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Abstract

We investigate the capabilities of Physics-Informed Neural Networks (PINNs) to reconstruct turbulent
Rayleigh-Bénard flows using only temperature information. We perform a quantitative analysis of the
quality of the reconstructions at various amounts of low-passed-filtered information and turbulent
intensities. We compare our results with those obtained via nudging, a classical equation-informed
data assimilation technique. At low Rayleigh numbers, PINNs are able to reconstruct with high
precision, comparable to the one achieved with nudging. At high Rayleigh numbers, PINNs outperform
nudging and are able to achieve satisfactory reconstruction of the velocity fields only when data
for temperature is provided with high spatial and temporal density. When data becomes sparse,
the PINNs performance worsens, not only in a point-to-point error sense but also, and contrary to
nudging, in a statistical sense, as can be seen in the probability density functions and energy spectra.
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1 Introduction

Understanding the type and quantity of informa-
tion needed to reconstruct the state of a physical
system carries important implications for both its
fundamental study and its real-world applications.
In this work we analyze this question for the case
of thermally driven flows. Thermally driven flows
are at the core of several geophysical and indus-
trial systems such as, atmospheric convection,
[1, 2], oceanic convection [3], mantle convection
[4] and pure-metal melting [5]. These flows can

exhibit a wide variety of behaviors and structures,
ranging from plume formation to fully developed
turbulence [6]. It was first conjectured by Char-
ney [7] that temperature measurements alone are
enough to reconstruct the whole state of the atmo-
sphere. This conjecture has been studied both
theoretically and numerically in simple convective
systems [8, 9], 3D Planetary Geostrophic models
[10], and Rayleigh-Bénard flows in non-turbulent
regimes [11, 12], in the infinite Prandtl number
limit [13], and at moderate and high Rayleigh
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2 Reconstruction of Rayleigh-Bérnard Flows
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Fig. 1 Diagram of the PINN used.

numbers [14]. These studies showed the impor-
tance of setting a correct velocity prior to get a
good reconstruction [11], and the fragility to get
a time-independent full synchronization at high
Rayleigh numbers [12, 14]. A deeper understand-
ing of the Charney conjecture is then important
not only to elucidate the interplay between veloc-
ity and temperature but also to improve current
forecasts and Data Assimilation [15, 16] schemes.
The aim of this paper is to continue the work pre-
sented in [14] in 2D turbulent Rayleigh-Bénard
flows. Whilst the original work used Nudging [17–
19] , a synchronization equations-based DA tool,
to reconstruct the flows, we now use Physics-
Informed Neural Networks (PINNs). PINNs are
neural networks designed to approximate the solu-
tion of systems of partial differential equations
[20]. They have been used in inverse problems with
partial information [21, 22], to reconstruct tur-
bulent flows out of measurements [23–26], and to
assimilate statistical data into synthetically gen-
erated fields [27]. For detailed reviews on PINNs,
see [28, 29]. Using a flow coming from a Direct
Numerical Simulation of the 2D Rayleigh-Bénard
system at two different Rayleigh numbers, one
moderate and one high, we use PINNs to perform
reconstructions using varying amounts of data,
characterized by the separation distance between
measuring probes. We show that PINNs are suc-
cessful at the task, even at high Rayleigh numbers,
where the correlations between the temperature
field (for which we provide information) and the
velocity fields (for which we do not) diminish.

The paper is organized as follows, in Sec. 2.1
we introduce the Rayleigh-Bénard equations and
describe the data generation procedures while in
Sec. 2.3 we describe the PINN technique and how
it is applied in this context. Results are presented
in Sec. 3 and conclusions in Sec. 4.

2 Methods

2.1 Rayleigh-Bénard flows and data
generation

Rayleigh-Bénard convection consists of a planar
horizontal layer of fluid that is heated from below
with respect to gravity. If density fluctuations
are small, the Boussinesq approximation may be
employed and the fluid can be described in terms
of an incompressible velocity field plus a temper-
ature field. Taking u = (u, v) to be the horizontal
and vertical components of the velocity field,
respectively, T the temperature and p the pres-
sure, in a 2D geometry and with the average
temperature set to zero and the density to unity
the equations take the form

∂tu + (u · ∇)u = −∇p+ ν∇2u− βTgẑ, (1)

∂T

∂t
+ u · ∇T = κ∇2T, (2)

where β is the thermal expansion coefficient of
the fluid, ν is its kinematic viscosity, κ its ther-
mal conductivity and gẑ the acceleration due to
gravity. The domain is Lx wide and Lz tall and
has periodic boundary conditions in the horizon-
tal direction x̂. At the top and bottom boundaries,
the boundary conditions are

T (z = 0) = Td, T (z = Lz) = −Td,
u(z = 0) = u(z = Lz) = 0.

(3)

where Td > 0. The characteristic velocity scale is
given by u0 =

√
gLzβ2Td and the turnover time

by τ0 = 2Lz/u0. Several dimensionless numbers
can be used to describe Rayleigh-Bénard flows.
The Rayleigh number gives a measure of the ratio
between buoyant and viscous forces and is given
by

Ra = gβ
2TdL3

z

νκ
. (4)

The Prandtl number is the ratio between momen-
tum diffusivity and thermal diffusivity, namely

Pr =
ν

κ
. (5)

The Nusselt number measures the ratio of heat
transfer due to convection versus that due to



Springer Nature 2021 LATEX template

Reconstruction of Rayleigh-Bérnard Flows 3

conduction and is given by

Nu =
〈vT− κ∂zT〉
κ2Td/Lz

, (6)

where 〈.〉 indicate the ensemble average over the
whole domain. Finally, as an estimate of the size
of the smallest scales of the system we define the
Kolmogorov length scale ηκ = (ν3/ε)1/4, where
ε = (νκ2/L4

z)(Nu − 1)Ra is the average rate of
energy dissipation [30].

The reference, or ground-truth, flow of our
numerical experiments was produced by evolving
Eqs. (1)-(2) using a Lattice-Boltzmann method at
two different Rayleigh numbers, Ra1 = 7.2 × 107

and Ra2 = 36.3 × 107. The reference flows are
denoted by variables ur, vr, pr, and T r. Details on
the numerical method can be found in [14]. In the
first case Lx = 864δ, Lz = 432δ, Td = 2.5T0, and
u0 = 1.31U0, while in the second case Lx = 1200δ,
Lz = 600δ, Td = 1.5T0, and u0 = 2.12U0. In
both cases ν = 6.67 × 10−4, Pr = 1, δ = 1,
T0 = 1/100, U0 = 1/100, and ηκ ≈ 2δ. In the first
case Nu ≈ 25, while in the second case Nu ≈ 39.
The flows were first allowed to reach a statistically
stationary state and then data was extracted on a
equally spaced rectangular grid of separation dis-
tance ` ∈ [1 : 31]δ at specific time intervals. In
the first case, data was extracted over 8 separate
time windows 11 snapshots long at a sampling rate
of 164/τ0. In the second case, data was extracted
over 10 separated time windows also 11 snapshots
long but at a sampling rate of 1130/τ0, as this flow
contains faster scales than the other one. Data was
extracted over the whole spatial domain, except
for the case with ` = 1 at Ra2, where the domain
was split into four quadrants, thus necessitating
four PINNs for the reconstruction of the whole
domain. Each dataset Ωd is then identified by the
Rayleigh number of the flow, the grid spacing `,
and the temporal window. The sets of collocation
points Ωp where the physics part of the loss func-
tion is evaluated (see below) consist of all points
where data part are evaluated, i.e. Ωd, plus ran-
domly selected points not necessarily lying on the
`-spaced sampling grid. Note that as no data are
used when evaluating the physics part of the loss
function, we are not increasing the density of data
used. The number of extra collocation points was
0, 0, 1, 2, 3, and 4 for every spatial position in Ωd
for `/δ = 1, 7, 10, 14, 22, and 31, respectively. To

evaluate the PINNs’ performances testing datasets
Ωt consisting of the full fields, i.e., not subsampled
in space, were used.

2.2 Flow reconstruction using
PINNs

Figure 1 shows a diagram of the PINN used in our
experiments. The PINN takes coordinates (x, z, t)
as input and outputs fields (u, v, p, T ) at the spec-
ified coordinate. All PINNs presented here are five
layers deep, have 100 hidden units in each layer
and use ELU as activation functions. The loss
function used to train them has the form

L = Ld + λLp,

with the contribution given by the measured data
is given by

Ld =
1

N(Ωd)T 2
0

∑
j∈Ωd

|T (xj , zj , tj)− T rj |2,

and the one given by the imposition of the correct
equations of motion by:

Lp =
δ2

N(Ωp)

∑
j∈Ωp

(
λuU

−4
0 fu + λTT

−2
0 U−2

0 fT+

λiU
−2
0 fi

)
,

with

fu = |∂tu + (u · ∇)u +∇p− ν∇2u + βTgẑ|2,

fT = |∂tT + u · ∇T − κ∇2T |2,

and

fi = |∇ · u|2,

and where λ, λu, λT and λi are extra hyperparam-
eters set fixed to 105, 1, 10−1 and 103, respectively,
throughout. The subsets of points Ωd and Ωp
where the summations are evaluated are explained
in the section above, N(Ωd) and N(Ωp) denote the
number of point in the respective datasets. The
PINNs were trained using the Adam algorithm
with a learning rate of 10−4 for 60000 epochs.
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Fig. 2 Visualizations of temperature (top) and vertical velocity (bottom) for the flow with Ra2. The left column shows
the reference data, the other three columns show the reconstructions obatined with `/δ = 1, 14 and 31. The locations of
the measuring probes (corresponding to the case with ` = 14δ) are marked with white dots on top of T r. All visualizations
share the same colorbar.

2.3 Flow reconstruction using
Nudging

Nudging is an equation-informed data assimi-
lation tool, using the evolution of the Navier-
Stokes equations (1) supplemented by a Newton
relaxation term proportional to α(T(xj , zj , tj)

r −
T ) in the temperature evolution. The resulting
equations take the form

∂tu + (u · ∇)u = −∇p+ ν∇2u− βTgẑ, (7)

∂T

∂t
+ u · ∇T = κ∇2T − αI(T r − T ),

where α is the amplitude of the nudging term and
has units of frequency and I is a filtering opera-
tor equal to 1 where the data is available, i.e. the
measuring probes, and zero otherwise. The idea
in nudging is to force the equation of motion to
“follow” the available information where it is avail-
able and leave the equations of motion to refill the
gaps in the whole space-time domain. For further
details about the optimal selection for the nudging
parameter α and how to interpolate in time and
space the supplied data see [14]. In contrast with
PINNs, Nudging naturally enforces all physical
constraints everywhere, at the cost of evolving the
partial differential equations on the entire domain.

2.4 Error assessment

In order to assess the reconstructions obtained, we
define the point-to-point error field for tempera-
ture and velocity as:

T∆(r, t) = T r(r, t)− T (r, t);

v∆(r, t) = vr(r, t)− v(r, t). (8)

Global normalized errors are then given by

∆T =
〈T 2

∆(r, t)〉
〈T 2(r, t)〉

; ∆v =
〈v2

∆(r, t)〉
〈v2(r, t)〉

, (9)

where 〈·〉 indicates the average over the entire
domain. It is important to stress that no infor-
mation on the temperature at the boundary was
provided (similarly to what implemented for nudg-
ing).

The scale-by-scale analysis is performed by
analyzing the energy spectra:

Ef (k) = 〈|f̂(k, z0, t)|2〉t, (10)

where f is the field studied (either v, v∆, T , or

T∆), f̂(k, z0, t) are the Fourier coefficients of f cal-
culated along the horizontal direction at position
z0 = Lz/2 and time t, and 〈, 〉t denotes the time
average.
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3 Results

Figure 2 shows visualizations of the reference
temperature T r and vertical velocity vr of the
flow with Ra2 at a given time and their PINN-
reconstructed counterparts, T and v, for three
reconstructions, one performed with `/δ = 1, one
with `/δ = 14 and one with `/δ = 31. The location
of the temperature measuring probes (correspond-
ing to the `/δ = 14 case) are marked with white
dots. These visualizations not only show the char-
acteristics of the flow, but also give a qualitative
glimpse into the overall results: PINNs are able
to reconstruct/infer the velocity field using only
temperature information, even at high Rayleigh
number, but with clear difficulties to capture
small-scales fluctuations, as shown by the blurred
velocity configurations (middle and right bottom
panels). To further stress this point, we show the
horizontal profile at z0 = 300δ in Fig. 3 with
three different `/δ = 1, 14, 31 for temperature
(top), and velocity (bottom). As seen, the tem-
perature reconstruction almost overlaps with the
reference data for all cases, except the one with
`/δ = 31. The reconstructed velocity field, on the
other hand, is able to correctly match the large
scale structure of the reference flow, but is missing
smaller scale features. Furthermore, the effects of
not enforcing periodic boundary conditions along
the horizontal direction can be clearly seen in the
`/δ = 31 case.

To put matters into quantitative terms, in
Fig. 4 we show ∆T and ∆v obtained for the dif-
ferent `/δ and the two Rayleigh numbers. The
figures also show the results obtained via Nudg-
ing presented in [14]. As shown on the top panel
of Fig. 4 for the case of the temperature field,
PINNs and Nudging perform similarly. On the
other hand, concerning the most interesting -and
difficult- question of reconstructing the velocity
field, in the bottom panel we show that PINNs
outperform Nudging when the supplied temper-
ature is dense enough in space δ/` ∼ 1, while
it is comparable with Nudging for sparse data,
δ/` < 8× 10−2.

In Fig. 5 (top) we show the temperature spec-
tra at y0 = 300δ of the reference flow and of
the reconstructions obtained with ` = 1δ, 14δ,
and 31δ for the high Rayleigh number case, while
in the bottom panel we show the the spectra of
the reference field superimposed with the spectra

of the error T∆. A Hanning window was applied
to the reconstructed fields to cure any effects of
non-periodicity. The vertical dash-dotted red line
marks where kδ = 14 and the veritcal dotted green
line where kδ = 31. As expected from the pre-
vious analysis, the overall errors are small and
mostly concentrated in the small scales, although
in the ` = 14δ and 31δ cases, these are still bigger
than the scale set by `. Figure 6 shows the corre-
sponding spectra of the vertical velocity, with the
addition of the result obtained via nudging [14]
for `/δ = 14. Here, only in the case with `/δ = 1
the PINN produces a physically meaningful energy
spectrum, while the spectra obtained via nudging
is very similar to the reference one. In accordance
with Figs. 2 and 3, the cases with higher `/δ
can only properly reconstruct the position and
shape of the largest structures of the flow, but fail
to produce the small-scale structures observed at
these Rayleigh numbers. The energy spectra of the
reconstruction thus decay very rapidly.

Finally, in Fig. 7(a) and (b) we show the prob-
ability density functions (excluding the regions
close to the walls) of temperature and vertical
velocity, respectively for the case with Ra2. As
expected, temperature statistics are well repro-
duced for all ` presented, while velocity statistics
are only close to accurate when ` = 1, otherwise
the probability density function start resembling
a Gaussian.

4 Conclusions

Machine and deep learning techniques are becom-
ing well-established tools in the Data Assimilation
world. We show that it is possible to reconstruct
Rayleigh-Bénard velocity fields having access only
to time-resolved point-wise temperature measure-
ments using PINNs. We investigate two different
Rayleigh numbers at 7.2 × 107 and 3.6 × 108. In
order to assess the accuracy of PINNs we compare
the results against a baseline given by Nudging
[14]. PINNs achieve an accuracy comparable to
Nudging for the smallest Rayleigh number and a
better accuracy for highest Rayleigh case when the
temperature data are supplied at high spatial fre-
quencies. On the other hand, when temperature
is too sparse, PINNs fail to produce meaningful
results, while Nudging still produces physically
valid solutions. We interpret this as a lack to
enforce the correct physical constraints when data



Springer Nature 2021 LATEX template

6 Reconstruction of Rayleigh-Bérnard Flows

Fig. 3 Temperature (top) and velocity (bottom) profiles
for the case with Ra2. The reconstructions shown were
obtained using `/δ = 1, 14, and 31. Both figures share the
same legend.

are not dense enough. As seen in other works
[26, 29], PINNs can struggle with high-frequency
components, a major problem in multi-scale tur-
bulent data where information is key also at
small-scales and high-frequencies. It is important
to remark that while the results presented can be
considered promising, we do not claim they are
optimal under any criteria, better results may be
obtained with a different choice of hyperparame-
ters, a slight modifications to the architecture [25],
by enforcing periodicity in the horizontal direc-
tion via Fourier features [31], or by splitting the
domain into smaller subsections [32]. It is out of
the scope of this work to perform an exhaustive
and meaningful hyperparameter scan. This work
can be considered another exploratory attempt
to systematic assess ML tools for reconstruct-
ing multi-scale turbulent fields, imposing physics
constraints. Our intention here is to stress the
importance to compare with other baselines (here

Fig. 4 Global temperature errors ∆T (top) and global
velocity errors ∆v (bottom) as a function of δ/`. Full mark-
ers denote the results for the case with Ra1, while empty
markers denote the case with Ra2. The orange circular
markers are the results obtained with PINNs, while the
blue square markers are for the results obtained via nudging
(extracted from [14]). Both figures share the same legend.

Nudging is used), the need -in future works- to
explore a wider range of Rayleigh (here limited
to [107 : 108]) and to jump to full 3d + 1 space-
time domains, the need to distinguish point-based
reconstructions (here assessed in term of L2 norm,
and spectral errors) from statistical reconstruction
(here assessed with spectral and probability den-
sity functions). As far as this study shows, when
data are sparse, PINNs performance worsens.
Contrary to Nudging, the obtained reconstructed
fields not only have a high point-to-point error but
also have incorrect energy spectra and statistics.

Declarations

The datasets generated during and/or analysed
during the current study are available from the
corresponding author on reasonable request.



Springer Nature 2021 LATEX template

Reconstruction of Rayleigh-Bérnard Flows 7

Fig. 5 Top: temperature spectra for the reference flow
at Ra2 and the spectra reconstructed fields obtained with
`/δ = 1, 14, and 31. The vertical dash-dotted red line marks
where kδ = 14, while the vertical dotted green line where
kδ = 31. Bottom: temperature spectra for the reference
flow at Ra2 and the spectra of the temperature error fields
obtained with `/δ = 1, 14, and 31. Both figures share the
same legend.
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discussed the results and contributed to the final
manuscript.
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the European Research Council (ERC) under
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innovation programme (Grant Agreement No.
882340)).
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