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Reconstructing Pathways in Large Genetic
Networks from Genetic Perturbations

ANDREAS WAGNER

ABSTRACT

I present an algorithm that determines the longest path between every gene pair in an
arbitrarily large genetic network from large scale gene perturbation data. The algorithm’s
computational complexity is O.nk2/, where n is the number of genes in the network and k

is the average number of genes affected by a genetic perturbation. The algorithm is able to
distinguish a large fraction of direct regulatory interactions from indirect interactions, even
if the accuracy of its input data is substantially compromised.
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INTRODUCTION

Perhaps the most fundamental questions about the structure of a large genetic networks are these:
what are the pathways connecting genes in the network? And which genes in a network in� uence the

activity of which other genes directly? I here present an algorithm that can answer these question for gene
networks containing an arbitrary number of genes. The algorithm requires perturbation of many genes in a
network and subsequent gene activity measurements. Such perturbations are beginning to become available
for a variety of model organisms (Fraser et al., 2000; Hughes et al., 2000; Pennisi, 1998; Somerville and
Somerville, 1999; Spradling et al., 1999).

For the purpose of this paper, I de� ne a genetic network as a group of genes whose members can change
each other’s activity. Although the algorithm applies in principle to any notion of gene activity, the most
mature technology for large-scale gene activity measurements, which are necessary for this algorithm, is
microarray technology that measures changes in mRNA gene expression (Lockhart and Winzeler, 2000).
The relevant kinds of gene perturbations are experimental manipulations of gene activity through either
the gene itself or its product. They include point mutations, gene deletions, overexpression, inhibition of
translation, for example by using antisense RNA, and changes in posttranslational modi� cations.

The algorithm represents genetic networks as directed graphs whose nodes are genes and whose edges
correspond to direct regulatory interactions between genes. This restriction to such a qualitative repre-
sentation of gene interactions is motivated by the large amounts of noise associated with genome-scale
gene activity measurements. In this graph-theoretical framework, all direct interactions among network
genes can be represented in an adjacency matrix or adjacency list Adj of the graph (Harary, 1969), which
completely characterizes the graph.
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Genetic perturbations do not identify direct interactions between genes. They identify only genes whose
activity changes as a result of a perturbation. This change can be caused by a direct in� uence of the
perturbed gene (e.g., if it is a transcriptional regulator of a gene whose activity changes) or indirectly
via one or more intermediate steps. In a graph representation of a genetic network, the list of all genes
in� uenced—directly or indirectly—by a genetic perturbation corresponds to the graph’s accessibility list
Acc. In this context, to reconstruct a genetic network from the effects of genetic perturbations is to infer
its adjacency list from its accessibility list. This problem is known as the transitive reduction of a graph
and was � rst solved by Aho and collaborators (Aho et al., 1972; van Leeuwen, 1990). In a previous report
(Wagner, 2001)—which explains the relevant concepts in much greater detail—I have presented a related,
recursive algorithm to reconstruct direct interactions in a genetic network. From such a reconstruction,
standard algorithms such as breadth-� rst search (Mehlhorn and Naher, 1999) can infer all shortest paths
between networks genes. The subject of this paper is a complementary “Aho-like” algorithm (Aho et al.,
1972) that reconstructs all longest paths between network genes directly from the accessibility list and an
analysis of how measurement errors of gene activity in� uence this algorithm’s performance.

An acyclic directed graph uniquely de� nes its accessibility list, but the converse is not true. Among all
acyclic graphs with the same accessibility list, however, there is exactly one with the fewest edges, the
minimum equivalent graph or most parsimonious graph (Aho et al., 1972; van Leeuwen, 1990; Wagner,
2001) consistent with Acc. This graph also has the property that it is shortcut-free, where a shortcut is
de� ned as follows (Wagner, 2001). Consider two nodes i and j of a digraph that are connected by an edge
e. The range r of the edge e is the length of the shortest path between i and j in the absence of e. If
there is no other path connecting i and j , then r :D 1. An edge e with range r ¸ 2 but r 6D 1 is called
a shortcut.

Aho’s work (Aho et al., 1972) � rst showed that in contrast to acyclic graphs, cyclic graphs have no
unique parsimonious graph whose adjacency list is a smallest subset of the accessibility list. How does
one treat cycles in network reconstruction? The idea is to � rst identify the condensation of the network,
i.e., the graph whose nodes consist of the strong components of the network. This is easily done from
the accessibility list (Harary, 1969; Wagner, 2001). The condensation is acyclic and it is the condensation
that one reconstructs from a graph’s accessibility list. This points to a principal limitation of single gene
perturbations in resolving genetic networks that contain cycles: They can not resolve the order of genes in
the cycle and will collapse any cycle into a single node.

RESULTS

Mathematical foundation

The algorithm I discuss below rests on the following two propositions.

Proposition 1. For two nodes u and w of an acyclic, shortcut-free digraph, let p.u; w/ be the length
(number of edges) of a longest path connecting u and w.p.u; u/ D 0, p.u; w/ D 1 if w 62 Acc.u//.

8w 2 Acc.u/ : p.u; w/ D max
fvjv2Acc.u/^w2Acc.v/g

p.u; v/ C p.v; w/

That is, the longest path p.u; w/ between u and w, where w is accessible but not adjacent to u, is equivalent
to the sum over the longest paths p.u; v/ C p.v; w/, maximized over all v from which w is accessible.
The proposition is a consequence of path length additivity in a graph. If w is adjacent to u, then v D u,
and p.u; w/ D p.u; u/ C p.u; w/ D 0 C 1 D 1. No path with p.u; w/ > 1 exists in this case, because the
graph is shortcut-free.

The following could be viewed as a special case of Proposition 1.

Proposition 2. For two nodes u and w of an acyclic, shortcut-free digraph, let p.u; w/ be the length
(number of edges) of a longest path connecting u and w.p.u; u/ D 0, p.u; w/ D 1 if w 62 Acc.u//.

8w 2 Acc.u/nAdj.u/ : p.u; w/ D max
fvjv2Acc.u/^w2Acc.v/g

1 C p.v; w/
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Proof. For the purpose of this proof, consider only nodes v from the set fvjv 2 Acc.u/^w 2 Acc.v/g.
Among such nodes v, I will distinguish between those adjacent to u and those accessible but not adjacent
to u. For any v 2 Adj .u/, p.u; v/ D 1 because the graph is shortcut-free. A longest path (not necessarily
unique) from u to w must pass through one vi 2 Adj .u/. The length of this longest path is one plus the
length of the longest path from vi to w. Thus, to arrive at a longest path between u and w, one can take
the above maximum over v 2 Adj.u/. What remains to be shown is that there exists no vj accessible but
not adjacent to u.vj 2 Acc.u/nAdj.u// so that

1 C p.vj ; w/ > max
fvjv2Adj .u/^w2Acc.v/g

1 C p.v; w/:

Assume there was such a vj 2 Acc.u/nAdj.u/. Because vj is accessible from u, there exists a vh

adjacent to u, such that the longest path from u to vj is given by p.u; vj / D 1 C p.vh; vj /. Because of
Proposition 1, p.u; w/ ¸ p.u; vj / C p.vj ; w/, and in sum we have p.u; w/ ¸ p.u; vj / C p.vj ; w/ D
1 C p.vh; vj / C p.vj ; w/ > 1 C p.vj ; w/, which is in contradiction to the assumption.

Proposition 2 does not apply to nodes w 2 Adj .u/, but for those nodes p.u; w/ D 1. This does not
hold for minimum path lengths pmin.u; w/. The reason lies in the second half of the proof. For u; w such
that pmin.u; w/ > 2, there exists a vj 2 Acc.u/nAdj .u/, such that 1 C pmin.vj ; w/ < pmin.u; w/. It is a
vj adjacent to w, for which pmin.vj ; w/ D 1.

The algorithm

The algorithm is shown as pseudocode in Fig. 1. It takes advantage of Proposition 2 to build a list
of maximum path lengths p.u; v/ in a graph. The algorithm needs an accessibility list for each node u,
Acc.u/. Initially, all pathlengths p.u; v/ should be unde� ned or assigned some impossibly small value,
such as p.u; v/ D ¡1. In lines one through four (Fig. 1), a master loop cycles over all nodes u and calls
the routine MAXPATH for each node u. In the last statement of this routine (line 17), the calling node is

FIG. 1. A recursive algorithm to reconstruct the maximum path length between two genes. See text for details.
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declared as visited. Once a node u has been visited, the maximum path lengths p.u; v/ to all v 2 Acc.u/

have been calculated. The conditional statement in the master loop (line 2) skips nodes that have already
been visited.

Aside from storing Acc and path lengths, the algorithm needs to keep track of all visited nodes. In an
actual implementation, Acc, path lengths, and any data structure that keeps track of visited nodes must be
either global variables or passed into the routine MAXPATH. In contrast, the calling node u needs to be
a local variable because MAXPATH is recursive.

I will now explain the function MAXPATH itself, which is at the algorithm’s core. It consists of two
loops. The � rst loop (lines 6–12) cycles over all nodes v accessible from the calling node u. If there exists
a node accessible from v, then MAXPATH is called from v. If no node is accessible from v, that is, if
Acc.v/ D ;, then v is declared as visited. Because its accessibility list is empty in this case, there exists
no node z for which p.v; z/ has a positive integer value. Thus, p.v; z/ needs no further modi� cation. In
sum, MAXPATH calls itself recursively in the � rst loop until a node is reached whose accessibility list
is empty. There always exists such a node; otherwise, the graph would not be acyclic. This also means
that in� nite recursion is not possible for an acyclic graph. Thus, the algorithm always terminates. More
precisely, the longest possible chain of nested calls of MAXPATH is .n ¡ 1/ if G has n nodes. For any
node u calling MAXPATH, the number of nested calls is at most equal to the length of the longest path
starting at u.

In line 12, the last statement of the � rst loop, the longest path from u to v is temporarily assigned a
length of one, which is the smallest possible maximum path length for any v 2 Acc.u/. This assignment
is the departure point for the iterative path length calculations in the second loop of MAXPATH (lines
13–15), where Proposition 2 is applied to determine p.u; v/ for each v accessible from u. This loop starts
only once the algorithm has explored all nodes accessible from the calling node u, that is, as the function
calls made during the � rst loop return. The iteration scheme in lines 13 and 14 deserves some explanation.
Following Proposition 2, one would � rst iterate over all nodes w 2 Acc.u/ and then maximize 1Cp.v; w/

over all v with w 2 Acc.v/. This would require, for each v, a time-consuming search to determine whether
w 2 Acc.v/. Instead, the algorithm uses a modi� ed iteration scheme, which swaps the order of iterations.
It iterates � rst over all nodes v 2 Acc.u/ and then over all w 2 Acc.v/ to maximize 1 C p.v; w/ (line
15). By the time line 15 of the second loop is reached, all nodes v accessible from u have been visited in
previous calls to MAXPATH. Thus, all p.v; w/ are known, which is what the calculation of p.u; w/ relies
on. In sum, lines 13–15 determine all p.u; w/, except for nodes adjacent to u, for which the maximum
path lengths is one (established on line 12), and u itself, for which p.u; u/ D 0 (line 16).

Computational and storage complexity

Both measures of algorithmic complexity are determined by the average number of entries in a node’s
accessibility list. Let k < n¡ 1 be that number. For all practical purposes, there will be many fewer entries
than that, not only because accessibility lists with nearly n entries are not accessibility lists of acyclic
digraphs, but also because most real-world graphs are sparse (Jeong et al., 2001, 2000; Wagner, 2002;
Wagner and Fell, 2001).

During execution, each node v accessible from a node u induces one recursive call of MAXPATH, after
which the node accessed from u is declared as visited. Thus, each entry of the accessibility list of a node is
explored no more than once. However, line 14 of the algorithm (Fig. 1) loops over all nodes w accessible
from the called node v. This leads to overall computational complexity O.nk2/.

In terms of memory requirements, the algorithm needs a copy of the accessibility list .O.nk//, a list
of path lengths .O.nk//, as well as a list of the nodes that have been visited .O.n//. The recursion stack
requires additional storage. However, the recursion depth can be no greater than n ¡ 1 because otherwise
the graph would not be acyclic. Thus, overall storage requirements are O.nk/.

Undetected and spurious activity changes

Any experiment is subject to measurement error. Either genes affected by a perturbation may not be
detected as such, or genes unaffected will show spurious changes in activity. Even for simple graphs,
removal or addition of entries can lead to arbitrarily pathological situations, such as structures that look
like cycles in the accessibility list but that do not correspond to any possible cycle in a graph (Wagner,
2001). Such pathologies pose challenges for any reconstruction algorithm.



RECONSTRUCTING PATHWAYS IN LARGE GENETIC NETWORKS 57

I analyzed robustness of the algorithm in Fig. 1 to missing and to added entries in a graph’s accessibility
list. I did so by � rst generating a random graph of a prespeci� ed number of nodes and edges along with
its accessibility list Acc. This was an Erdösz-Rényi random graph (Bollobás, 1985); that is, any two nodes
in it were equally likely to be connected by an edge. I then eliminated or added a fraction of nodes to the
accessibility list at random. After that, I applied the algorithm from Fig. 1 to the list thus generated and
determined the number of edges, corresponding to node pairs u; v, with p.u; v/ D 1, that the algorithm
identi� es correctly. More speci� cally, I determined the fraction f¡ of edges in the transitive reduction of
Acc that the algorithm does not identify as such (false-negative edges) and the fraction of edges fC the
algorithm � nds but that are not part of the transitive reduction (false-positive edges).

A complementary way to analyze algorithmic robustness is to analyze how much the algorithm “enriches”
direct interactions in a reconstructed adjacency list. Let C be the number of entries in the accessibility
list of a graph, and A the number of entries in the adjacency list. Then, a fraction A=C of entries in the
accessibility list corresponds to direct regulatory interactions in Acc. One can think of A=C metaphorically
as the “concentration” of direct interactions among all detected interactions. For instance, one of the
graphs analyzed in Figures 2 and 3 has 610 edges and 37,889 entries of the accessibility list. Thus,
only 610/37889, or about one 62nd of all entries are direct interactions. Perfect network reconstruction
would enrich direct interactions by a factor 62. With � awed data, the algorithm may not identify all direct
interactions, but the adjacency list it produces may still be enriched for direct interactions. The quantity
A.1¡f¡/=A.1CfC/ D .1¡f¡/=.1CfC/ is the ratio of correctly identi� ed direct interactions, A.1¡f¡/,
to the sum of the total number of entries of Adj and the number of false positive interactions, AfC. It is at
most one, in the case of perfect network reconstruction. As a measure for how much an algorithm enriches
for direct interactions, I de� ne E D .C.1 ¡ f¡//=.A.1 C fC//. E attains its maximally possible value,
C=A, for perfect network reconstruction. An E of 10 means that the “concentration” of direct interactions
in a reconstructed adjacency list is 10 times greater than in the accessibility list of the same network.

Figures 2 and 3 show robustness of the algorithm to deleted and added accessibilities, respectively. The
algorithm generates fewer false-negative than false-positive edges for a given fraction of deleted (Figs. 2A
versus 2B) or added (Figs. 3A versus 3B) accessibilities. Second, the algorithm is in general more sensitive
to added accessibilities, in that both f¡ (2A versus 3A) and fC (2B versus 3B) are greater if the same
fraction of edges is added as opposed to deleted. Third, fC depends more strongly on the interaction
density in the network than does f¡.

The relation of E to the fraction of deleted and added entries of an accessibility list is shown in
Figs. 2C and 3C. Take the above example with 37,889 entries of the accessibility list. For perfect network
reconstruction (dotted line in Figs. 2C and 3C), E ¼ 62. If the size of the accessibility list is decreased or
increased by 10%, the fractions of direct interactions in the reconstructed adjacency list are still 30-fold and
10-fold greater, respectively, than in the original accessibility list (Fig. 3C). Thus, even for substantially
� awed data, leading to a sizable fraction of false-negative and false-positive edges, the algorithm may still
signi� cantly enrich direct interactions.

DISCUSSION

The above algorithm to reconstruct genetic networks is fast and its performance does not degrade
catastrophically when faced with measurement errors in gene activity. However, it cannot resolve cycles of
regulatory interactions. This shortcoming is a limitation of experimental data rather than of any particular
network reconstruction method. It raises two questions. First, how abundant are such cycles? Statistical
inference from the perturbation response of transcriptional regulatory networks suggests that such networks
are sparse, containing on average of the order of one direct regulatory interaction per gene (Wagner, 2002).
Moreover, biological networks whose coarse scale structure has been analyzed resemble sparse random
networks with a broad-tailed degree distribution (Jeong et al., 2001, 2000; Wagner and Fell, 2001). Although
cycles certainly occur and are important biologically (Freeman, 2000), such statistical information suggests
that gene networks are not rife with cycles. The second question is how to design experiments to resolve
cycles. This can be done through double mutations: one mutation disrupts a cycle, and the remaining
(linear) path can be analyzed by single mutations. This approach will work best if biological networks are
sparsely connected, as suggested by the available statistical evidence.

A second caveat is that there are many networks consistent with any given list of perturbation effects
and the algorithm reconstructs only one of them, the network with the fewest regulatory interactions. There
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FIG. 2. Quality of network reconstruction with unidenti�ed perturbation effects. Results are shown for three random
graphs of 500 nodes and 250 edges (circles), 500 edges (squares), or 750 edges (diamonds), from which edges are
removed until each graph is rendered acyclic (Mehlhorn and Naher, 1999). After removal of these edges, the resulting
three acyclic graphs have 250, 494, and 624 edges left, respectively. For each of these networks, a prespeci�ed fraction
of entries was then eliminated at random from the accessibility list. The fraction of remaining entries is shown on the
abscissa of each panel. The algorithm from Fig. 1 was then applied to the changed accessibility list, and the resulting
adjacency list was then compared to that of the maximally parsimonious graph of the original accessibility list. For
the reconstructed network, (A) shows the fraction of false-negative edges, (B) shows the fraction of false-positive
edges, and (C) shows by how many fold direct interactions are enriched (see text) in the reconstructed adjacency list,
relative to the original accessibility list. A logarithmic scale is chosen in (C) merely to � t all data points conveniently
on one graph. The dotted horizontal lines indicate the maximally possible enrichment, that is, for perfect network
reconstruction.
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FIG. 3. Quality of network reconstruction with spurious perturbation effects. Results are shown for three random
graphs of 500 nodes and 250 edges (circles), 500 edges (squares), or 750 edges (diamonds), from which edges are
removed until each network is rendered acyclic (Mehlhorn and Naher, 1999). After removal of these edges, the resulting
three acyclic graphs have 250, 494, and 610 edges left, respectively. For each of these networks, a prespeci�ed fraction
of entries was then added at random to the accessibility list. For each added entry u, it was veri� ed whether adding
u as an edge would create a cycle in the graph. If so, a new u was chosen at random, until one was found that did
not create a cycle. The fraction of entries thus added is shown on the abscissa of each panel. The algorithm from
Fig. 1 was then applied to the changed accessibility list, and the resulting adjacency list was then compared to that
of the maximally parsimonious graph of the original accessibility list. For the reconstructed network, (A) shows the
fraction of false negative edges, (B) shows the fraction of false positive edges, and (C) shows by how many fold
direct interactions are enriched (see text) in the reconstructed adjacency list, relative to the original accessibility list.
A logarithmic scale is chosen in (C) merely to � t all data points conveniently on one graph. The dotted horizontal
lines indicate the maximally possible enrichment, that is, for perfect network reconstruction.
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can be no guarantee that this most parsimonious network re� ects the actual structure of a genetic network,
which might have more interactions than necessary to accomplish its tasks. However, many redundant
interactions are likely to disappear rapidly through degenerative mutations.

Third, as one would expect, the algorithm’s robustness to experimental errors is limited. My analysis of
its robustness has two implications. First, the algorithm is generally more sensitive to false-positive than to
false-negative gene activity changes. Thus, it is better to be statistically conservative when deciding which
genes have changed their activity state after perturbation. In terms of microarray analyses, this means that
it is better to apply conservative thresholds for expression ratios when deciding what genes were affected
by a genetic perturbation. Second, when viewed as a tool to enrich direct interactions in an accessibility
list, the algorithm is useful even if the quality of gene activity measurements is substantially compromised.
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