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Abstract

In this paper we establish a set of results showing that the vertices of any simply-connected planar polygonal
region can be reconstructed from a finite number of its complex moments. These results find applications
in a variety of apparently disparate areas such as computerized tomography and inverse potential theory,
where in the former it is of interest to estimate the shape of an object from a finite number of its projections;
while in the latter, the objective is to extract the shape of a gravitating body from measurements of its
exterior logarithmic potentials at a finite number of points. We show that the problem of polygonal vertex
reconstruction from moments can in fact be posed as an array processing problem, and taking advantage
of this relationship, we derive and illustrate several new algorithms for the reconstruction of the vertices
of simply-connected polygons from moments.
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1 Introduction

In this paper we present novel algorithms for the reconstruction of binary polygons from their estimated

complex moments. We show, in fact, that this problem can be formulated as an array processing [27]

problem. The applications of the algorithms we develop to tomography hence expose a seemingly deep

connection between the fields of tomography and array processing. This connection implies that a host of

numerical algorithms such as MUSIC [28], Min-norm [18], and Prony [24] are now available for application

to tomographic reconstruction problems.

Our algorithms are based on the idea that the vertices of a simply-connected polygonal region in the

plane are determined by a finite number of its moments. Davis [5] showed, using the Motzkin-Schoenberg

(MS) formula [29], that a triangle in the plane is uniquely determined by its moments of up to order 3. In

the process of proving this result, Davis generalized the MS formula to arbitrary n-gons, and in this paper

we make use of this result to generalize Davis' triangle result to arbitrary simply-connected polygons. In

particular, we have generalized his result using Prony's method [13] to show that the vertices of a simply-

connected, n-gon are uniquely determined by its complex moments of up to order 2n - 1. We show that in

tomographic terms, this implies that 2n - 2 projections from distinct angles suffice to uniquely determine

the vertices of any simply-connected n-gon. This result is an improvement on theoretical results dealing

with reconstructability from few projections such as in [16, 19, 17, 7, 8, 9].

In Section 2, we discuss the mathematical basis of reconstruction of polygonal regions from a finite

number of complex moments, and in Section 3 we make explicit connection to and use of Prony's method.

In Section 3.1 we present some remarks regarding the reconstructability of the interior of polygons from

their moments and briefly point out a connection to inverse potential theory. In Section 4, we discuss the

explicit connection of the polygonal reconstruction problem to algorithms in array processing and present
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several reconstruction algorithms, and in Section 5 we discuss a novel application of the ideas describe

in this paper to the problem of tomographic reconstruction of polygons, and illustrate our method with

examples of polygonal reconstruction from tomographic data. Finally, Section 6 contains our conclusions.

2 Mathematical Background

In 1977 Davis [5] showed that any triangular region in the plane is uniquely determined by its first four

complex moments. This results was derived as a corollary to a little known result which he termed the

Motzkin-Schoenberg Formula. He had worked out an alternative proof of this formula in an earlier (1964)

paper [6], where he also generalized this formula to the case of n-sided polygons. As we prove in the

next section, this generalized formula can, in fact, be used to generalize Davis' result for triangles. In

particular, we show that the vertices of n-sided, simply-connected polygonal regions in the plane are

uniquely determined by a finite number of their complex moments. As we will see, this result, which had

eluded Davis, is easily proven by transforming this problem into one to which Prony's method can be

applied.

Let T denote a triangle in the complex plane whose vertices are given by zl, z2, and z3 . If A denotes

the area of T and h(z) is any analytic function in the closure of T, the Motzkin-Schoenberg (MS)

Formula [29, 6, 5] states that

/JT h"(z) dx dy = 2A det(U)/ det(V) (1)

where

1 1 1

U = Z1 z2 Z3 (2)

h(zi) h(Z2 ) h(z3 )
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V = Zl Z2 (3)

By considering triangulations of such n-gons, )avis [6] extended this formula to show that the value of the

integral of the second derivative of any analytic function in the closure of a polygonal region of the complex

plane depends only on the values of this function at the vertices of the polygonal region in question:

Theorem 1 [6] Let zl, z 2 , ... , z,n designate the vertices of a polygon P. Then we can find constants al,

· , an depending upon z1 , z2, .*., Zn, (and the way they are connected) but independent of h, such that

for all h analytic in the closure of P,

l/p h"(z) d dy = E ajh(zj). (4)
j=1

If r > n and zn+l, ... , z, are additional points distinct from zl, ... , zn, and if there are constants b1, ... ,

b,r which depend only upon zl, ... , z, such that

fp h" (z)dxdy = bjh(zj) (5)
3=1

for all h analytic in the closure of P, then

bj = aj, 1 < j < n (6)

bj=O, n+l<j<r (7)

Two observations are in order about the implications of this result. First, we can prove the following

result for simply connected polygons using the same line of reasoning as Davis [6].

Lemma 1 Let P be a simply-connected polygonal region. The coefficients {aj} in (4) are all nonzero if

and only if P is nondegenerate.

Proof: Using Green's theorem in the complex plane and the Cauchy-Riemann equations for analytic

functions [4, 6], the integral in (4) can be rewritten as
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fJ fh"(z) dxdy = 2 Jh'(z) d (8)

where i = x/-i, OP denotes the boundary of P, and z denotes the complex conjugate of z. The assumption

that P is simply connected implies that the boundary of P consists of n straight lines which we call sl,

s2, *.., s,; where sj connects the vertices zj and zj+l. (For convenience, we assume that the vertices zj

of P are arranged in the counter-clockwise direction in the order of increasing index, and that zn+l = zn).

Hence, splitting the right-hand side of (8) into a sum of terms over the sides and using the expression for

the equation of a line in the complex plane [6, 4], we can write

Jp h"(z) dxdy= 2 j-i - aj)h(zj) (9)
f fp 2 (=1

where

aj = j- zj+1 (10)

zi - zj+l

With some algebraic manipulation, it is not difficult to show that

_(ctj_1 -o a) = 2A1_ z )( - )(11)2 (z1 - zj+l)(zj - Zj-1)

where Aj is the signed area of the triangle formed by the vertices zj-l, zj, and zj+l given by

Zj- 1 Zj-1 1

Aj -= det z j 1 (12)

zj+l zj+l 1

Now comparing (9) to (4), and using (11) we see that

X = Zj-1 - zj _ zj - Zj+l 2Aj , j= l,,n (13)

2 zJ 1 - zj zj zj- Zj+l (zj- zj+l)(zj- zjl)

Hence, no aj is zero unless the corresponding Aj is zero. This can occur if and only if P is degenerate. i.e.

for some j, the triangle formed by zjl, zj, and zj+l is degenerate. E]

Note that (13) is an expression that depends explicitly on the vertices and on the order in which these
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vertices are connected since (13) requires that we explicitly order the zj. If we limit ourselves to convex

objects, then there is in essence a unique ordering of the vertices except for an inconsequential cyclic

permutation. However, as we discuss further in Section 3.1, in general there may be several nontrivially

distinct ways in which the vertices may be connected in order to form simply-connected polygons, and (13)

depends on the specific choice of ordering corresponding to the polygon P.

A second observation is that the formula (4) is a minimal representation of the integral of h" over P

in terms of discrete values of h. Specifically, the left-hand side of (4) depends only on the values of h at

the vertices of P and hog they are connected; what values h takes at other points in the complex plane

are completely irrelevant in this regard. Furthermore, since each of the aj is nonzero, the representation

(4) for arbitrary h(z)'s can not be reduced to one involving h(z) at fewer points.

With these results as a foundation, we now develop the connection between complex moments and

vertices. To begin, define the geometric moments of an function f over a compact domain ( as

ip = fJ f(x, y)xPYq dx dy. (14)

Let us also define the simple complex moments (s-complex moments) as 1

cJ = JJ f(z,y) zk dxdy (15)

where z = x + iy. The relationship between the s-complex and geometric moments is simply established

by expanding (z + iy)k:

ck = u.Tp(k) (16)

where
T

Uk = i ) , , ik , 1 (k) = [,kol~k-_l,l ... ILL,k-ILO,k] (17)

Now consider Theorem 1 and let (I) h(z) = zk and (II) f(x,y) be the indicator function over a

1These moments are also referred to as harmonic moments in the mathematics literature.
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simply-connected polygonal region P of the plane. Then, this theorem states that for any nondegenerate,

simply-connected, n-gon P in the plane, we have

JJ(z) dx dy = ajzj (18)
j=1

where the aj are as defined in (13). The left hand side of this identity can be written as

JJ (zk)" dx dy = k(k - 1) zk - d dy = k(k -1)Ck-2- (19)

Defining the numbers Trk = k(k - l)ck_2, which we term weighted complez moments (w-complex mo-

ments), with r0 = r1 = 0, we have

n

C =C Eajz.k (20)
j=1

Equation (20) is, for every k, a direct relationship between the w-complex moments and the vertices of P.

We next show that the vertices of P may be uniquely recovered from knowledge of a sufficient number of

the Tk.

3 Vertices from Complex Moments via Prony's Method

Assume that the n-gon P is simply-connected and nondegenerate, and let us consider Equation (20) for

k = 0, 1, * *,2n - 1. Writtn in ve tor forr we have

To 1 1 *-- 1 al

l71 = Z2 ... Zn a2
(21)

T2n-1 12n-1 z22n-1 ... z2n- 1 an

T2n - V2nan (22)

where the obvious associations have been made in the last identity. We will use Prony's method [13] here

to show that the vertices {zj} can be computed from the w-complex moment vector T2n given by Equation

(22). Davis [5] showed this result for n = 3 (the triangular case) using algebraic manipulations. By
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identifying and exploiting the relationship of the moment-to-vertices problem with very similar problems

in signal and array processing we directly obtain both the generalization of this result using Prony's method

as well as a number of algorithms for the solution of the problem.

Define the polynomial P(z) as

n n

P(z) = i(z- zJ) = Zn + Epjzn-j, (23)
j=1 j=1

and consider its associated coefficient vector p(n) = [pn,Pn-1, '...l]T. We show that the coefficients of

P(z) can be uniquely determined from T2n. To this end, form the 2n x 2n matrix K 2 n from p(n) as follows

Pn P1 1 0

K2n= . . · · . (24)

o0 Pn, · · · p 1
We now proceed as in Prony's method [13]. Specifically, from the definition of P(z) it follows that

K 2nT2 n = K 2 nV2nan = 0 (25)

The identity K2nT2n = can e rewritten as

70 7T1 . Tn-1 'n

T1 T2 n (n) in+i

p(f) -- (26)

7n_ 1 7n ·. T2n-2 T2 n-1I

Hnp(n) = -hn (27)

To show that we can uniquely recover p(n) from this last identity, we must now show that Hn is invertible.

Lemma 2 The n x n matriz Hn is invertible if and only if the corresponding simply-connected polygon P

is a nondegenerate n-gon.

Proof: The result is arrived at by noticing that H, can be decomposed as

Hn = Vndiag(an)VnT (28)
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where ,V is the Vandermonde matrix of the vertices {zj} defined as follows

1 1 -.. 1

Zi Z2 ... Zn

Vn = (29)

n-1 n-I . n-1
Z1 Z2 Zn

The matrix Vn has determinant

det(Vn) = II(zi - zj) (30)
i>j

which vanishes if and only if P is degenerate. Furthermore, as a consequence of Lemma 1, the elements of

the vector an are all nonzero unless P is degenerate. Hence this Lemma is established. C

As a consequence of this lemma, the coefficients of P(z) can then be uniquely determined through

p(n) = -H;lhn. (31)

Given these coefficients, upon solving the polynomial equation P(z) = 0, the vertices of P may be recovered.

In summary, we have shown the following result.

Proposition 1 Let P denote a nondegenerate, simply-connected, n-sided polygonal region in the plane.

The vertices of P are uniquely determined by its w-complez moments 7k up through order 2n - 1.

Several useful corollaries follow from Proposition 1. Recall that the w-complex moments rk are related

to the s-complex moments ck as Tk = k(k - 1)ck-2. Hence, we have:

Corollary 1 The vertices of a nondegenerate, simply-connected n-gon P in the plane are uniquely deter-

mined by its s-complex moments of up to order 2n - 3. i.e. ck, k = 0, 1, ... , 2n - 3.

Also from (16) it follows that

Corollary 2 The vertices of a nondegenerate, simply-connected n-gon P in the plane are determined by

its geometric moments of up to order 2n - 3. i.e. p(k), k = 0, 1, .. ,2n - 3.
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3.1 Remarks

Proposition 1 and its corollaries imply that the vertices of P can be extracted from a finite number of

moments. This result, however, does not tell us what the interior of P looks like. According to Proposition

1, from the set of moments we can decipher the locations of the vertices of P. Furthermore, from (22) we

can also determine the coefficients al, ... , a, (this follows since the upper n rows of V2, form the invertible

matrix Vn). Thus, according to Theorem 1, we can evaluate

n

h (z) dz dy = E ajh(zj). (32)
j=1

for any analytic function h(z), including z k for any nonnegative integer k. Hence, from knowledge of rl,

*.. r 2n- 1, we can determilne all of the w-complex moments of P. Nevertheless, it is a remarkable fact that

this information is not suffi:ient to uniquely specify P in general. In particular, a somewhat more general

problem was formally posed in 1975 by H. Shapiro in [2]: "Let D 1 and D2 be simply-connected compact

sets such that

i'D zk dx dy = JJ zkd ddy k=0,1,2,*-* (33)

Must we have D1 = D2 ?" The answer is yes if the intersection of the closures of D 1 and D2 is empty or

consists of only one point, but in general the answers is, in fact, negative. In 1978, a counter-example to

the general case was provided by M. Sakai in [26] where he constructed simple domains bound by a finite

number of piecewise circular arcs. Polygonal counter-examples were later constructed by A. M. Gabrielov,

V. N. Strakhov, and M. A. Brodsky and were published in the latter two authors' paper [30]. These authors

arrived at this question from considering the more general problem of uniqueness of the shape and density

of plane gravitating bodies as determined from their exterior logarithmic potential. A good survey of this

problem from the point of view of inverse potential theory can be found in [31] 2.

2The authors would like to thank Chris Bishop of SUNY Stony Brook Math dept. and Prof. Pavel Etingof of Yale Math
dept. for pointing out these references.
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In certain special cases, however, the w-complex moments do uniquely specify the underlying polygon.

For example, if the zj form the set of vertices of a convex object, then there is obviously a unique way

in which the zj can be connected in order to delineate a simply-connected polygon. For nonconvex P,

however, the situation is more complex, since as illustrated in Figure 1 for 4-sided figures, there is more

than one way to connect the vertices. However, there are only a finite number of such possibilities that

lead to distinct, simply-connected polygons. The question, then, is whether the finite number of distinct

simply-connected polygons with vertices zl, ... , z, can be uniquely distinguished from the knowledge of

al, ... , an. As shown in [30], this is not the case in general, but as we now show, is true for large classes

of nonconvex objects including those in Figure 1. In particular, we have the following:

Proposition 2 Consider n distinct points zl, Z2, ... , z, in the complez plane. Let P and P' be simply-

connected, nondegenerate, n-gons generated by connecting these vertices in two distinct ways. If P and P'

have at least one side in common, then for some 1 < j < n,

aj(P) 5 aj(P'), (34)

where aj(P) and aj(P') are respectively defined by

Jp h"(z)dxdy = E aj(P)h(zj ) (35)
j=1

JJ h"(z)dxdy = Z aj(P')h(zj ) (36)
j=1

with h denoting any analytic function in the closure of P U P'.

Proof: We prove this result by contradiction. Assume that P and P' have at least one side in common.

Without loss of generality, let us say this is the side give by connecting the vertices zj and zj+l of P for

some 1 < j < n. Now if aj(P) = aj(P'), it follows from (13) that

i _-__-___ -+i Tj - j _ 1- j+= i f j-i - _ j+ (37)
2 Vzj_--zj zj-- zj+l 2 zj - zj z j - Zj+l

where z'j-. is the j - 1
th vertex of P'. Simplifying (37) yields

Z$_~~~~~~~~~~11



z-j_1 - Z- zj- 1 -Zj
!i-I-Zj = zeal _ Zj (38)

Zj-1 - Zj Zi_ 1 - Zj

It is easy to check that this last expression (38) implies that the vertices zj, zj-1, and z}_ 1 must be

collinear. This is a contradiction to the assumption that P and P' are both nondegenerate. []

Note, for example, that in the case of 4-sided nonconvex figures as in Figure 1, there are only 3 distinct

polygons with the given set of vertices, and each pair of these has a side in common. Thus, in this case

we deduce that knowledge of o, ... , 77, which uniquely determine z1, .. ., z4 , and al, ... , a 4, also uniquely

specifies the polygon P. Furthermore, as the example in [30] shows, the cases in which nonuniqueness arise

are extremely complex 3 . Indeed, as Proposition 2 makes clear, the only case in which this might happen is

if two simply-connected polygons with the same vertices zl, ... , z,, have no edge in common. Thus for our

purposes we assume that zl, ... , z, define a finite set of possible polygons with distinct sets of coefficients

al, ''', an-

4 Connections to Array Processing

Array processing has been a very active field of research in the past 2 decades motivated by applications in

sonar, radar, oceanography, seismology, and speech processing, to name a few. The data to be analyzed in

a standard array processing application [27, 25] consist of a sum of complex exponentials in additive white

noise. This formulation corresponds to the problem of localizing several radiating sources by observation

of their signals at spatially separated sensors. More formally, the general problem is that of estimating the

unknowns bj and zj from the measured signals yk given as follows

3In fact, the simply-connected nonconvex object with the smallest number of sides not uniquely determined by zj and ai

has 22 sides [30]
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n

Yk = bjzjk + vk, = 0, * * , N -1 (39)
j=1

Here, zj denotes an unknown source, bj denotes an unknown complex amplitude, and vk denotes (complex)

white noise. In standard array processing problems, the sources zj are complex exponentials of the form

exp(-ioj), but general formulations where zj is not restricted to this form have also been studied [14, 27].

Now assume that noisy estimates Fk of the w-complex moments of a simply-connected n-gon are given:

n

k = aj + Wk. (40)
j=1

By comparing this measurement equation to (39), we can see that they have exactly the same form;

whereby a vertex of the polygon can be interpreted as a radiating source whose corresponding (complex)

amplitude shows how it is connected to the other vertices of the polygon. The general formulation of the

array processing problem is therefore nearly the same as the formulation of the reconstruction problem

of binary polygonal objects from noisy measurements of their w-complex moments. The main difference

is that the coefficients aj are not independent variables but are, in fact, deterministic functions of zj and

the order in which they are connected. Nevertheless, if we treat the aj as independent unknowns, we can

directly apply array processing methods and then check to see if the aj so-determined are in fact consistent

with one of the finite number of polygons with vertices given by the extracted values zj.

In the remainder of this section we discuss the direct application of some array processing algorithms

to the polygon reconstruction problem from moments. An exhaustive study of all available algorithms and

their relative performance is beyond the scope of this paper and therefore, we present only one such general

approach and some of its variants to illustrate the main concepts. The algorithms we consider are directly

based on a generalization of Prony's method. In this context, we discuss the ordinary least squares Prony

(OLSP), the total least squares Prony (TLSP), and the weighted least squares Prony (WLSP) techniques.
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4.1 Least Squares Prony Techniques

We wish to estimate the parameters aj and the vertices zj corresponding to an n-sided polygonal region

from noisy estimates of the first N (> 2n) w-complex moments of P. i.e. (40) for k = 0, -.., N - 1,

where we assume that wk are (complex) Gaussian measurement errors (with possibly different variances

for different k) which are uncorrelated across different k, and that the real and imaginary parts of wk are

also uncorrelated.

Note that in Section 3, we showed that 2n - 2 (i.e. N = 2n in 45) w-complex moments are necessary

to uniquely recover the vertices of P. Here we allow the possibility that N > 2n so that we may achieve

some sensitivity reduction to errors in the Fk. Collecting the measurements in (40) into vector form we

have

ho 1 1 . 1 al wo

| 1 | |z zl z2 .. zn a2 w1

+ (41)

TN-1 zN-1 z2N-1 ... N-1 a

TN = VNan + WN (42)

Applying the N x N matrix KN to both sides of (42) yields

KNTN = KNWN- (43)

which can in turn be rewr ten as

To T1 -" .n-1 Tn

pF, F ... fFn |() = Fn+1 |(44)

TN-n-1 TN-n ... TN-2 TN-1

NP(n)
= -hN (45)

Equation (45) forms the basis of the Least Squares Prony technique. From this equation, the parameter
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vector i(n) is estimated and subsequently, estimates of zj are produced by solving the polynomial equation

P(z) = 0, whose coefficients are the elements of pi(n).

4.1.1 OLSP and WLSP

The Ordinary Least Squares Prony (OLSP) method consists of computing the least squares estimate of

p(n) from equation (45) by computing the generalized inverse of the matrix HN as follows.

p-() -(ftNHHN) HNhN (46)

where the superscript H denotes Hermitian transpose. With these estimated coefficients, the polynomial

PoI,(Z) - 0 is formed and factored to get OLSP estimates ij of the vertices. Having computed these

estimates, we can form the matrix VN as defined in (22), and then can estimate the vector an as

an = (9NHVN) NH (47)

The Weighted Least-Squares Prony (WLSP) solution can also be considered. In this formulation, the

inverse of the covariance matrix for hN is used as a weighting factor. The resulting solution has the form

n)ls = - IN) NHNhN (48)

where Z denotes the inverse of the covariance matrix for hN.

4.1.2 TLSP

Equation (45) is an overdetermined system of linear equations of the form Ax = b for the unknown x = p(n).

The OLS procedure for estimating the desired parameters is appropriate when only the vector b is noisy.

In fact, the OLS estimate coincides with the Maximum Likelihood (ML) estimate if the noise is taken to

be Gaussian and white. In more general instances such as that of equation (45), both matrices A and b are

corrupted by noise. For these cases, a more general fitting scheme called the Total Least Squares (TLS)

has been devised [10, 15, 27] which can, in essence, be interpreted statistically as a regularized version of
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the OLS solution. In particular, stl, = (AHA - ao2inI)-lAHb, where ain denotes the minimum singular

value of the concatenated matrix [A, b]. Applying this in our context, we find that the TLS estimate of

p(n) is then given by

An) =- -R N inI )
1

thN, (49)

where cmin is the smallest singular value of [FHN, -hN]. Given this estimate, the TLS estimates for the

vertices of the underlying n-gon are obtained as roots of the polynomial equation Ptl,(z) = 0. Subsequently,

TLS estimates of the vector aN can be obtained as

a = (9.N - rnmin 
2 I) 1 VI9 N, (50)

where crin is the smallest singular value of the matrix [9 N, TN].

5 An Application to Tomographic Reconstruction of Polygons

A novel application of the concepts and algorithms discussed above can be found in the field of tomographic

reconstruction. By invoking a fundamental property of the Radon transform, we have shown [23, 20, 21]

that the moments of an image can be recovered from its noisy projections. Hence, if the underlying image

is assumed to consist of a simply-connected polygonal region, and a finite number of its (possibly noisy)

projections are given, we can estimate the geometric (and hence complex) moments of the underlying

polygon. If a sufficient number of these projections are available, then enough complex moments may be

estimated to warrant a reconstruction of the underlying object via the algorithms discussed in this paper.

To be more concrete, the Radon transform g(t, 0) of a square-integrable function f(x, y) defined over a

compact region of the plane 0 is given by

g(t, ) = J f(X, y)6(t - w . [X, y]T)ddy, (51)

where w = [cos(O), sin(O)] and 6(.) denotes the Dirac delta function. See Figure 2. The function g(t, 0)
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is square integrable [11] with finite support and is defined for each pair (t, 0) as the integral of f over a

line at angle 0 + - with the x-axis and at radial distance t away from the origin. An elementary result

[11], which follows from the definition of the Radon transform, states that if F(t) is any square integrable

function, then the following relation holds true:

T g(t, O)F(t)dt = Jf(XI y)F(w. [Z, y]T)dzdy. (52)

where T denotes the maximal support value of the set O in the direction 0 defined by T = maxo(x cos(0) +

ysin(0)). By considering F(t) = e- it, the celebrated Projection Slice Theorem [12] is obtained. By letting

F(t) = tk and expanding the right-hand side of (52) using the binomial theorem, we obtain

(k)(0 = J g(t,0) tk dt = i cos k-(0) sinj(0) Lk-j,j. (53)
J~-T ~=0 j 

which shows that the kth order geometric moment of the projection at angle 0 is a linear combination of

the kth order geometric moments of the image. Furthermore, we have proved the following [21, 23, 20]:

Proposition 3 Given line integral projections of f(z, y) at m different angles Oj in [0, 7r), one can uniquely

determine the first m moment vectors /(j), 0 < j < m of f(z, y). This can be done using only the first m

orthogonal moments H(k)(0j), 0 < k < m of the projections. Furthermore, moments of f(z, y) of higher

order cannot be uniquely determined from m projections.

As a consequence of this result, and assuming projections corrupted by Gaussian white noise, it is a simple

matter to compute ML estimates of the geometric moments of the image f(z, y) from noisy measurements

of its projections. In fact, this process is a straightforward linear estimation problem as outlined in [21, 23].

Once we have these estimates of the geometric moments of an image, the ML estimates of its complex

moments are computed directly from (16). If the function f(z, y) is taken to be the indicator function of a

simply-connected polygon, what we have just described, along with the results and algorithms outlined in

the earlier parts of this paper, allow the reconstruction of polygonal regions from a finite number of their
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(noisy) Radon transform projections. In fact, it has long been of interest to know [16, 19, 17, 7, 8, 9] how

many projections suffice to uniquely determine a simply-connected n-gon in the plane. To this end, we

have the following corollary which follows directly from Propositions 3 and 1.

Corollary 3 Ezactly 2n - 2 projections are sufficient to uniquely determine the vertices of a plane simply-

connected polygonal region P.

5.1 Numerical Examples

In this section we present some simulations to illustrate the reconstruction of polygonal objects from

their noisy projections via. moment estimation together with the application of standard array processing

algorithms discussed in Section 4. In particular, we apply the least squares algorithms to the reconstruction

of a triangle and a quadrilateral from ML estimates of w-complex moments obtained from projections. The

prototypical triangle has been chosen as one with the following vertices

-0.4655 0.0082 -0.3283
V = (54)

0.2201 0.4599 -0.1809

The data y(ti, Oj) = g(ti, Oj) + eij were collected in the form of m = 20 projections with n = 500 samples

per projection at a signal-to-noise ratio of 23.9 dB, where the SNR is defined as follows:

SNR = 10 loglo i,j g 2(ti, Oj)/d (55)

with d = m x n denoting the total number of samples of the function g(t, 8), and where a
2 denotes the

variance of the white noise sequence eij.

In all our simulations the reconstruction error is measured in terms of the percent Hausdorff distance [3]

between the estimate and the true polygon. The Hausdorff metric is a proper notion of "distance" between

two nonempty compact sets and it is defined as follows. Let d(p*, S) denote the minimum distance between

the point pi and the compact set S: d(p*, S) = inf{llp* -pll p E S}. Define the c-neighborhood of the set
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S as S(E) = {p I d(p, S) < e}. Now given two non-empty compact sets, Si and S2, the Hausdorff distance

between them is defined as:

H(S1, 52) = inf{E S1 C se) and S2 C S(-)} (56)

In essence, the Hausdorff metric is a measure of the largest distance by which the sets S1 and S2 differ.

The percent Hausdorff distance between the true object S and the reconstruction S is now defined as

Percent Error = 100% x (O, S) (57)
7i(O, S)

where O denotes the set composed of the single point at the origin, so that if S contains the origin, 7-(0, S)

is the maximal distance of a point in the set to the origin and thus a measure of the set's size.

Figure 3 shows the performance curves for the three algorithms: Ordinary Least Squares Prony(OLSP),

Total Least Squares Prony (TLSP), and Weighted Least Squares Prony (WLSP). These curves show average

performance obtained by generating 100 runs of a Monte-Carlo simulation vs. the number of moments

used over the minimum necessary (i.e. the overfit parameter). Recall that, according to Proposition 1,

w-complex moments of up to order 5 are needed (at minimum) to reconstruct the triangle. Hence, an

overfit parameter value of 2 corresponds to using estimated w-complex moments of up to order 7.

Note that overall, the TLSP algorithm performs best. The WLSP algorithm performs essentially the

same for values of the overfit parameter larger than 2. This is due to the fact that as higher order moments

are considered, these are weighed according to their inverse estimation error variances, and as shown in

[21], the variance of the ML moment estimates obtained from projection data increases with moment order.

The graphs show that the overfit parameter value of 4 in the TLSP algorithm provides, on average, the

best reconstructions. Note that the incorporation of even more moments does not improve the reconstruc-

tion error due to the fact that, because of the increasing uncertainty in the estimates of these moments,

at some point their use results in diminishing returns.
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Figures 4-7 show sample reconstructions for all the aforementioned algorithms for values 0, 2, 4, and 6

of the overfit parameter. An important point to note here is that while percent Hausdorff error is a useful

metric for comparing different algorithms, as in Figure 3, an object and an estimate can have significant

percent error difference while visually the estimate may appear nearly perfect (e.g. compare OLSP with

an overfit of 2 in Figure 5 to the 10% error associated with it in Figure 3). Thus it is typically useful to

display both performance curves as in Figure 3 and sample reconstructions as in Figures 4-7.

The quadrilateral to be reconstructed was chosen as the polygon P' shown in Figure 1. Projections from

20 equally spaced angles in [0, 7r) were taken with 1000 samples per view at a signal to noise ratio of 65.2

dB. Reconstruction of the underlying polygon are shown with overfit parameter values of 0 in Figure 8. The

corresponding estimated coefficients a' using OLS are: al = -0.0053 - 0.5868i, a 2 = -0.0308 + 1.0271i,

a 3 = 0.4020 - 0.2422i, a4 = -0.3659 - 0.1981i, while the corresponding estimated coefficients using TLS

and the actual values of these parameters can be seen in Table 1.

However, we are not yet finished, as we must decide on how the estimated vertices 2l, Z2, Z3 , and Z4

should be connected. To decide how to do this, for either the TLSP or OLSP estimates, we use the estimated

vertex locations in order to compute the coefficients aj via formula (13) for each configuration, and compare

these values to the corresponding estimated coefficients given above. The choice of configuration is then

made according to which of the coefficient sets found using (13) most closely approximates the estimated

coefficient set. Let us carry out this procedure for the TLS estimated vertices of the quadrilateral using

overfit parameter of 0. For convenience, referring to Figure 1, we shall denote the configurations in which

the vertices can be connected as P, P' and P" respectively, so that the correct configuration is P'. The

estimated coefficients using TLS, and the corresponding coefficients computed using (13) are shown in

Table 1 along with the 11 norm of their difference defined by:
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4

I1 Difference in aj's = Illaj(estimated) - aj(from (13))11. (58)
j=l

As can be seen from Table 1, as measured by the 11 norm, the estimated coefficients are closest to the

coefficients obtained when the estimated vertices are connected according to configuration P'. Hence, our

algorithm has correctly identified the underlying configuration.

With an overfit parameter of 1, the reconstructions shown in Figure 9 are obtained. The corresponding

values of the coefficients aj are the same (to within 10-16) as the previous case where an overfit parameter of

0 was used. The reconstructions using an overfit parameter of 2 are shown in Figure 10, where the estimated

aj parameters using OLS are: al = -0.0053 - 0.5868i, a 2 = -0.0308 + 1.0271i, as = 0.4020 - 0.2422i,

a 4 = -0.3659 - 0.1981i. The estimates of these parameters using TLS are shown in Table 2.

Let us use these last set of estimated coefficients along with the estimated vertices using TLS, with

overfit parameter of 2, to decide how the estimated vertices are to be connected. We again show the values

of the coefficients obtained from (13) and the values of the total difference of these coefficients with the

estimated coefficients in Table 2. In this case, the algorithm has again correctly chosen configuration P' as

the solution, but note that the value of the 11 difference of the coefficients for configurations P and P' are

much closer than when an overfit parameter value of 0 was used. It is interesting to note that the use of

higher order moments (i.e. overfit parameter > 0), which are noisier than the estimates of the lower order

moments) worsens the estimate of the concave vertex of the underlying object more than the others.

6 Conclusion

In this paper we have presented algorithms for the reconstruction of binary polygonal shapes from noisy

measurements of their moments. The mathematical basis of these algorithms is the Motzkin-Schoenberg
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formula, and Prony's method. The contributions we have made in this paper can be grouped into two

categories. From a mathematical standpoint, we have improved a result due to Davis which states that

the vertices of a triangle are uniquely determined by its w- (or s-)complex moments of up to order 5 (or

3). Our generalization states that the vertices of any nondegenerate, simply-connected, n-sided polygon

can be determined from its w- (or s-)complex moments up to order 2n - 1 (or 2n - 3). We have also shown

that this number of moments is sufficient in some cases to uniquely specify the interior of the polygon.

From an estimation-theoretic viewpoint, we have established an explicit connection between the field

of array signal processing :med the problem of tomographic reconstruction of binary polygonal objects. We

believe that the connection between tomographic reconstruction and array processing is a deep one, and the

moment-based polygonal re construction represents one of several instantiations of that connection. Another

such connection can be found in [1] in which an analogy is made between a straight line in an image and a

planar propagating wavefront impinging on an array of sensors to obtain an array processing formulation

for the detection of line parameters within an image, replacing the now classical Hough transform approach

to the same problem. Still another can be seen directly from the geometry of the Radon transform. In

particular, a well-known fact is that the set of points (t, 0) for which the value of g(t, 0) is influenced by

the value of f(z, y) at a given point, say (xo, yo), forms a sinusoid

t = xo cos(O) + yo sin(o) (59)

and, in fact, for this reason a 2-D display of the Radon transform is known as a sinogram. Furthermore,

one of the key steps in standard tomographic reconstruction, namely backprojection, simply corresponds

to a type of beamforming or triangulation. For these reasons we believe that there is much yet to be done

in exploiting the connections between tomography and array processing, and this paper represents one step

in that direction.

On the other hand, it is equally important to point out that there are distinctive features of the tomog-
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raphy problem that may lead to interesting adaptations and modifications of standard array processing

techniques. In particular, while in this paper we demonstrate that standard array processing methods can

be applied to the moment-to-polygon tomographic reconstruction problem, there are at least three signif-

icant differences between tomography and the array processing problem which we do not take advantage

of here but which may lead to variations on array processing algorithms with enhanced performance for

polygonal reconstruction.

The first we have already mentioned, namely the fact that the coefficients aj in (40) are deterministic

functions of the vertices zl, z 2 , ... , z,, and the order in which they are connected. Making optimal use of

this information would involve solving a highly nonlinear estimation problem. One suboptimal use of this

relationship is illustrated in Section 5 in which we use the estimated aj for each of several possible ways in

which to connect the zj in order to decide which of these ways is correct. Secondly, as we have discussed, in

the tomographic problem if we have m projections, we can directly produce estimates of the full set of kth

order geometric moments p(k) for each k < m and not just the complex moment rk, which is a (complex)

linear combination of the elements of 1l(k). Thus, in using only the rk in our reconstruction, we are not

using all of the information extracted from the projections. While we do not pursue them here, there are

at least two distinct ways in which the full set of tomographic information can be used in conjunction with

the algorithms described here. First, we can use the p(k) in the process of deciding among the several

possible ways to connect the estimated vertices, since the full set of geometric moments (rather than

complex moments) do uniquely determine the polygon P. Alternatively in [22, 21] we describe iterative

algorithms for tomographic reconstruction which require prior estimates of object support. For example in

[22] we consider maximum likelihood estimation of the vertices directly from the original projection data.

This is a highly nonconvex optimization problem requiring a good initial guess in order to work well. The

method described here can provide such a guess. Finally, as we have noted and as is shown in [21, 23],
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the error variances in the ML estimates of the moments Fk are a strong function of k, and in fact increase

without bound as a function of the order of these moments [23]. This is in stark contrast to the constant

variance assumption typically made for the sensor measurements in standard array processing problems

[18, 14, 27, 25]. Hence, we may expect that the performance of the tomographic reconstruction algorithm

described in this section may not be consistent with the performance of the corresponding algorithms when

applied to a standard array processing scenario. Also, this suggests another line of further investigation in

order to adapt standard methods to account for the variation in noise power found in moments estimated

from tomographic data.
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Estimated aj aj for P aj for P' aj for P" Actual aj

-0.0053-0.5872i -0.1014- 0.3998i 0.0155- 0.6423i 0.1169- 0.2424i -0.6i

-0.0317 + 1.0539i 0.3837 - 0.4002i 0.2669 - 0.1577i 0.8735 + 0.2877i i

0.4028 - 0.2463i 0.6066 + 0.4454i 0.1320 + 0.9875i -0.4746 + 0.5421i 0.4-0.2i

-0.3664-0.2021i -0.8890 + 0.3546i -0.4144 - 0.1875i -0.5158 - 0.5874i -0.4-0.2i

11 Difference 3.2075 2.2601 3.1446

Table 1: Estimated, Computed, and Actual coefficients aj for vertices of quadrilateral reconstructed using
TLS with overfit parameter of 0

Estimated aj aj for P aj for P' aj for P"

-0.0168-0.5774i -0.0327- 0.5684i 0.0452- 0.6660i 0.0779- 0.0976i

-0.0080 + 0.1809i 0.1250 - 0.1381i 0.0471 - 0.0405i 0.8478 + 0.3908i

0.4113- 0.1072i 0.8007 + 0.4313i 0.1092 + 0.8601i -0.6915 + 0.4289i

-0.3997-0.0700i -0.8930 + 0.2752i -0.2015 - 0.1536i -0.2342 - 0.7220i
11 Difference 1.6305 1.5648 3.2691

Table 2: Estimated and Computed coefficients aj for vertices of quadrilateral reconstructed using TLS

with overfit parameter of 2

27



6

15

~Figure 1: Three distinct regions corresponding to ° t14 5 6414 13

1 0Figure : Three distinct regions corresponding to -0 . 2 -0.4 5-0.2 0 0.2

the same vertices
Figure 3: Overlayed performance curves at
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Figure 4: Sample reconstructions at SNR=23.9 dB

Figure 2: The Radon transform solid: actual, cirles: reconstructed
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Figure 5: Sample reconstructions at SNR=23.9 dB Figure 7: Sample reconstructions at SNR=23.9 dB

solid: actual, cirles: reconstructed solid: actual, cirles: reconstructed
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Figure 6: Sample reconstructions at SNR=23.9 dB Figure 8: Sample reconstructions at SNR=65.2 dB

solid: actual, cirles: reconstructed solid: actual, circles: reconstructions
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Figure 9: Sample reconstr tctions at SNR=65.2 dB
solid: actual, circles: recor structions
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Figure 10: Sample reconstructions at SNR=65.2
dB solid: actual, circles: reconstructions
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