity cT in addition to

an evolving strength of gravity M−2 as the cause of self-

acceleration. This encompasses the quartic and quintic

Galileon models as well as their generalizations in the full

Horndeski action and beyond. These effects can be described

by an effective conformal factor in the cosmological back-

ground that absorbs the contributions from conformal and

disformal couplings in the Einstein frame. An Einstein-

Friedmann frame can then be defined from the effective

conformal (or pseudoconformal) transformation of the cos-

mological background. Note that similarly to assigning

cosmic self-acceleration from a genuine modification of

gravity to the magnitude of the breaking of the strong

equivalence principle, self-acceleration arising from a dark

sector interaction would correspondingly be attributed to the

breaking of the weak equivalence principle.

With this definition, genuine self-acceleration implies

that in the Einstein-Friedmann frame

d2ã

dt̃2
≤ 0; ð32Þ

FIG. 3. Brans-Dicke representation, with FðϕÞ≡ ψ , of the reconstructed scalar-tensor theories illustrated in Fig. 2. We have

transformed the Hubble rate H → H̃ such that it is also a function of ψ and divided each term in the action by appropriate powers of H̃
(see Sec. III).
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with the minimal modification obtained at equality. From

inspection of the transformed Friedmann equations, it

follows that this condition can hold only if the EFT

function Ω satisfies [18]

−
d lnΩ

d ln a
≳Oð1Þ: ð33Þ

Note that

Ω ¼ M2

M2
�
c2T ; ð34Þ

implying that self-acceleration requires a significant

deviation in the speed of gravitational waves or an evolving

Planck mass. Since GW170817 strongly constrains the

deviations of cT at low redshifts, i.e., in the same regime

of cosmic acceleration, one can set cT ¼ 1 (αT ¼ 0) in

Eq. (34), so that self-acceleration must solely arise from the

effect of M2 (or αM) [18]. The minimal modification of

gravity for genuine cosmic self-acceleration can then be

derived by minimizing the impact of a running M2 on the

large-scale structure. For Horndeski gravity, this implies

αB ¼ αM with c2s ¼ 1 setting αK [19]. The EFT functions of

the model are then fully specified by a given expansion

history HðzÞ, which for a minimal departure from standard

cosmology can be set to match ΛCDM. We present the

reconstructed scalar-tensor action for minimal genuine self-

acceleration in Fig. 4.

Note that for a ΛCDM expansion history, cosmic

acceleration in Jordan frame occurs when H2 < Λ.

Hence, a minimal self-acceleration must recover U=H2 ¼
1 at the transition from a decelerating to an accelerating

cosmos. There is therefore still a scalar field potential or

cosmological constant that contributes to reproduce the

ΛCDM expansion history in the decelerating phase where

there are no modifications of gravity but then it decays at a

rate so as not to introduce any positive acceleration in

the Einstein-Friedmann frame, keeping the Universe at a

constant expansion velocity. The cosmic acceleration in

Jordan frame is then solely driven by the decaying Planck

mass, commencing at the threshold H2 < Λ. It is in this

sense a model with the minimal gravitational modification

required for positive acceleration. Alternatively, the scalar

field potential could be removed by hand, but this would

lead to a loss of generality and the conservative character of

the inferred conclusions.

The reconstructed scalar-tensor terms FðϕÞ and UðϕÞ for
minimal self-acceleration in Fig. 4 are decaying functions as

expected, with the behavior of the other terms acting to

minimize the impact on scalar perturbations and the large-

scale structure. At redshift z ¼ 0, we find comparable

contributions from the quintessence ZðϕÞ, k-essence
a2ðϕÞ and cubic Galileon b1ðϕÞ terms indicating that they

are all required to ensure a minimal self-acceleration.

Reference [19] performed a MCMC analysis of the model

with recent cosmological data, finding a 3σ worse fit than

ΛCDM and hence strong evidence for a cosmological

constant over the minimal modification of gravity required

in Horndeski scalar-tensor theories for self-acceleration

and consistent with the expectation of the GW170817 result.

The constraints are driven by the cross-correlation of the

integrated Sachs-Wolfe effect with foreground galaxies. It is

worth noting that the minimal self-acceleration derived for

M2 also applies to beyond-Horndeski [10,12] theories or

degenerate higher-order scalar-tensor (DHOST) theories

[13]. Due to the additional free EFT functions introduced

in those models, however, the measurement of αT ≃ 0 is not

sufficient to break the dark degeneracy and linear shielding is

still feasible [21]. However, it was pointed out in Ref. [18]

that standard sirens tests of the evolution of M2 are not

affected by this degeneracy and may provide a 5σ result on

minimal self-acceleration for Horndeksi gravity and its

generalizations over the next decade. Independently of future

FIG. 4. Left: The scalar-tensor theory yielding the minimal modification of gravity required for self-acceleration with cT ¼ 1. Note

that the scalar field potential at early times ensures a recovery of the decelerating phase of ΛCDM and decays in the accelerating phase

H2 < Λ to barely prevent positive acceleration in Einstein frame. Right: The minimal self-acceleration model expressed using the Brans-

Dicke representation in terms of ψ . We have divided each term by the corresponding factors of fðψÞ for a clearer comparison to the left-

hand panel. Note that as FðϕÞ is decreasing, the forward direction in time corresponds to decreasing values of ψ .
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gravitational wave measurements, minimal self-acceleration

provides a benchmark model which can quantify to what

extent galaxy-redshift surveys like Euclid [57,58] or LSST

[59] can exclude cosmic self-acceleration from modified

gravity, precluding dark degeneracies (or linear shielding) in

higher-order gravity.

C. Covariant model with linear shielding

A number of classes of scalar-tensor theories that cannot

be distinguished from concordance cosmology via obser-

vations of the large-scale structure and background evolu-

tion alone were presented in Ref. [21]. This phenomena

arises through a linear shielding mechanism. Hereby, the

effective modifications in Eqs. (38) and (39) take on the

ΛCDM value μða; kÞ ¼ ηða; kÞ ¼ 1 for large wave num-

bers k, whereas they may have different values for small k,
generating a linear shielding effect [21]. But the effective

modifications can also remain indistinguishable from

ΛCDM at all k despite αi ≠ 0 [18]. It was then shown

in Ref. [18] that for Horndeski theories the measurement of

αT ¼ 0 breaks this degeneracy. However, linear shielding

still remains viable in more general scalar-tensor theories,

and its extension to the modified gravitational wave propa-

gation may even provide a means to evade the GW1701817

constraint for self-acceleration from cT [39]. It is furthermore

worth considering that the αT ≃ 0 constraint only applies at

late times and itmay remain of interest to examineHorndeski

models with nonvanishing αT at higher redshifts that may

also undergo linear shielding. It is therefore worthwhile to

examine some basic forms of the scalar-tensor theories that

give rise to linear shielding.

In order to recover ΛCDM in the linear cosmological

small-scale limit, for models belonging to the MII class

of linear shielding, the EFT functions must satisfy the

conditions [18,21]

αMM
2 ¼ αBκ

2M4 −
1 − κ2M2

αB

×

�

ρm

2H2
þ
�

α0B þ αB þ ð1þ αBÞ
H0

H

�

M2

�

; ð35Þ

αT ¼ κ2M2 − 1

ð1þ αBÞκ2M2 − 1
αM: ð36Þ

Applying these constraints, setting the background expan-

sion to match ΛCDM and fixing c2s ¼ 1 leaves one free

EFT function. With a parametrization of this function and

applying our reconstruction, one can then find a scalar-

tensor theory that exhibits linear shielding.

Here we adopt the same parametrization as Ref. [21] and

choose

ΩðaÞ ¼ 1þΩþa
n; ð37Þ

with Ωþ ¼ −0.1 and n ¼ 4. The general behavior of all the

terms in the reconstruction of this linear shielding model is

fairly insensitive to changing the magnitude of Ωþ, the one
free parameter in the model. The action does differ under a

change in the sign of Ωþ, but this acts to decelerate the

expansion.

We illustrate the reconstructed scalar-tensor action for

our choice of parameters in Fig. 5. UðϕÞ is dominated by

the EFT function ΛðtÞ which behaves in a similar way to

the minimal self-acceleration model, acting as a cosmo-

logical constant at early times before decaying away at late

times. The late-time decay of ΛðtÞ is compensated by the

other terms in the reconstruction to ensure that the linear

perturbations are not affected in their ΛCDM behavior.

FðϕÞ also decays which is a consequence of our choice of a
negative Ωþ, required for self-acceleration. The linearly

shielded Horndeski model requires a decrease in the speed

of gravitational waves over time which leads to c1ðϕÞ
growing in time. The kinetic terms become more dominant

at late times, predominantly being driven by Γ and M4

2

with the form of a2ðϕÞ essentially mimicking that of M4

2
.

In b1ðϕÞ the contributions M̄3

1
and M̄2

2
compete and

suppress it relative to the other terms in the action.

Although the conditions for linear shielding may seem

contrived when expressed in terms of the EFT parameters,

we find that it is nevertheless the case that there is a generic

scalar-tensor theory which gives rise to this mechanism for

the particular parametrization we adopt. It is also worth

bearing in mind that observational large-scale structure

constraints allow for a broad variation around the strict

conditions in Eqs. (35) and (36) in which the model space

remains observationally degenerate with ΛCDM.

D. μ and η reconstruction

The effects of modified gravity and dark energy on the

large-scale structure can be described phenomenologically

by the behavior of two functions of time and scale that

parametrize a deviation in the Poisson equation μða; kÞ and
introduce a gravitational slip ηða; kÞ [49–53]. We shall

work with a perturbed FLRW metric in the Newtonian

FIG. 5. The scalar-tensor theory that exhibits linear shielding

for the parametrization in Eq. (37).
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gauge with Ψ≡ δg00=2g00 and Φ≡ δgii=2gii and matter

density perturbations Δm in the comoving gauge. The

effects of modified gravity and dark energy on the

perturbations can be described via the relations

k2HΨ ¼ −
κ2ρm

2H2
μða; kÞΔm; ð38Þ

Φ ¼ −ηða; kÞΨ; ð39Þ

where kH ≡ k=ðaHÞ. Energy and momentum conservation

then closes the system of differential equations, and one can

solve for the evolution of the linear perturbations.

The modifications μða; kÞ and ηða; kÞ are more general

than the EFT formalism but the two can be linked in the

domain covered by the EFT functions. Specifically, in the

formal linear theory limit of k→ ∞ the functions μ and η

can be treated as only functions of time. In this limit, they

can be related to the EFT functions via

μ∞ ¼ 2½αBð1þ αTÞ − αM þ αT �2 þ αð1þ αTÞc2s
αc2sκ

2M2
; ð40Þ

η∞ ¼ 2αB½αBð1þ αTÞ − αM þ αT � þ αc2s

2½αBð1þ αTÞ − αM þ αT �2 þ αð1þ αTÞc2s
: ð41Þ

For the purposes of this paper we shall remain in this

small-scale regime and parametrize the time-dependent

modifications as

μðaÞ ¼ 1þ ðμ0 − 1Þan; ð42Þ

ηðaÞ ¼ 1þ ðη0 − 1Þan; ð43Þ

with n ¼ 2. For simplicity, we furthermore consider a

background evolution HðtÞ that matches that of ΛCDM,

and we adopt αT ¼ 0 at all times to break the degeneracy in

parameter space. The kineticity function αK is set by the

choice c2s ¼ 1. The set of EFT functions is then closed by

Eqs. (40) and (41), determining the evolution of αB and αM.

Given a choice of parameters μ0, η0 we can now reconstruct

a corresponding Horndeski scalar-tensor theory. For this

example we choose a model that exhibits both a nonzero

gravitational slip and an enhanced growth of structure

today by setting μ0 ¼ η0 ¼ 3=2.
The reconstructed scalar-tensor action is illustrated in

Fig. 6. The dominant term at redshift zero is UðϕÞ. It
behaves as a cosmological constant which is enhanced

relative to its ΛCDM value. FðϕÞ is determined through the

evolution of M2. Despite the enhanced growth with this

parametrization of μ and η the Planck mass increases from

its GR value today. The enhanced growth is therefore

coming from the clustering effect of αB. This can be seen

more clearly by setting αT ¼ 0 in Eq. (40) to obtain

μ ¼ M2
�

M2

�

1þ 2ðαB − αMÞ2
αc2s

�

: ð44Þ

Although the Planck mass is increasing, αB also increases

to dominate over αM and gives rise to the predefined

evolution in μðaÞ. The domination of αB over αM also

causes b1ðϕÞ to be negative. This is because b1 ∼ M̄3

1
∼

ðαM − 2αBÞ up to numerical factors and positive back-

ground terms. In this model it turns out that αK ≈ 0. The

background terms that contribute to M4

2
compete to cancel

each other out. The dominant term in a2ðϕÞ is from −M̄3

1
or

αB, which is small and positive.

E. Ω
γ

m reconstruction

One of the most commonly used formalisms for testing

departures from GR with the large-scale structure is the

growth-index parametrization [54–56]. It involves a direct

parametrization of a modification of the growth rate

f ≡
d lnΔmða; kÞ

d ln a
¼ ΩmðaÞγ ð45Þ

with the growth-index parameter γ, which is generally

considered a trigger or consistency parameter. Any obser-

vational deviation from its GR value γ ≈ 6=11 [54] will

indicate a breakdown of GR.

FIG. 6. Left: Reconstructed action from a direct parametrization of the modified Poisson equation and the gravitational slip. Right:

Reconstructed action from the growth-index parametrization.
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On subhorizon scales (k ≫ aH) the modified growth

equation for the matter density contrast is given by

Δ
00
m þ

�

2þH0

H

�

Δ
0
m −

3

2
ΩmðaÞμ∞ðaÞΔm ¼ 0; ð46Þ

which follows from the modified Poisson equation (38) and

momentum conservation. Inserting Eq. (45) into (46), one

obtains a relation between μ∞ðaÞ and γ,

μ∞ ¼ 2

3
Ω

γ−1
m

�

Ω
γ
m þ 2þH0

H
þ γ

Ω
0
m

Ωm

þ γ0 lnðΩmÞ
�

; ð47Þ

where we allowed γ to be time dependent for generality.

Given a particular choice of γ, the functional form of μ∞
can then be obtained from Eq. (47). However, as γ can only

be used to determine μ∞, one must separately parametrize

the gravitational slip η∞ (and some additional specifica-

tions are required for a relativistic completion [72–74]).

One can then reconstruct a covariant theory that gives rise

to the particular choices of γ and η∞. This allows us to

directly examine what kind of theories can be associated

with an observational departure from GR in γ.

In our example, we set for simplicity η∞ ¼ 1 as in GR.

This implies that, with αT ¼ 0, αM ¼ 0 or αB ¼ αM.

We choose the second condition. With this choice we have

that M2 ¼ 1=μ∞, and we fix αK such that c2s ¼ 1. We shall

reconstruct a theory which gives rise to a constant deviation

in the growth index from the GR value of γ ≈ 0.55. The

value for γ needs to be chosen such that the stability

condition α > 0 is satisfied, and so we choose γ ¼ 0.4 for

this purpose. In fact, the theoretical stability of the theory

requires 0.35≲ γ ≲ 0.55, preferring enhanced growth of

structure, with any value chosen outside this range leading

to α < 0. As long as the theoretical conditions are satisfied

then it is straightforward to apply the reconstruction and

obtain a covariant theory for any numerical value for γ.

The corresponding model is illustrated in Fig. 6. As we

have chosen a rather large departure from ΛCDM the

reconstructed theory displays a somewhat unnatural behav-

ior with a potential that is negative and substantial con-

tributions from the kinetic and Galileon terms in order to

maintain the background expansion history. Therefore, even

with this seemingly simple parameter it is quite possible that

exotic regions of the space of theories are being explored

when it deviates from its concordance value.

F. Weak gravity

Typically scalar-tensor theories exhibit an enhanced

growth of the matter density fluctuations relative to

ΛCDM, with Brans-Dicke gravity being a simple example

[75]. More precisely, they lead to a modification such that

μ > 1 in Eq. (38). However, it is possible that modifications

arise such that one obtains a weaker growth of structure, or

weaker gravity, with μ < 1. This scenario has recently

received some attention [37,64,76–78], particularly in the

context of potential tensions in the cosmological

data [60,61].

In this section we demonstrate how one may use the

reconstruction to derive a stable scalar-tensor theory of

weak gravity for a particular parametrization of the EFT

functions with αT ¼ 0.

We begin by choosing the parametrization of the Planck

mass M2 as

M2 ¼ 1þ ðM2

0
− 1ÞΩΛðaÞ

ΩΛ0

; ð48Þ

where M2

0
is the value of the Planck mass today. The

particular choice of Planck mass evolution whenM2

0
> 1 is

a priori suggestive of weak gravity as M2 appears in the

denominator of Eq. (40) such that the increasing Planck

mass with time leads to a decreasing μ if fixing the other

EFT parameters. However, there is still a great deal of

freedom in choosing numerical values for M2

0
and the

evolution of the remaining αi. For instance, it may be the

case that the evolution in αB is enough to compensate for

the weakened growth effect and give rise to an enhance-

ment instead. For our example, we adopt the functional

form of B in Sec. III A with qi ¼ q ¼ 1 for the para-

metrization of the αB function, and we set αK ¼ 0 for

simplicity and to easily guarantee that the stability con-

dition α > 0 is satisfied. As previously mentioned, αK only

becomes relevant on scales comparable to the horizon and

so the requirement that μ < 1 is independent of the choice

of αK . Parameter values for M2

0
and αB0 are then chosen to

ensure that the condition c2s > 0 is satisfied.

We explore the viable regions of parameter space

producing a given μ0 ≡ μðz ¼ 0Þ in the left-hand panel

of Fig. 7. One can easily identify a large region that allows

for weak gravity with 0 < μ0 < 1 when M2

0
> 1 while

remaining stable and having the Planck mass return to its

bare value in the past by construction. All of these

requirements severely restrict the allowed model space.

In fact, we find that within the particular parametrization

adopted here, a period of enhanced growth in the past is

required in order for all of these criteria to be satisfied.

We explore this circumstance in more detail in the right-

hand panel of Fig. 7. For this purpose, we allow for a small

period of enhanced growth in the past at Oð10−4Þ, which
allows one to find an overlap of stable parameter choices

that also yield weak gravity at late times. Increasing this

value causes the viable parameter regions to overlap at an

even greater extent. Restricting parameters to an upper

bound of exactly unity instead eliminates any overlap.

A suitable parameter choice that satisfies all of the

requirements described here is M2
0
¼ 3=2 and αB0 ¼ 0.3,

and we checked that for this choice the soundspeed remains

positive at all times in the past. The left-hand panel of Fig. 8

displays the evolution of the gravitational coupling through
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time with this choice of EFT parameters. One can clearly

identify a period of enhanced growth which peaks around

ln a ≈ −0.96 with μ ≈ 1.03 before decaying and producing

weak gravity with μ ≈ 0.65 at redshift z ¼ 0.

Once given the choice of EFT parameters it is straight-

forward to implement them in the reconstruction and obtain

a stable scalar-tensor theory that exhibits a weakening of

growth of structure with αT ¼ 0. The corresponding model

is illustrated in the right-hand panel of Fig. 8. The evolution

of UðϕÞ mimics that of a cosmological constant, but as

Λ ∼M2H2 it is enhanced relative to its ΛCDM behavior

due to the increase of the Planck mass over time. This is

similar to the behavior observed in Sec. III D. The Planck

mass also determines the evolution of FðϕÞwhich increases
over time. The behavior of b1ðϕÞ is determined by the

combination αM − 2αB. The braiding term is subdominant

at early times, but becomes important at late times, where it

contributes to drive b1ðϕÞ negative. There is also a small

negative k-essence term a2ðϕÞ that is comparable in

magnitude to b1ðϕÞ.
Bear in mind that different choices of q0, a nonzero αK or

a parametrization in terms of αM rather thanM2 impacts the

form of the theory. However, it is primarily sensitive to

significant changes in the amplitudes of parameters as

discussed in the Appendix, and one does not have much

freedom in increasing the amplitude of αB while keeping

the theory stable (Fig. 7). Finally, note that our weak

gravity model differs from Ref. [37] as αM ≠ αB, thus

exhibiting a nonvanishing gravitational slip. More work is

necessary to understand what general conditions need to

hold in order to obtain a stable scalar-tensor theory the

exhibits a weakened growth of structure and αT ¼ 0.

FIG. 7. Left: Contour plot in the space of M2

0
and αB0 displaying the regions that allow for a weakened growth of structure with

0 < μ0 < 1 today. Right: The dark strip indicates the region of EFT parameter space that allows for a weakening of growth with a

positive, subluminal soundspeed at redshift zero. After imposing the past boundary conditions μ ¼ 1 and c2s > 0 at ln a ¼ −3 indicated

by the lighter yellow region it is possible to reconstruct a viable covariant model from any point in the intersecting region. We have

ensured that the chosen point used for the reconstruction in Fig. 8 satisfies c2s > 0 for all time.

FIG. 8. Left: The behavior of the deviation from the Poisson’s equation over time for the model in Sec. III F, where one may identify a

dynamical Geff ≡ μ. There is a characteristic period of enhanced growth at ln a ≈ −0.96 before entering an epoch of weakening of the

growth persisting today. Right: A reconstructed scalar-tensor theory that exhibits a weakening of the growth of structure (“weak

gravity”) with αT ¼ 0, which satisfies the stability requirements and past boundary conditions. It is essentially a Brans-Dicke type model

with a potential and standard kinetic term along with small contributions from the k-essence and cubic terms.
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G. Reconstruction from inherently stable

parametrizations

Throughout this work it has been necessary to check that

the reconstructed theories obey the stability constraints in
Eqs. (15) and (17). This is due to the function space

spanned by the basis of αi, or equivalently the coefficients

in the EFT action in Eqs (9) and (10), not being a priori

stable. As discussed in Sec. II B, rather than cumbersomely

checking that these stability criteria are satisfied for a

particular parametrization, one may instead consider dis-
carding the αi functions in favor of another parametrization

that automatically satisfies the stability requirements.

Therefore, any observational constraints will by definition
be restricted to a theory space that obeys the no-ghost and

no-gradient instability conditions. We introduced such an

inherently stable basis in Sec. II B.
We shall now briefly present a reconstruction from this

basis. For this purpose we adopt the functional forms

c2s ¼ c2i þ ðc2
0
− c2i Þan; ð49Þ

α ¼ αi þ ðα0 − αiÞan; ð50Þ
where the constants c2i and αi are initial conditions for the
soundspeed and the kinetic term respectively (defined for

the limit a → 0) whereas c2
0
and α0 set their values today.

Each value should be chosen such that α, c2s > 0 ∀ a. For
the Planck mass we adopt the parametrization in Eq. (48).
In Fig. 9we illustrate a reconstructed theorywith aΛCDM

background, an increasing soundspeed as well as decaying

kinetic term and Planck mass. More specifically, we set

c2i ¼ 0.5, c2
0
¼ 1, αi ¼ 0.5, α0 ¼ 0, M2

0
¼ 0.5, and n ¼ 1.

Although the reconstructed terms seem somewhat exotic, for
example the potential is very different to itsΛCDMbehavior

despite the concordance background evolution, by construc-

tion the model is guaranteed to be stable.

IV. CONCLUSIONS

Finding a natural explanation for the observed late-time

accelerated expansion of our Universe continues to be a

significant challenge in cosmology. It is therefore important

that efficient methods are devised with the aim of con-

necting cosmological observables with the wealth of

proposed theories to obtain a deeper understanding of

the underlying physical mechanism driving the expansion.

These efforts may furthermore give crucial insights into the

persistent issues related to the reconciliation of quantum

field theory with general relativity.
The effective field theory of dark energy provides a

useful tool for studying the dynamics of cosmological

perturbations of a large family of scalar-tensor theories in a

unified framework. Many of the upcoming surveys of the

large-scale structure plan to utilize this formalism to

constrain the freedom in modified gravity and dark energy

phenomenology [57–59]. It is therefore crucial to be able to

connect any observational constraints to the underlying

space of scalar-tensor theories, which in turn can be

connected to more fundamental theories of gravity.
Recently we have developed a reconstruction method that

maps from a set of EFT functions to the family of Horndeski

theories degenerate at the level of the background and linear

perturbations [48]. In this paper we apply this mapping to a

number of examples. These include the comparison of the

resulting action when one utilizes two frequently adopted

phenomenological parametrizations for the EFT functions to

study the effects of dark energy and modified gravity at late

times. We find that changing between the two parametriza-

tions has a small effect on the general form of the underlying

theory, although certain terms can be enhanced relative to

others. The underlying theory is insteadmore sensitive to the

amplitudes of the different EFT functions.
Of particular interest is the reconstruction of a model that

exhibits minimal self-acceleration. The reconstructed scalar-

tensor theory possesses the minimum requirements on the

evolution of the Planck mass for self-acceleration from a

modification of gravity consistent with a propagation speed

of gravitational waves equal to that of light. It is a useful

model to test for the next generation of surveys, as it acts as a

null-test for self-acceleration from modified gravity.
We also examine models that exhibit a linear shielding

mechanism to hide the gravitational modifications in the

large-scale structure. Although the simplest models require a

nonvanishingαT , it isworth bearing inmind that the stringent

constraint on the speed of gravitywith αT ¼ 0 only applies at

low redshifts andmay also involve scale dependence [39] for

more general theories. While the constraints in the space of

the EFT functions for linear shielding to operate seem rather

complicated, using the reconstruction we find there are

generic Horndeski theories that exhibit this effect.
We furthermore provide a direct connection between

various parametrizations that exist in the literature and the

corresponding underlying theories. For example, we recon-

struct theories from a phenomenological parametrization of

the modified Poisson equation and gravitational slip as well

as from the growth-index parameter. One can use these

reconstructions to connect constraints arising from such

FIG. 9. Reconstructed scalar-tensor theory from a direct para-

metrization of the stability functions c2s > 0, α > 0 and M2 > 0

with αT ¼ 0.
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parametrizations with viable Horndeski models. We also
apply the reconstruction to obtain a theory that exhibits a
weakening of the present growth of structure relative to
ΛCDM, i.e., a weak gravity model, a possibility that may
ease potential tensions in the growth rate at low redshift
[60,61].
Finally, we propose an alternative parametrization basis

for studying dark energy and modified gravity models
which is manifestly stable. These are the Planck mass, the
dark energy soundspeed, the kinetic energy of the scalar
field and a braiding amplitude as the new basis of EFT
functions. Any constraints placed on these physical param-
eters are guaranteed to correspond to healthy theories. It is
no longer necessary to perform separate and cumbersome
stability checks on sampled theories when using this basis.
Many further applications of the reconstruction remain to

be addressed, the development of which will be the subject
of future work.
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APPENDIX: EFFECT OF VARYING THE

PARAMETRIZATION ON THE

UNDERLYING THEORY

Finally, we examine the sensitivity of the reconstructed

theories on the variation of parameter values for a given

parametrization of the EFT functions. We shall only use the

functional formA, discussed in Sec. III A, which is broadly

used in literature. Recall that we have found that the form of

the underlying theory is rather insensitive to the choice

between functions A and B (Fig. 2). In all cases we check

that the stability condition α > 0 is satisfied and with the

remaining freedom in αK we set c2s ¼ 1. We furthermore set

αT ¼ 0. As a consequence of these choices, the signs of αB
and αM are opposite.

In Fig. 10 we show the effect on the theory when the

braiding term αB dominates over the variation in the Planck

mass αM and vice versa. In the first instance, the dominant

terms are a potential behaving like a cosmological constant

and a large kinetic term for the scalar field mimicking a

Brans-Dicke theory with small k-essence and cubic

Galileon contributions. On the contrary, when αB domi-

nates over αM the cubic term b1ðϕÞ becomes the most

relevant term in the theory with the potential decaying away

rapidly towards z ¼ 0. In both scenarios the ΛCDM

expansion history is maintained by the behavior of the

complementary terms in the reconstruction that compensate

for the change in the potential.

Next, we examine the effects of varying the power in the

parametrization while retaining consistency in the stability

requirements. We fix the magnitude of αM0 and αB0 to be

equal but opposite. The effects of changing the power on

the underlying theory are illustrated in Fig. 11. When the

power of the parametrization is increased the effects of

modified gravity become more relevant at later times. The

cubic term is generally unaffected by this variation, but the

kinetic and k-essence terms are enhanced. When a large

power is chosen, the k-essence contribution comes to

dominate at late times.

Finally, in Fig. 12we illustrate the effects of changing αM0

while keeping αB0 fixed and vice versa.We find that the form

of the underlying theory is fairly insensitive to small changes

in the amplitude, although certain terms may be enhanced or

FIG. 10. The effect of varying parameter values in a parametrization of EFT functions on the reconstructed scalar-tensor theory for a

model with a dominant Planck mass evolution αM (left panel) and a model with a dominant braiding term αB (right panel). Note that αM0

and αB0 are of opposite sign to satisfy the stability requirements. In the right-hand panel where αB dominates, the cubic Galileon term b1
is the most prevalent modification as the potential and quintessence terms decay to zero. There is also a non-negligible contribution from

the k-essence term. On the contrary, a dominating αM leads to a large potential and quintessence kinetic term, with smaller contributions

from the cubic and k-essence terms.
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FIG. 11. The effect of varying the powers q in the parametrization on the underlying theory. It is apparent that with this choice of αi
functions every term in the reconstruction becomes relevant. Modifications are suppressed at high redshift with increasing power, with a

steepening at low redshifts. For this choice of amplitudes, the k-essence term is particularly sensitive, increasing from zero to dominate

over the potential for large q. The standard kinetic term and potential become more negative at z ¼ 0 for larger powers. This is in

contrast to the cubic term b1ðϕÞ, which remains relatively unaffected by this alteration in the parametrization.

FIG. 12. Effects on the reconstructed scalar-tensor theory from incremental changes in the amplitude of αM for a fixed αB and vice

versa. The general form of the underlying theory is rather insensitive to these changes. Enhancing αB suppresses the potential and

enhances all the other terms whereas enhancing αM increases every term in the reconstruction other than the k-essence term a2ðϕÞ. Note
that the color scheme here bears no distinction between dark energy and modified gravity in contrast to all other figures.
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suppressed relative to others with different choices. For

example, increasing αM has the effect of enhancing the

potential relative to that of ΛCDM. This is again due to the

dependence of Λ ∼M2. The kinetic term ZðϕÞ is also

enhanced although to a lesser degree than the potential

whereas the k-essence and cubic Galileon terms a2ðϕÞ and
b1ðϕÞ are rather insensitive to theseOð10−1Þ changes in αM.

The terma2ðϕÞ remains least affectedwith smaller variations

restricted to the past. Thus, in general we find that by

enhancing αM0 for a fixed, small αB0, one is enhancing the

potential and the standard kinetic term of the scalar-tensor

model. In contrast, for a fixed small value of αM0, enhancing

the effects ofαB0 leads to a suppression of thepotential andan

enhancement of the cubic Galileon term.
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